4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-18 09:53:30 +08:00
2018-06-11 09:45:07 +08:00

500 lines
13 KiB
C

/*
* Copyright (C) 2017 C-SKY Microsystems Co., Ltd. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/******************************************************************************
* @file ck_aes.c
* @brief CSI Source File for aes driver
* @version V1.0
* @date 02. June 2017
******************************************************************************/
#include "csi_core.h"
#include "drv_aes.h"
#include "ck_aes.h"
#define ERR_AES(errno) (CSI_DRV_ERRNO_AES_BASE | errno)
#define AES_NULL_PARA_CHK(para) \
do { \
if (para == NULL) { \
return ERR_AES(EDRV_PARAMETER); \
} \
} while (0)
static ck_aes_reg_t *aes_reg = NULL;
typedef struct {
uint32_t base;
uint32_t irq;
void *iv;
uint8_t *result_out;
uint32_t len;
aes_event_cb_t cb;
aes_mode_e mode;
aes_key_len_bits_e keylen;
aes_endian_mode_e endian;
aes_status_t status;
} ck_aes_priv_t;
static ck_aes_priv_t aes_handle[CONFIG_AES_NUM];
/* Driver Capabilities */
static const aes_capabilities_t driver_capabilities = {
.ecb_mode = 1, /* ECB mode */
.cbc_mode = 1, /* CBC mode */
.cfb_mode = 0, /* CFB mode */
.ofb_mode = 0, /* OFB mode */
.ctr_mode = 0, /* CTR mode */
.bits_128 = 1, /* 128bits key length mode */
.bits_192 = 1, /* 192bits key lenght mode */
.bits_256 = 1 /* 256bits key length mode */
};
//
// Functions
//
static inline void aes_set_opcode(aes_crypto_mode_e opcode)
{
aes_reg->ctrl &= ~(3 << AES_OPCODE_OFFSET); //clear bit[7:6]
aes_reg->ctrl |= (opcode << AES_OPCODE_OFFSET); //set opcode
}
static inline void aes_set_endian(aes_endian_mode_e endian)
{
if (endian == AES_ENDIAN_LITTLE) {
aes_reg->ctrl &= ~AES_LITTLE_ENDIAN;
} else {
aes_reg->ctrl |= AES_LITTLE_ENDIAN;
}
}
static inline uint32_t aes_set_keylen(aes_key_len_bits_e keylength)
{
aes_reg->ctrl &= ~(3 << AES_KEY_LEN_OFFSET); //clear bit[5:4]
aes_reg->ctrl |= (keylength << AES_KEY_LEN_OFFSET);// Set key length
return 0;
}
static inline void aes_set_mode(aes_mode_e mode)
{
aes_reg->ctrl &= ~(1 << AES_MODE_OFFSET); //clear bit 3
aes_reg->ctrl |= (mode << AES_MODE_OFFSET); //set mode
}
static inline void aes_enable(void)
{
aes_reg->ctrl |= (1 << AES_WORK_ENABLE_OFFSET);
}
static inline void aes_disable(void)
{
aes_reg->ctrl &= ~(1 << AES_WORK_ENABLE_OFFSET);
}
static inline void aes_enable_interrupt(void)
{
aes_reg->ctrl |= (1 << AES_INT_ENABLE_OFFSET);
}
static inline void aes_disable_interrupt(void)
{
aes_reg->ctrl &= ~(1 << AES_INT_ENABLE_OFFSET);
}
static inline void aes_clear_interrupt(void)
{
aes_reg->state = 0x0;
}
static inline uint32_t aes_get_intstatus(uint32_t AES_IT)
{
return (aes_reg->state & AES_IT) ? 1 : 0;
}
static void aes_set_key(void *context, uint8_t *key, uint32_t keylen, uint32_t enc, uint32_t endian)
{
uint8_t keynum = 0;
if (keylen == AES_KEY_LEN_BITS_128) {
keynum = 4;
} else if (keylen == AES_KEY_LEN_BITS_192) {
keynum = 6;
} else if (keylen == AES_KEY_LEN_BITS_256) {
keynum = 8;
}
uint32_t i;
/* set key according to the endian mode */
if (endian == AES_ENDIAN_LITTLE) {
for (i = 0; i < keynum; i++) {
aes_reg->key[keynum - 1 - i] = *(uint32_t *)key;
key += 4;
}
} else if (endian == AES_ENDIAN_BIG) {
for (i = 0; i < keynum; i++) {
aes_reg->key[i] = *(uint32_t *)key;
key += 4;
}
}
if (enc == AES_CRYPTO_MODE_DECRYPT) {
aes_set_opcode(AES_CRYPTO_KEYEXP); /* if the mode is decrypt before decrypt you have to keyexpand */
aes_enable();
while (aes_get_intstatus(AES_IT_KEYINT));
aes_set_opcode(AES_CRYPTO_MODE_DECRYPT);
} else if (enc == AES_CRYPTO_MODE_ENCRYPT) {
aes_set_opcode(AES_CRYPTO_MODE_ENCRYPT);
