rt-thread-official/src/kservice.c

998 lines
19 KiB
C

/*
* File : kservice.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2006-03-16 Bernard the first version
* 2006-05-25 Bernard rewrite vsprintf
* 2006-08-10 Bernard add rt_show_version
* 2010-03-17 Bernard remove rt_strlcpy function
* fix gcc compiling issue.
* 2010-04-15 Bernard remove weak definition on ICCM16C compiler
*/
#include <rtthread.h>
#include <rthw.h>
/**
* @addtogroup KernelService
*/
/*@{*/
#ifndef RT_USING_NEWLIB
/* global errno in RT-Thread*/
int errno;
#else
#include <errno.h>
#endif
static rt_device_t _console_device = RT_NULL;
/*
* This function will get errno
*
* @return errno
*/
rt_err_t rt_get_errno(void)
{
rt_thread_t tid;
tid = rt_thread_self();
if (tid == RT_NULL) return errno;
return tid->error;
}
/*
* This function will set errno
*
* @param error the errno shall be set
*/
void rt_set_errno(rt_err_t error)
{
rt_thread_t tid;
tid = rt_thread_self();
if (tid == RT_NULL) { errno = error; return; }
tid->error = error;
}
/**
* This function will set the content of memory to specified value
*
* @param s the address of source memory
* @param c the value shall be set in content
* @param count the copied length
*
* @return the address of source memory
*
*/
void *rt_memset(void * s, int c, rt_ubase_t count)
{
#ifdef RT_TINY_SIZE
char *xs = (char *) s;
while (count--)
*xs++ = c;
return s;
#else
#define LBLOCKSIZE (sizeof(rt_int32_t))
#define UNALIGNED(X) ((rt_int32_t)X & (LBLOCKSIZE - 1))
#define TOO_SMALL(LEN) ((LEN) < LBLOCKSIZE)
int i;
char *m = (char *)s;
rt_uint32_t buffer;
rt_uint32_t *aligned_addr;
rt_uint32_t d = c & 0xff;
if (!TOO_SMALL (count) && !UNALIGNED (s))
{
/* If we get this far, we know that n is large and m is word-aligned. */
aligned_addr = (rt_uint32_t*)s;
/* Store D into each char sized location in BUFFER so that
* we can set large blocks quickly.
*/
if (LBLOCKSIZE == 4)
{
buffer = (d << 8) | d;
buffer |= (buffer << 16);
}
else
{
buffer = 0;
for (i = 0; i < LBLOCKSIZE; i++)
buffer = (buffer << 8) | d;
}
while (count >= LBLOCKSIZE*4)
{
*aligned_addr++ = buffer;
*aligned_addr++ = buffer;
*aligned_addr++ = buffer;
*aligned_addr++ = buffer;
count -= 4*LBLOCKSIZE;
}
while (count >= LBLOCKSIZE)
{
*aligned_addr++ = buffer;
count -= LBLOCKSIZE;
}
/* Pick up the remainder with a bytewise loop. */
m = (char*)aligned_addr;
}
while (count--)
{
*m++ = (char)d;
}
return s;
#undef LBLOCKSIZE
#undef UNALIGNED
#undef TOO_SMALL
#endif
}
/**
* This function will copy memory content from source address to destination
* address.
*
* @param dst the address of destination memory
* @param src the address of source memory
* @param count the copied length
*
* @return the address of destination memory
*
*/
void *rt_memcpy(void * dst, const void *src, rt_ubase_t count)
{
#ifdef RT_TINY_SIZE
char *tmp = (char *) dst, *s = (char *) src;
while (count--)
*tmp++ = *s++;
return dst;
#else
#define UNALIGNED(X, Y) \
(((rt_int32_t)X & (sizeof (rt_int32_t) - 1)) | ((rt_int32_t)Y & (sizeof (rt_int32_t) - 1)))
#define BIGBLOCKSIZE (sizeof (rt_int32_t) << 2)
#define LITTLEBLOCKSIZE (sizeof (rt_int32_t))
#define TOO_SMALL(LEN) ((LEN) < BIGBLOCKSIZE)
char *dst_ptr = (char*)dst;
char *src_ptr = (char*)src;
rt_int32_t *aligned_dst;
rt_int32_t *aligned_src;
int len = count;
/* If the size is small, or either SRC or DST is unaligned,
then punt into the byte copy loop. This should be rare. */
if (!TOO_SMALL(len) && !UNALIGNED (src_ptr, dst_ptr))
{
aligned_dst = (rt_int32_t*)dst_ptr;
aligned_src = (rt_int32_t*)src_ptr;
/* Copy 4X long words at a time if possible. */
while (len >= BIGBLOCKSIZE)
{
*aligned_dst++ = *aligned_src++;
*aligned_dst++ = *aligned_src++;
*aligned_dst++ = *aligned_src++;
*aligned_dst++ = *aligned_src++;
len -= BIGBLOCKSIZE;
}
/* Copy one long word at a time if possible. */
while (len >= LITTLEBLOCKSIZE)
{
*aligned_dst++ = *aligned_src++;
len -= LITTLEBLOCKSIZE;
}
/* Pick up any residual with a byte copier. */
dst_ptr = (char*)aligned_dst;
src_ptr = (char*)aligned_src;
}
while (len--)
*dst_ptr++ = *src_ptr++;
return dst;
#undef UNALIGNED
#undef BIGBLOCKSIZE
#undef LITTLEBLOCKSIZE
#undef TOO_SMALL
#endif
}
/**
* This function will move memory content from source address to destination
* address.
