rt-thread-official/bsp/gd32450z-eval/Libraries/GD32F4xx_standard_peripheral/Source/gd32f4xx_adc.c

1043 lines
37 KiB
C

/*!
\file gd32f4xx_adc.c
\brief ADC driver
*/
/*
Copyright (C) 2016 GigaDevice
2016-08-15, V1.0.0, firmware for GD32F4xx
*/
#include "gd32f4xx_adc.h"
#define REGULAR_CHANNEL_LENGTH_OFFSET ((uint32_t)20U)
#define INSERTED_CHANNEL_LENGTH_OFFSET ((uint32_t)20U)
#define REGULAR_DISCONTINUOUS_NUMBER ((uint32_t)13U)
#define REGULAR_TRIGGER_MODE ((uint32_t)28U)
#define INSERTED_TRIGGER_MODE ((uint32_t)20U)
/*!
\brief ADC reset
\param[in] none
\param[out] none
\retval none
*/
void adc_deinit(void)
{
rcu_periph_reset_enable(RCU_ADCRST);
rcu_periph_reset_disable(RCU_ADCRST);
}
/*!
\brief enable ADC interface
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] none
\param[out] none
\retval none
*/
void adc_enable(uint32_t adc_periph)
{
if(RESET == (ADC_CTL1(adc_periph) & ADC_CTL1_ADCON)){
ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_ADCON;
}
}
/*!
\brief disable ADC interface
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] none
\param[out] none
\retval none
*/
void adc_disable(uint32_t adc_periph)
{
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ADCON);
}
/*!
\brief ADC data alignment config
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] inserted_channel : insert channel select
\arg ADC_DATAALIGN_RIGHT: LSB alignment
\arg ADC_DATAALIGN_LEFT: MSB alignment
\param[out] none
\retval none
*/
void adc_data_alignment_config(uint32_t adc_periph , uint8_t data_alignment)
{
if(data_alignment){
ADC_CTL1(adc_periph) |= ADC_CTL1_DAL;
}else{
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DAL);
}
}
/*!
\brief ADC resolution config
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] resolution: ADC resolution
\arg ADC_RESOLUTION_12B: 12-bit ADC resolution
\arg ADC_RESOLUTION_10B: 10-bit ADC resolution
\arg ADC_RESOLUTION_8B: 8-bit ADC resolution
\arg ADC_RESOLUTION_6B: 6-bit ADC resolution
\param[out] none
\retval none
*/
void adc_resolution_config(uint32_t adc_periph , uint32_t resolution)
{
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_DRES);
ADC_CTL0(adc_periph) |= (uint32_t)resolution;
}
/*!
\brief ADC calibration and reset calibration
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] none
\param[out] none
\retval none
*/
void adc_calibration_enable(uint32_t adc_periph)
{
/* reset the selected ADC1 calibration registers */
ADC_CTL1(adc_periph) |= (uint32_t) ADC_CTL1_RSTCLB;
/* check the RSTCLB bit state */
while((ADC_CTL1(adc_periph) & ADC_CTL1_RSTCLB)){
}
/* enable ADC calibration process */
ADC_CTL1(adc_periph) |= ADC_CTL1_CLB;
/* check the CLB bit state */
while((ADC_CTL1(adc_periph) & ADC_CTL1_CLB)){
}
}
/*!
\brief ADC discontinuous mode config
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: select the channel group
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[in] length: number of conversions in discontinuous mode,the number can be 1..8
for regular channel ,the number is no effect for inserted channel
\param[out] none
\retval none
*/
void adc_discontinuous_mode_config(uint32_t adc_periph , uint8_t adc_channel_group , uint8_t length)
{
ADC_CTL0(adc_periph) &= ~((uint32_t)( ADC_CTL0_DISRC | ADC_CTL0_DISIC ));
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
/* config the number of conversions in discontinuous mode */
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_DISNUM);
if((length <= 8U) && (length >= 1U)){
ADC_CTL0(adc_periph) |= ((uint32_t)length - 1U) << REGULAR_DISCONTINUOUS_NUMBER;
}
ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_DISRC;
break;
case ADC_INSERTED_CHANNEL:
ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_DISIC;
break;
default:
break;
}
}
/*!