}
aes_disable();
}
static int aes_crypto(void *context, uint8_t *in, uint8_t *out,
uint32_t len, uint8_t *iv, uint32_t mode, uint32_t endian)
{
uint32_t i = 0;
/* set iv if the mode is CBC */
if (mode == AES_MODE_CBC) {
if (endian == AES_ENDIAN_BIG) {
for (i = 0; i < 4; i++) {
aes_reg->iv[i] = *(uint32_t *)iv;
iv += 4;
}
} else if (endian == AES_ENDIAN_LITTLE) {
for (i = 0; i < 4; i++) {
aes_reg->iv[3 - i] = *(uint32_t *)iv;
iv += 4;
}
}
}
uint32_t j = 0;
/* set the text before aes calculating */
for (i = 0; i < len; i = i + 16) {
for (j = 0; j < 4; j++) {
if (endian == AES_ENDIAN_BIG) {
aes_reg->datain[j] = *(uint32_t *)in;
} else if (endian == AES_ENDIAN_LITTLE) {
aes_reg->datain[3 - j] = *(uint32_t *)in;
}
in += 4;
}
aes_enable();
}
return 0;
}
void ck_aes_irqhandler(int32_t idx)
{
ck_aes_priv_t *aes_priv = &aes_handle[idx];
volatile uint32_t j;
uint32_t tmp = 0;
/* get the result after aes calculating*/
if (aes_priv->result_out != NULL) {
for (j = 0; j < 4; j++) {
if (aes_priv->endian == AES_ENDIAN_BIG) {
tmp = aes_reg->dataout[j];
} else if (aes_priv->endian == AES_ENDIAN_LITTLE) {
tmp = aes_reg->dataout[3 - j];
}
*(uint32_t *)aes_priv->result_out = tmp;
aes_priv->result_out += 4;
aes_priv->len -= 4;
}
}
/* disable aes and clear the aes interrupt */
aes_disable();
aes_clear_interrupt();
/* execute the callback function */
if (aes_priv->len == 0) {
if (aes_priv->cb) {
aes_priv->cb(AES_EVENT_CRYPTO_COMPLETE);
}
}
}
int32_t __attribute__((weak)) target_get_aes_count(void)
{
return 0;
}
int32_t __attribute__((weak)) target_get_aes(int32_t idx, uint32_t *base, uint32_t *irq)
{
return NULL;
}
/**
\brief get aes instance count.
\return aes handle count
*/
int32_t csi_aes_get_instance_count(void)
{
return target_get_aes_count();
}
/**
\brief Initialize AES Interface. 1. Initializes the resources needed for the AES interface 2.registers event callback function
\param[in] idx must not exceed return value of csi_aes_get_instance_count().
\param[in] cb_event Pointer to \ref aes_event_cb_t
\return return aes handle if success
*/
aes_handle_t csi_aes_initialize(int32_t idx, aes_event_cb_t cb_event)
{
if (idx < 0 || idx >= CONFIG_AES_NUM) {
return NULL;
}
uint32_t irq = 0u;
uint32_t base = 0u;
/* obtain the aes information */
int32_t real_idx = target_get_aes(idx, &base, &irq);
if (real_idx != idx) {
return NULL;
}
ck_aes_priv_t *aes_priv = &aes_handle[idx];
aes_priv->base = base;
aes_priv->irq = irq;
/* initialize the aes context */
aes_reg = (ck_aes_reg_t *)(aes_priv->base);
aes_priv->cb = cb_event;
aes_priv->iv = NULL;
aes_priv->len = 16;
aes_priv->result_out = NULL;
aes_priv->mode = AES_MODE_CBC;
aes_priv->keylen = AES_KEY_LEN_BITS_128;
aes_priv->endian = AES_ENDIAN_LITTLE;
aes_priv->status.busy = 0;
aes_enable_interrupt(); /* enable the aes interrupt */
drv_nvic_enable_irq(aes_priv->irq); /* enable the aes bit in nvic */
return (aes_handle_t)aes_priv;
}
/**
\brief De-initialize AES Interface. stops operation and releases the software resources used by the interface
\param[in] handle aes handle to operate.
\return error code
*/
int32_t csi_aes_uninitialize(aes_handle_t handle)
{
AES_NULL_PARA_CHK(handle);
ck_aes_priv_t *aes_priv = handle;
aes_priv->cb = NULL;
aes_disable_interrupt(); /* disable the aes interrupt */
drv_nvic_disable_irq(aes_priv->irq);
return 0;
}
/**
\brief Get driver capabilities.
\param[in] handle aes handle to operate.
\return \ref aes_capabilities_t
*/
aes_capabilities_t csi_aes_get_capabilities(aes_handle_t handle)
{
return driver_capabilities;
}
/**
\brief config aes mode.
\param[in] handle aes handle to operate.