*
* @param dest the address of destination memory
* @param src the address of source memory
* @param n the copied length
*
* @return the address of destination memory
*
*/
void* rt_memmove(void *dest, const void *src, rt_ubase_t n)
{
char *tmp = (char *) dest, *s = (char *) src;
if (s < tmp && tmp < s + n)
{
tmp+=n;
s+=n;
while (n--)
*tmp-- = *s--;
}
else
{
while (n--)
*tmp++ = *s++;
}
return dest;
}
/**
* memcmp - Compare two areas of memory
* @param cs: One area of memory
* @param ct: Another area of memory
* @param count: The size of the area.
*/
rt_int32_t rt_memcmp(const void * cs,const void * ct, rt_ubase_t count)
{
const unsigned char *su1, *su2;
int res = 0;
for( su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count--)
if ((res = *su1 - *su2) != 0)
break;
return res;
}
/**
* This function will return the first occurrence of a string.
*
* @param s1 the source string
* @param s2 the find string
*
* @return the first occurrence of a s2 in s1, or RT_NULL if no found.
*/
char * rt_strstr(const char * s1,const char * s2)
{
int l1, l2;
l2 = rt_strlen(s2);
if (!l2)
return (char *) s1;
l1 = rt_strlen(s1);
while (l1 >= l2)
{
l1--;
if (!rt_memcmp(s1,s2,l2))
return (char *) s1;
s1++;
}
return RT_NULL;
}
/**
* This function will compare two strings while ignoring differences in case
*
* @param a the string to be compared
* @param b the string to be compared
*
* @return the result
*/
rt_uint32_t rt_strcasecmp(const char *a, const char *b)
{
int ca, cb;
do
{
ca = *a++ & 0xff;
cb = *b++ & 0xff;
if (ca >= 'A' && ca <= 'Z')
ca += 'a' - 'A';
if (cb >= 'A' && cb <= 'Z')
cb += 'a' - 'A';
}
while (ca == cb && ca != '\0');
return ca - cb;
}
/**
* This function will copy string no more than n bytes.
*
* @param dest the string to copy
* @param src the string to be copied
* @param n the maximum copied length
*
* @return the result
*/
char *rt_strncpy(char *dest, const char *src, rt_ubase_t n)
{
char *tmp = (char *) dest, *s = (char *) src;
while(n--)
*tmp++ = *s++;
return dest;
}
/**
* This function will compare two strings with specified maximum length
*
* @param cs the string to be compared
* @param ct the string to be compared
* @param count the maximum compare length
*
* @return the result
*/
rt_ubase_t rt_strncmp(const char * cs, const char * ct, rt_ubase_t count)
{
register signed char __res = 0;
while (count)
{
if ((__res = *cs - *ct++) != 0 || !*cs++)
break;
count--;
}
return __res;
}
/**
* This function will compare two strings without specified length
*
* @param cs the string to be compared
* @param ct the string to be compared
*
* @return the result
*/
rt_ubase_t rt_strcmp (const char *cs, const char *ct)
{
while (*cs && *cs == *ct)
cs++, ct++;
return (*cs - *ct);
}
/**
* This function will return the length of a string, which terminate will
* null character.
*
* @param s the string
*
* @return the length of string
*/
rt_ubase_t rt_strlen(const char *s)
{
const char *sc;
for (sc = s; *sc != '\0'; ++sc) /* nothing */
;
return sc - s;
}
#ifdef RT_USING_HEAP
/**
* This function will duplicate a string.