\brief config end of conversion mode
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] end_selection: end of conversion mode
\arg ADC_EOC_SET_SEQUENCE: only at the end of a sequence of regular conversions, the EOC bit is set
\arg ADC_EOC_SET_CONVERSION: at the end of each regular conversion, the EOC bit is set.
\param[out] none
\retval none
*/
void adc_end_of_conversion_config(uint32_t adc_periph , uint8_t end_selection)
{
switch(end_selection){
case ADC_EOC_SET_SEQUENCE:
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_EOCM);
break;
case ADC_EOC_SET_CONVERSION:
ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_EOCM);
break;
default:
break;
}
}
/*!
\brief ADC special function enable or disable
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] function: select the function to config
\arg ADC_SCAN_MODE: scan mode select
\arg ADC_INSERTED_CHANNEL_AUTO: inserted channel group convert automatically
\arg ADC_CONTINUOUS_MODE: continuous mode select
\param[in] newvalue: ENABLE or DISABLE
\param[out] none
\retval none
*/
void adc_special_function_config(uint32_t adc_periph , uint8_t function , ControlStatus newvalue)
{
if(newvalue){
switch(function){
case ADC_SCAN_MODE:
ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_SM;
break;
case ADC_INSERTED_CHANNEL_AUTO:
ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_ICA;
break;
case ADC_CONTINUOUS_MODE:
ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_CTN;
break;
default:
break;
}
}else{
switch(function){
case ADC_SCAN_MODE:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_SM);
break;
case ADC_INSERTED_CHANNEL_AUTO:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_ICA);
break;
case ADC_CONTINUOUS_MODE:
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_CTN);
break;
default:
break;
}
}
}
/*!
\brief configure the ADC clock for all the ADCs
\param[in] prescaler: configure ADCs prescaler ratio
\arg ADC_ADCCK_PCLK2_DIV2: PCLK2 div2
\arg ADC_ADCCK_PCLK2_DIV4: PCLK2 div4
\arg ADC_ADCCK_PCLK2_DIV6: PCLK2 div6
\arg ADC_ADCCK_PCLK2_DIV8: PCLK2 div8
\arg ADC_ADCCK_HCLK_DIV5: HCLK div5
\arg ADC_ADCCK_HCLK_DIV6: HCLK div6
\arg ADC_ADCCK_HCLK_DIV10: HCLK div10
\arg ADC_ADCCK_HCLK_DIV20: HCLK div20
\param[out] none
\retval none
*/
void adc_clock_config(uint32_t prescaler)
{
ADC_SYNCCTL &= ~((uint32_t)ADC_SYNCCTL_ADCCK);
ADC_SYNCCTL |= (uint32_t) prescaler;
}
/*!
\brief configure the ADC clock for all the ADCs
\param[in] function: temperature sensor and internal reference voltage channel or VBAT channel
\arg ADC_VBAT_CHANNEL_SWITCH: channel 18 (1/4 voltate of external battery) switch of ADC0
\arg ADC_TEMP_VREF_CHANNEL_SWITCH: channel 16 (temperature sensor) and 17 (internal reference voltage) switch of ADC0
\param[in] newvalue: ENABLE or DISABLE
\param[out] none
\retval none
*/
void adc_channel_16_to_18(uint8_t function,ControlStatus newvalue)
{
if(newvalue){
switch(function){
case ADC_VBAT_CHANNEL_SWITCH:
ADC_SYNCCTL |= (uint32_t)ADC_SYNCCTL_VBATEN;
break;
case ADC_TEMP_VREF_CHANNEL_SWITCH:
ADC_SYNCCTL |= (uint32_t)ADC_SYNCCTL_TSVREN;
break;
default:
break;
}
}else{
switch(function){
case ADC_VBAT_CHANNEL_SWITCH:
ADC_SYNCCTL &= ~((uint32_t)ADC_SYNCCTL_VBATEN);
break;
case ADC_TEMP_VREF_CHANNEL_SWITCH:
ADC_SYNCCTL &= ~((uint32_t)ADC_SYNCCTL_TSVREN);
break;
default:
break;
}
}
}
/*!