\param[in] mode \ref aes_mode_e
\param[in] keylen_bits \ref aes_key_len_bits_e
\param[in] endian \ref aes_endian_mode_e
\param[in] arg Pointer to the iv address when mode is cbc_mode
\return error code
*/
int32_t csi_aes_config(aes_handle_t handle, aes_mode_e mode, aes_key_len_bits_e keylen_bits, aes_endian_mode_e endian, uint32_t arg)
{
AES_NULL_PARA_CHK(handle);
ck_aes_priv_t *aes_priv = handle;
aes_reg = (ck_aes_reg_t *)(aes_priv->base);
/* config the aes mode */
switch (mode) {
case AES_MODE_CBC:
aes_priv->iv = (void *)arg;
aes_priv->mode = mode;
aes_set_mode(mode);
break;
case AES_MODE_ECB:
aes_priv->mode = mode;
aes_set_mode(mode);
break;
case AES_MODE_CFB:
case AES_MODE_OFB:
case AES_MODE_CTR:
return ERR_AES(EDRV_UNSUPPORTED);
default:
return ERR_AES(EDRV_PARAMETER);
}
/* config the key length */
switch (keylen_bits) {
case AES_KEY_LEN_BITS_128:
case AES_KEY_LEN_BITS_192:
case AES_KEY_LEN_BITS_256:
aes_priv->keylen = keylen_bits;
aes_set_keylen(keylen_bits);
break;
default:
return ERR_AES(EDRV_PARAMETER);
}
/* config the endian mode */
switch (endian) {
case AES_ENDIAN_LITTLE:
aes_priv->endian = endian;
aes_set_endian(endian);
break;
case AES_ENDIAN_BIG:
aes_priv->endian = endian;
aes_set_endian(endian);
break;
default:
return ERR_AES(EDRV_PARAMETER);
}
return 0;
}
/**
\brief set crypto key.
\param[in] handle aes handle to operate.
\param[in] context aes information context(NULL when hardware implementation)
\param[in] key Pointer to the key buf
\param[in] key_len the key len
\param[in] enc \ref aes_crypto_mode_e
\return error code
*/
int32_t csi_aes_set_key(aes_handle_t handle, void *context, void *key, uint32_t key_len, aes_crypto_mode_e enc)
{
AES_NULL_PARA_CHK(handle);
AES_NULL_PARA_CHK(key);
if ((key_len != AES_KEY_LEN_BITS_128 &&
key_len != AES_KEY_LEN_BITS_192 &&
key_len != AES_KEY_LEN_BITS_256) ||
(enc != AES_CRYPTO_MODE_ENCRYPT &&
enc != AES_CRYPTO_MODE_DECRYPT)) {
return ERR_AES(EDRV_PARAMETER);
}
ck_aes_priv_t *aes_priv = handle;
aes_set_key(context, key, key_len, enc, aes_priv->endian);
return 0;
}
/**
\brief encrypt or decrypt
\param[in] handle aes handle to operate.
\param[in] context aes information context(NULL when hardware implementation)
\param[in] in Pointer to the Source data
\param[out] out Pointer to the Result data.
\param[in] len the Source data len.
\param[in] padding \ref aes_padding_mode_e.
\return error code
*/
int32_t csi_aes_crypto(aes_handle_t handle, void *context, void *in, void *out, uint32_t len, aes_padding_mode_e padding)
{
AES_NULL_PARA_CHK(handle);
AES_NULL_PARA_CHK(in);
AES_NULL_PARA_CHK(out);
AES_NULL_PARA_CHK(len);
ck_aes_priv_t *aes_priv = handle;
aes_priv->status.busy = 1;
uint8_t left_len = len & 0xf;
switch (padding) {
case AES_PADDING_MODE_NO:
if (left_len) {
return ERR_AES(EDRV_PARAMETER);
}
/* crypto in padding no mode */
aes_priv->result_out = out;
aes_priv->len = len;
aes_crypto(context, in, out, len, aes_priv->iv, aes_priv->mode, aes_priv->endian);
break;
case AES_PADDING_MODE_ZERO:
if (left_len == 0) {
return ERR_AES(EDRV_PARAMETER);
}
uint8_t i = 0;
for (i = 0; i < (16 - left_len); i++) {
*((uint8_t *)in + len + i) = 0x0;
}
/* crypto in padding zero mode */
aes_priv->result_out = out;
aes_priv->len = len + 16 -left_len;
aes_crypto(context, in, out, len + 16 - left_len, aes_priv->iv, aes_priv->mode, aes_priv->endian);
break;
case AES_PADDING_MODE_PKCS5:
return ERR_AES(EDRV_UNSUPPORTED);
default:
return ERR_AES(EDRV_PARAMETER);
}
aes_priv->status.busy = 0;
return 0;
}
/**
\brief Get AES status.
\param[in] handle aes handle to operate.
\return AES status \ref aes_status_t
*/
aes_status_t csi_aes_get_status(aes_handle_t handle)
{
ck_aes_priv_t *aes_priv = handle;
return aes_priv->status;
}