*
* @param s the string to be duplicated
*
* @return the duplicated string pointer
*/
char *rt_strdup(const char *s)
{
rt_size_t len = rt_strlen(s) + 1;
char *tmp = (char *)rt_malloc(len);
if(!tmp) return RT_NULL;
rt_memcpy(tmp, s, len);
return tmp;
}
#endif
/**
* This function will show the version of rt-thread rtos
*/
void rt_show_version()
{
rt_kprintf("\n \\ | /\n");
rt_kprintf("- RT - Thread Operating System\n");
rt_kprintf(" / | \\ 0.%d.%d build %s\n", RT_VERSION, RT_SUBVERSION, __DATE__);
rt_kprintf(" 2006 - 2009 Copyright by rt-thread team\n");
}
/* private function */
#define isdigit(c) ((unsigned)((c) - '0') < 10)
rt_inline rt_int32_t divide(rt_int32_t *n, rt_int32_t base)
{
rt_int32_t res;
/* optimized for processor which does not support divide instructions. */
if (base == 10)
{
res = ((rt_uint32_t)*n) % 10U;
*n = ((rt_uint32_t)*n) / 10U;
}
else
{
res = ((rt_uint32_t)*n) % 16U;
*n = ((rt_uint32_t)*n) / 16U;
}
return res;
}
rt_inline int skip_atoi(const char **s)
{
register int i=0;
while (isdigit(**s)) i = i*10 + *((*s)++) - '0';
return i;
}
#define ZEROPAD (1 << 0) /* pad with zero */
#define SIGN (1 << 1) /* unsigned/signed long */
#define PLUS (1 << 2) /* show plus */
#define SPACE (1 << 3) /* space if plus */
#define LEFT (1 << 4) /* left justified */
#define SPECIAL (1 << 5) /* 0x */
#define LARGE (1 << 6) /* use 'ABCDEF' instead of 'abcdef' */
#ifdef RT_PRINTF_PRECISION
static char *print_number(char * buf, char * end, long num, int base, int s, int precision, int type)
#else
static char *print_number(char * buf, char * end, long num, int base, int s, int type)
#endif
{
char c, sign;
#ifdef RT_PRINTF_LONGLONG
char tmp[32];
#else
char tmp[16];
#endif
const char *digits;
static const char small_digits[] = "0123456789abcdef";
static const char large_digits[] = "0123456789ABCDEF";
register int i;
register int size;
size = s;
digits = (type & LARGE) ? large_digits : small_digits;
if (type & LEFT) type &= ~ZEROPAD;
c = (type & ZEROPAD) ? '0' : ' ';
/* get sign */
sign = 0;
if (type & SIGN)
{
if (num < 0)
{
sign = '-';
num = -num;
}
else if (type & PLUS) sign = '+';
else if (type & SPACE) sign = ' ';
}
#ifdef RT_PRINTF_SPECIAL
if (type & SPECIAL)
{
if (base == 16) size -= 2;
else if (base == 8) size--;
}
#endif
i = 0;
if (num == 0) tmp[i++]='0';
else
{
while (num != 0) tmp[i++] = digits[divide(&num, base)];
}
#ifdef RT_PRINTF_PRECISION
if (i > precision) precision = i;
size -= precision;
#else
size -= i;
#endif
if (!(type&(ZEROPAD | LEFT)))
{
while(size-->0)
{
if (buf <= end) *buf = ' ';
++buf;
}
}
if (sign)
{
if (buf <= end)
{
*buf = sign;
--size;
}
++buf;
}
#ifdef RT_PRINTF_SPECIAL
if (type & SPECIAL)
{
if (base==8)
{
if (buf <= end) *buf = '0';
++buf;
}
else if (base==16)
{
if (buf <= end) *buf = '0';
++buf;
if (buf <= end)
{
*buf = type & LARGE? 'X' : 'x';
}
++buf;
}
}
#endif
/* no align to the left */
if (!(type & LEFT))
{
while (size-- > 0)
{
if (buf <= end) *buf = c;
++buf;
}
}
#ifdef RT_PRINTF_PRECISION
while (i < precision--)
{
if (buf <= end) *buf = '0';
++buf;
}
#endif
/* put number in the temporary buffer */
while (i-- > 0)
{
if (buf <= end) *buf = tmp[i];
++buf;
}
while (size-- > 0)
{
if (buf <= end) *buf = ' ';
++buf;
}
return buf;
}
static rt_int32_t vsnprintf(char *buf, rt_size_t size, const char *fmt, va_list args)
{
#ifdef RT_PRINTF_LONGLONG
unsigned long long num;
#else
rt_uint32_t num;
#endif
int i, len;
char *str, *end, c;
const char *s;
rt_uint8_t base; /* the base of number */
rt_uint8_t flags; /* flags to print number */
rt_uint8_t qualifier; /* 'h', 'l', or 'L' for integer fields */
rt_int32_t field_width; /* width of output field */
#ifdef RT_PRINTF_PRECISION
int precision; /* min. # of digits for integers and max for a string */