\brief config the length of regular channel group or inserted channel group
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: select the channel group
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[in] length: the length of the channel
regular channel 1-16
inserted channel 1-4
\param[out] none
\retval none
*/
void adc_channel_length_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t length)
{
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
if((length >= 1U) && (length <= 16U)){
ADC_RSQ0(adc_periph) &= ~((uint32_t)ADC_RSQ0_RL);
ADC_RSQ0(adc_periph) |= (uint32_t)((length-1U) << REGULAR_CHANNEL_LENGTH_OFFSET);
}
break;
case ADC_INSERTED_CHANNEL:
if((length >= 1U) && (length <= 4U)){
ADC_ISQ(adc_periph) &= ~((uint32_t)ADC_ISQ_IL);
ADC_ISQ(adc_periph) |= (uint32_t)((length-1U) << INSERTED_CHANNEL_LENGTH_OFFSET);
}
break;
default:
break;
}
}
/*!
\brief ADC external trigger enable
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: select the channel group
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[in] trigger_mode: external trigger mode
\arg EXTERNAL_TRIGGER_DISABLE: external trigger disable
\arg EXTERNAL_TRIGGER_RISING: rising edge of external trigger
\arg EXTERNAL_TRIGGER_FALLING: falling edge of external trigger
\arg EXTERNAL_TRIGGER_RISING_FALLING: rising and falling edge of external trigger
\param[out] none
\retval none
*/
void adc_external_trigger_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t trigger_mode)
{
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETMRC);
ADC_CTL1(adc_periph) |= (uint32_t) (trigger_mode << REGULAR_TRIGGER_MODE);
break;
case ADC_INSERTED_CHANNEL:
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETMIC);
ADC_CTL1(adc_periph) |= (uint32_t) (trigger_mode << INSERTED_TRIGGER_MODE);
break;
default:
break;
}
}
/*!
\brief ADC external trigger source config
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: select the channel group
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[in] external_trigger_source: regular or inserted group trigger source
for regular channel:
\arg ADC_EXTTRIG_REGULAR_T0_CH0: external trigger timer 0 CC0 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T0_CH1: external trigger timer 0 CC1 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T0_CH2: external trigger timer 0 CC2 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T1_CH1: external trigger timer 1 CC1 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T1_CH2: external trigger timer 1 CC2 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T1_CH3: external trigger timer 1 CC3 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T1_TRGO: external trigger timer 1 TRGO event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T2_CH0 : external trigger timer 2 CC0 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T2_TRGO : external trigger timer 2 TRGO event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T3_CH3: external trigger timer 3 CC3 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T4_CH0: external trigger timer 4 CC0 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T4_CH1: external trigger timer 4 CC1 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T4_CH2: external trigger timer 4 CC2 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T7_CH0: external trigger timer 7 CC0 event select for regular channel
\arg ADC_EXTTRIG_REGULAR_T7_TRGO: external trigger timer 7 TRGO event select for regular channel
\arg ADC_EXTTRIG_REGULAR_EXTI_11: external trigger extiline 11 select for regular channel
for inserted channel:
\arg ADC_EXTTRIG_INSERTED_T0_CH3: timer0 capture compare 3
\arg ADC_EXTTRIG_INSERTED_T0_TRGO: timer0 TRGO event
\arg ADC_EXTTRIG_INSERTED_T1_CH0: timer1 capture compare 0
\arg ADC_EXTTRIG_INSERTED_T1_TRGO: timer1 TRGO event
\arg ADC_EXTTRIG_INSERTED_T2_CH1: timer2 capture compare 1
\arg ADC_EXTTRIG_INSERTED_T2_CH3: timer2 capture compare 3
\arg ADC_EXTTRIG_INSERTED_T3_CH0: timer3 capture compare 0
\arg ADC_EXTTRIG_INSERTED_T3_CH1: timer3 capture compare 1
\arg ADC_EXTTRIG_INSERTED_T3_CH2: timer3 capture compare 2
\arg ADC_EXTTRIG_INSERTED_T3_TRGO: timer3 capture compare TRGO
\arg ADC_EXTTRIG_INSERTED_T4_CH3: timer4 capture compare 3
\arg ADC_EXTTRIG_INSERTED_T4_TRGO: timer4 capture compare TRGO
\arg ADC_EXTTRIG_INSERTED_T7_CH1: timer7 capture compare 1
\arg ADC_EXTTRIG_INSERTED_T7_CH2: timer7 capture compare 2
\arg ADC_EXTTRIG_INSERTED_T7_CH3: timer7 capture compare 3
\arg ADC_EXTTRIG_INSERTED_EXTI_15: external interrupt line 15
\param[out] none
\retval none
*/
void adc_external_trigger_source_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t external_trigger_source)
{
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETSRC);
ADC_CTL1(adc_periph) |= (uint32_t)external_trigger_source;
break;
case ADC_INSERTED_CHANNEL:
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETSIC);
ADC_CTL1(adc_periph) |= (uint32_t)external_trigger_source;
break;
default:
break;
}
}
/*!
\brief ADC software trigger enable
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: select the channel group
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[out] none
\retval none
*/
void adc_software_trigger_enable(uint32_t adc_periph , uint8_t adc_channel_group)
{
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_SWRCST;
break;
case ADC_INSERTED_CHANNEL:
ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_SWICST;
break;
default:
break;
}
}
/*!
\brief get the ADC flag bits
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_flag: the adc flag bits
\arg ADC_FLAG_WDE: analog watchdog event flag
\arg ADC_FLAG_EOC: end of group conversion flag
\arg ADC_FLAG_EOIC: end of inserted group conversion flag
\arg ADC_FLAG_STIC: start flag of inserted channel group
\arg ADC_FLAG_STRC: start flag of regular channel group
\arg ADC_FLAG_ROVF: regular data register overflow flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus adc_flag_get(uint32_t adc_periph , uint32_t adc_flag)
{
if(ADC_STAT(adc_periph) & adc_flag){
return SET;
}
return RESET;
}
/*!
\brief clear the ADC flag bits
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_flag: the adc flag bits
\arg ADC_FLAG_WDE: analog watchdog event flag
\arg ADC_FLAG_EOC: end of group conversion flag
\arg ADC_FLAG_EOIC: end of inserted group conversion flag
\arg ADC_FLAG_STIC: start flag of inserted channel group
\arg ADC_FLAG_STRC: start flag of regular channel group
\arg ADC_FLAG_ROVF: regular data register overflow flag
\param[out] none
\retval none
*/
void adc_flag_clear(uint32_t adc_periph , uint32_t adc_flag)
{
ADC_STAT(adc_periph) &= ~((uint32_t)adc_flag);
}
/*!