#endif
str = buf;
end = buf + size - 1;
/* Make sure end is always >= buf */
if (end < buf)
{
end = ((char *)-1);
size = end - buf;
}
for (; *fmt ; ++fmt)
{
if (*fmt != '%')
{
if (str <= end) *str = *fmt;
++str;
continue;
}
/* process flags */
flags = 0;
while(1)
{
/* skips the first '%' also */
++fmt;
if (*fmt == '-') flags |= LEFT;
else if (*fmt == '+') flags |= PLUS;
else if (*fmt == ' ') flags |= SPACE;
else if (*fmt == '#') flags |= SPECIAL;
else if (*fmt == '0') flags |= ZEROPAD;
else break;
}
/* get field width */
field_width = -1;
if (isdigit(*fmt)) field_width = skip_atoi(&fmt);
else if (*fmt == '*')
{
++fmt;
/* it's the next argument */
field_width = va_arg(args, int);
if (field_width < 0)
{
field_width = -field_width;
flags |= LEFT;
}
}
#ifdef RT_PRINTF_PRECISION
/* get the precision */
precision = -1;
if (*fmt == '.')
{
++fmt;
if (isdigit(*fmt)) precision = skip_atoi(&fmt);
else if (*fmt == '*')
{
++fmt;
/* it's the next argument */
precision = va_arg(args, int);
}
if (precision < 0) precision = 0;
}
#endif
/* get the conversion qualifier */
qualifier = 0;
if (*fmt == 'h' || *fmt == 'l'
#ifdef RT_PRINTF_LONGLONG
|| *fmt == 'L'
#endif
)
{
qualifier = *fmt;
++fmt;
#ifdef RT_PRINTF_LONGLONG
if (qualifier == 'l' && *fmt == 'l')
{
qualifier = 'L';
++fmt;
}
#endif
}
/* the default base */
base = 10;
switch (*fmt)
{
case 'c':
if (!(flags & LEFT))
{
while (--field_width > 0)
{
if (str <= end) *str = ' ';
++str;
}
}
/* get character */
c = (rt_uint8_t) va_arg(args, int);
if (str <= end) *str = c;
++str;
/* put width */
while (--field_width > 0)
{
if (str <= end) *str = ' ';
++str;
}
continue;
case 's':
s = va_arg(args, char *);
if (!s) s = "(NULL)";
len = rt_strlen(s);
#ifdef RT_PRINTF_PRECISION
if (precision > 0 && len > precision) len = precision;
#endif
if (!(flags & LEFT))
{
while (len < field_width--)
{
if (str <= end) *str = ' ';
++str;
}
}
for (i = 0; i < len; ++i)
{
if (str <= end) *str = *s;
++str;
++s;
}
while (len < field_width--)
{
if (str <= end) *str = ' ';
++str;
}
continue;
case 'p':
if (field_width == -1)
{
field_width = sizeof(void *) << 1;
flags |= ZEROPAD;
}
#ifdef RT_PRINTF_PRECISION
str = print_number(str, end,
(long) va_arg(args, void *),
16, field_width, precision, flags);
#else
str = print_number(str, end,
(long) va_arg(args, void *),
16, field_width, flags);
#endif
continue;
case '%':
if (str <= end) *str = '%';
++str;
continue;
/* integer number formats - set up the flags and "break" */
case 'o':
base = 8;
break;
case 'X':
flags |= LARGE;
case 'x':
base = 16;
break;
case 'd':
case 'i':
flags |= SIGN;
case 'u':
break;
default:
if (str <= end) *str = '%';
++str;
if (*fmt)
{
if (str <= end) *str = *fmt;
++str;
}
else
{
--fmt;
}
continue;
}
#ifdef RT_PRINTF_LONGLONG
if (qualifier == 'L') num = va_arg(args, long long);
else if (qualifier == 'l')
#else
if (qualifier == 'l')
#endif
{
num = va_arg(args, rt_uint32_t);
if (flags & SIGN) num = (rt_int32_t) num;
}
else if (qualifier == 'h')
{
num = (rt_uint16_t) va_arg(args, rt_int32_t);
if (flags & SIGN) num = (rt_int16_t) num;
}
else
{
num = va_arg(args, rt_uint32_t);
if (flags & SIGN) num = (rt_int32_t) num;
}
#ifdef RT_PRINTF_PRECISION
str = print_number(str, end, num, base, field_width, precision, flags);
#else
str = print_number(str, end, num, base, field_width, flags);
#endif
}
if (str <= end) *str = '\0';
else *end = '\0';
/* the trailing null byte doesn't count towards the total
* ++str;
*/
return str-buf;
}
/**
* This function will fill a formatted string to buffer
*
* @param buf the buffer to save formatted string
* @param size the size of buffer
* @param fmt the format
*/
rt_int32_t rt_snprintf(char *buf, rt_size_t size, const char *fmt, ...)