\brief get the ADC interrupt bits
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_interrupt: the adc interrupt bits
\arg ADC_INT_WDE: analog watchdog interrupt
\arg ADC_INT_EOC: end of group conversion interrupt
\arg ADC_INT_EOIC: end of inserted group conversion interrupt
\arg ADC_INT_ROVF: regular data register overflow interrupt
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus adc_interrupt_flag_get(uint32_t adc_periph , uint32_t adc_interrupt)
{
FlagStatus interrupt_flag = RESET;
uint32_t state;
/* check the interrupt bits */
switch(adc_interrupt){
case ADC_INT_WDE:
state = ADC_STAT(adc_periph) & ADC_STAT_WDE;
if((ADC_CTL0(adc_periph) & ADC_CTL0_WDEIE) && state){
interrupt_flag = SET;
}
break;
case ADC_INT_EOC:
state = ADC_STAT(adc_periph) & ADC_STAT_EOC;
if((ADC_CTL0(adc_periph) & ADC_CTL0_EOCIE) && state){
interrupt_flag = SET;
}
break;
case ADC_INT_EOIC:
state = ADC_STAT(adc_periph) & ADC_STAT_EOIC;
if((ADC_CTL0(adc_periph) & ADC_CTL0_EOICIE) && state){
interrupt_flag = SET;
}
break;
case ADC_INT_ROVF:
state = ADC_STAT(adc_periph) & ADC_STAT_ROVF;
if((ADC_CTL0(adc_periph) & ADC_CTL0_ROVFIE) && state){
interrupt_flag = SET;
}
break;
default:
break;
}
return interrupt_flag;
}
/*!
\brief clear the ADC flag
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_flag: the adc status flag
\arg ADC_INT_WDE: analog watchdog interrupt
\arg ADC_INT_EOC: end of group conversion interrupt
\arg ADC_INT_EOIC: end of inserted group conversion interrupt
\arg ADC_INT_ROVF: regular data register overflow interrupt
\param[out] none
\retval none
*/
void adc_interrupt_flag_clear(uint32_t adc_periph , uint32_t adc_interrupt)
{
ADC_STAT(adc_periph) &= ~((uint32_t)adc_interrupt);
}
/*!
\brief ADC interrupt enable
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_flag: the adc interrupt flag
\arg ADC_INT_WDE: analog watchdog interrupt flag
\arg ADC_INT_EOC: end of group conversion interrupt flag
\arg ADC_INT_EOIC: end of inserted group conversion interrupt flag
\arg ADC_INT_ROVF: regular data register overflow interrupt flag
\param[out] none
\retval none
*/
void adc_interrupt_enable(uint32_t adc_periph , uint32_t adc_interrupt)
{
switch(adc_interrupt){
case ADC_INT_WDE:
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_WDEIE;
break;
case ADC_INT_EOC:
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_EOCIE;
break;
case ADC_INT_EOIC:
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_EOICIE;
break;
case ADC_INT_ROVF:
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_ROVFIE;
break;
default:
break;
}
}
/*!
\brief ADC interrupt disable
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_flag: the adc interrupt flag
\arg ADC_INT_WDE: analog watchdog interrupt flag
\arg ADC_INT_EOC: end of group conversion interrupt flag
\arg ADC_INT_EOIC: end of inserted group conversion interrupt flag
\arg ADC_INT_ROVF: regular data register overflow interrupt flag
\param[out] none
\retval none
*/
void adc_interrupt_disable(uint32_t adc_periph , uint32_t adc_interrupt)
{
switch(adc_interrupt){
/* select the interrupt source */
case ADC_INT_WDE:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_WDEIE);
break;
case ADC_INT_EOC:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_EOCIE);
break;
case ADC_INT_EOIC:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_EOICIE);
break;
case ADC_INT_ROVF:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_ROVFIE);
break;
default:
break;
}
}
/*!
\brief ADC analog watchdog single channel disable
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_watchdog_single_channel_disable(uint32_t adc_periph )
{
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_WDSC);
}
/*!
\brief ADC analog watchdog single channel enable
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel: the selected ADC channel
\arg ADC_CHANNEL_x: ADC Channelx(x=0..18)
\param[out] none
\retval none
*/
void adc_watchdog_single_channel_enable(uint32_t adc_periph , uint8_t adc_channel)
{
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_WDCHSEL);
ADC_CTL0(adc_periph) |= (uint32_t)adc_channel;
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_WDSC;
}
/*!