{
rt_int32_t n;
va_list args;
va_start(args, fmt);
n = vsnprintf(buf, size, fmt, args);
va_end(args);
return n;
}
/**
* This function will fill a formatted string to buffer
*
* @param buf the buffer to save formatted string
* @param arg_ptr the arg_ptr
* @param format the format
*/
rt_int32_t rt_vsprintf(char *buf, const char *format, va_list arg_ptr)
{
return vsnprintf(buf, (rt_size_t) -1, format, arg_ptr);
}
/**
* This function will fill a formatted string to buffer
*
* @param buf the buffer to save formatted string
* @param format the format
*/
rt_int32_t rt_sprintf(char *buf ,const char *format,...)
{
rt_int32_t n;
va_list arg_ptr;
va_start(arg_ptr, format);
n = rt_vsprintf(buf ,format,arg_ptr);
va_end (arg_ptr);
return n;
}
/**
* This function will set a device as console device.
* After set a device to console, all output of rt_kprintf will be
* redirected to this new device.
*
* @param name the name of new console device
*
* @return the old console device handler
*/
rt_device_t rt_console_set_device(const char* name)
{
rt_device_t new, old;
/* save old device */
old = _console_device;
/* find new console device */
new = rt_device_find(name);
if (new != RT_NULL)
{
if (_console_device != RT_NULL)
{
/* close old console device */
rt_device_close(_console_device);
}
/* set new console device */
_console_device = new;
rt_device_open(_console_device, RT_DEVICE_OFLAG_RDWR);
}
return old;
}
#if defined(__GNUC__)
void rt_hw_console_output(const char* str) __attribute__((weak));
void rt_hw_console_output(const char* str)
#elif defined(__CC_ARM)
__weak void rt_hw_console_output(const char* str)
#elif defined(__IAR_SYSTEMS_ICC__)
#if __VER__ > 540
__weak
#endif
void rt_hw_console_output(const char* str)
#endif
{
/* empty console output */
}
/**
* This function will print a formatted string on system console
*
* @param fmt the format
*/
void rt_kprintf(const char *fmt, ...)
{
va_list args;
rt_size_t length;
static char rt_log_buf[RT_CONSOLEBUF_SIZE];
va_start(args, fmt);
length = vsnprintf(rt_log_buf, sizeof(rt_log_buf), fmt, args);
if (_console_device == RT_NULL)
{
rt_hw_console_output(rt_log_buf);
}
else
{
rt_device_write(_console_device, 0, rt_log_buf, length);
}
va_end(args);
}
#if !defined (RT_USING_NEWLIB) && defined (RT_USING_MINILIBC) && defined (__GNUC__)
#include <sys/types.h>
void* memcpy(void *dest, const void *src, size_t n) __attribute__((weak, alias("rt_memcpy")));
void* memset(void *s, int c, size_t n) __attribute__((weak, alias("rt_memset")));
void* memmove(void *dest, const void *src, size_t n) __attribute__((weak, alias("rt_memmove")));
int memcmp(const void *s1, const void *s2, size_t n) __attribute__((weak, alias("rt_memcmp")));
size_t strlen(const char *s) __attribute__((weak, alias("rt_strlen")));
char *strstr(const char *s1,const char *s2) __attribute__((weak, alias("rt_strstr")));
int strcasecmp(const char *a, const char *b) __attribute__((weak, alias("rt_strcasecmp")));
char *strncpy(char *dest, const char *src, size_t n) __attribute__((weak, alias("rt_strncpy")));
int strncmp(const char *cs, const char *ct, size_t count) __attribute__((weak, alias("rt_strncmp")));
#ifdef RT_USING_HEAP
char *strdup(const char *s) __attribute__((weak, alias("rt_strdup")));
#endif
#endif
/*@}*/