\brief adc analog watchdog group channel config
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: the channel group use analog watchdog
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\arg ADC_REGULAR_INSERTED_CHANNEL: both regular and inserted group
\param[out] none
\retval none
*/
void adc_watchdog_enable(uint32_t adc_periph , uint8_t adc_channel_group)
{
ADC_CTL0(adc_periph) &= ~((uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC));
/* select the group */
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_RWDEN;
break;
case ADC_INSERTED_CHANNEL:
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_IWDEN;
break;
case ADC_REGULAR_INSERTED_CHANNEL:
ADC_CTL0(adc_periph) |= (uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN);
break;
default:
break;
}
}
/*!
\brief ADC analog watchdog disable
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] adc_channel_group: the channel group use analog watchdog
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\arg ADC_REGULAR_INSERTED_CHANNEL: both regular and inserted group
\param[out] none
\retval none
*/
void adc_watchdog_disable(uint32_t adc_periph , uint8_t adc_channel_group)
{
/* select the group */
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_RWDEN);
break;
case ADC_INSERTED_CHANNEL:
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_IWDEN);
break;
case ADC_REGULAR_INSERTED_CHANNEL:
ADC_CTL0(adc_periph) &= ~((uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN));
break;
default:
break;
}
}
/*!
\brief ADC analog watchdog threshold config
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] low_threshold: analog watchdog low threshold,0..4095
\param[in] high_threshold: analog watchdog high threshold,0..4095
\param[out] none
\retval none
*/
void adc_watchdog_threshold_config(uint32_t adc_periph , uint16_t low_threshold , uint16_t high_threshold)
{
ADC_WDLT(adc_periph) = (uint32_t)low_threshold;
ADC_WDHT(adc_periph) = (uint32_t)high_threshold;
}
/*!
\brief ADC regular channel config
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] rank: the regular group sequencer rank,this parameter must be between 0 to 15
\param[in] adc_channel: the selected ADC channel
\arg ADC_CHANNEL_x(x=0..18): ADC Channelx
\param[in] sample_time: the sample time value
\arg ADC_SAMPLETIME_3: 3 cycles
\arg ADC_SAMPLETIME_15: 15 cycles
\arg ADC_SAMPLETIME_28: 28 cycles
\arg ADC_SAMPLETIME_56: 56 cycles
\arg ADC_SAMPLETIME_84: 84 cycles
\arg ADC_SAMPLETIME_112: 112 cycles
\arg ADC_SAMPLETIME_144: 144 cycles
\arg ADC_SAMPLETIME_480: 480 cycles
\param[out] none
\retval none
*/
void adc_regular_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint32_t sample_time)
{
uint32_t rsq,sampt;
/* ADC regular sequence config */
if(rank < 6U){
rsq = ADC_RSQ2(adc_periph);
rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (5U*rank)));
rsq |= ((uint32_t)adc_channel << (5U*rank));
ADC_RSQ2(adc_periph) = rsq;
}else if(rank < 12U){
rsq = ADC_RSQ1(adc_periph);
rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (5U*(rank-6U))));
rsq |= ((uint32_t)adc_channel << (5U*(rank-6U)));
ADC_RSQ1(adc_periph) = rsq;
}else if(rank < 16U){
rsq = ADC_RSQ0(adc_periph);
rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (5U*(rank-12U))));
rsq |= ((uint32_t)adc_channel << (5U*(rank-12U)));
ADC_RSQ0(adc_periph) = rsq;
}else{
}
/* ADC sampling time config */
if(adc_channel < 10U){
sampt = ADC_SAMPT1(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*adc_channel)));
sampt |= (uint32_t)(sample_time << (3U*adc_channel));
ADC_SAMPT1(adc_periph) = sampt;
}else if(adc_channel < 19U){
sampt = ADC_SAMPT0(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*(adc_channel-10U))));
sampt |= (uint32_t)(sample_time << (3U*(adc_channel-10U)));
ADC_SAMPT0(adc_periph) = sampt;
}else{
}
}
/*!
\brief ADC regular group data register read
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] none
\param[out] none
\retval the conversion value
*/
uint16_t adc_regular_data_read(uint32_t adc_periph)
{
return (uint16_t)(ADC_RDATA(adc_periph));
}
/*!
\brief ADC inserted channel config
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] rank: the inserted group sequencer rank,this parameter must be between 0 to 3
\param[in] adc_channel: the selected ADC channel
\arg ADC_CHANNEL_x(x=0..18): ADC Channelx
\param[in] sample_time: The sample time value
\arg ADC_SAMPLETIME_3: 3 cycles
\arg ADC_SAMPLETIME_15: 15 cycles
\arg ADC_SAMPLETIME_28: 28 cycles
\arg ADC_SAMPLETIME_56: 56 cycles
\arg ADC_SAMPLETIME_84: 84 cycles
\arg ADC_SAMPLETIME_112: 112 cycles
\arg ADC_SAMPLETIME_144: 144 cycles
\arg ADC_SAMPLETIME_480: 480 cycles
\param[out] none
\retval none
*/
void adc_inserted_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint8_t sample_time)
{
uint8_t inserted_length;
uint32_t isq,sampt;
inserted_length = (uint8_t)GET_BITS(ADC_ISQ(adc_periph) , 20U , 21U);
if(rank < 4U){
isq = ADC_ISQ(adc_periph);
isq &= ~((uint32_t)(ADC_ISQ_ISQN << (15U-(inserted_length-rank)*5U)));
isq |= ((uint32_t)adc_channel << (15U-(inserted_length-rank)*5U));
ADC_ISQ(adc_periph) = isq;
}
if(adc_channel < 10U){
sampt = ADC_SAMPT1(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*adc_channel)));
sampt |= (uint32_t) sample_time << (3U*adc_channel);
ADC_SAMPT1(adc_periph) = sampt;
}else if(adc_channel < 19U){
sampt = ADC_SAMPT0(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*(adc_channel-10U))));
sampt |= ((uint32_t)sample_time << (3U*(adc_channel-10U)));
ADC_SAMPT0(adc_periph) = sampt;
}else{
}
}
/*!
\brief ADC inserted channel offset config
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] inserted_channel : insert channel select
\arg ADC_INSERTED_CHANNEL_0: inserted channel0
\arg ADC_INSERTED_CHANNEL_1: inserted channel1
\arg ADC_INSERTED_CHANNEL_2: inserted channel2
\arg ADC_INSERTED_CHANNEL_3: inserted channel3
\param[in] offset : the offset data
\param[out] none
\retval the conversion value
*/
void adc_inserted_channel_offset_config(uint32_t adc_periph , uint8_t inserted_channel , uint16_t offset)
{
/* config the offset of the selected channels */
if(ADC_INSERTED_CHANNEL_0 == inserted_channel){
ADC_IOFF0(adc_periph) = (uint32_t)offset;
}else if(ADC_INSERTED_CHANNEL_1 == inserted_channel){
ADC_IOFF1(adc_periph) = (uint32_t)offset;
}else if(ADC_INSERTED_CHANNEL_2 == inserted_channel){
ADC_IOFF2(adc_periph) = (uint32_t)offset;
}else if(ADC_INSERTED_CHANNEL_3 == inserted_channel){
ADC_IOFF3(adc_periph) = (uint32_t)offset;
}else{
}
}
/*!
\brief ADC inserted group data register read
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] inserted_channel : insert channel select
\arg ADC_INSERTED_CHANNEL_0: inserted Channel0
\arg ADC_INSERTED_CHANNEL_1: inserted channel1
\arg ADC_INSERTED_CHANNEL_2: inserted Channel2
\arg ADC_INSERTED_CHANNEL_3: inserted Channel3
\param[out] none
\retval the conversion value
*/
uint16_t adc_inserted_data_read(uint32_t adc_periph , uint8_t inserted_channel)
{
uint32_t idata;
/* read the data of the selected channel */
switch(inserted_channel){
case ADC_INSERTED_CHANNEL_0:
idata = ADC_IDATA0(adc_periph);
break;
case ADC_INSERTED_CHANNEL_1:
idata = ADC_IDATA1(adc_periph);
break;
case ADC_INSERTED_CHANNEL_2:
idata = ADC_IDATA2(adc_periph);
break;
case ADC_INSERTED_CHANNEL_3:
idata = ADC_IDATA3(adc_periph);
break;
default:
idata = 0U;
break;
}
return (uint16_t)idata;
}
/*!
\brief DMA request enable
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_dma_mode_enable(uint32_t adc_periph)
{
ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_DMA);
}
/*!
\brief DMA request disable
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_dma_mode_disable(uint32_t adc_periph)
{
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DMA);
}
/*!
\brief when DMA=1, the DMA engine issues a request at end of each regular conversion
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_dma_request_after_last_enable(uint32_t adc_periph)
{
ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_DDM);
}
/*!
\brief the DMA engine is disabled after the end of transfer signal from DMA controller is detected
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_dma_request_after_last_disable(uint32_t adc_periph)
{
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DDM);
}
/*!
\brief ADC oversample mode config
\param[in] adc_periph: ADCx,x=0,1,2
\param[in] mode: ADC oversampling mode
\arg ADC_OVERSAMPLING_ALL_CONVERT: all oversampled conversions for a channel are done consecutively after a trigger
\arg ADC_OVERSAMPLING_ONE_CONVERT: each oversampled conversion for a channel needs a trigger
\param[in] shift: ADC oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_NONE: no oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_1B: 1-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_2B: 2-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_3B: 3-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_4B: 3-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_5B: 5-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_6B: 6-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_7B: 7-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_8B: 8-bit oversampling shift
\param[in] ratio: ADC oversampling ratio
\arg ADC_OVERSAMPLING_RATIO_MUL2: oversampling ratio multiple 2
\arg ADC_OVERSAMPLING_RATIO_MUL4: oversampling ratio multiple 4
\arg ADC_OVERSAMPLING_RATIO_MUL8: oversampling ratio multiple 8
\arg ADC_OVERSAMPLING_RATIO_MUL16: oversampling ratio multiple 16
\arg ADC_OVERSAMPLING_RATIO_MUL32: oversampling ratio multiple 32
\arg ADC_OVERSAMPLING_RATIO_MUL64: oversampling ratio multiple 64
\arg ADC_OVERSAMPLING_RATIO_MUL128: oversampling ratio multiple 128
\arg ADC_OVERSAMPLING_RATIO_MUL256: oversampling ratio multiple 256
\param[out] none
\retval none
*/
void adc_oversample_mode_config(uint32_t adc_periph , uint8_t mode , uint16_t shift , uint8_t ratio)
{
if(ADC_OVERSAMPLING_ONE_CONVERT == mode){
ADC_OVSAMPCTL(adc_periph) |= (uint32_t)ADC_OVSAMPCTL_TOVS;
}else{
ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)ADC_OVSAMPCTL_TOVS);
}
/* config the shift and ratio */
ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)(ADC_OVSAMPCTL_OVSR | ADC_OVSAMPCTL_OVSS));
ADC_OVSAMPCTL(adc_periph) |= ((uint32_t)shift | (uint32_t)ratio);
}
/*!
\brief ADC oversample mode enable
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_oversample_mode_enable(uint32_t adc_periph)
{
ADC_OVSAMPCTL(adc_periph) |= ADC_OVSAMPCTL_OVSEN;
}
/*!
\brief ADC oversample mode disable
\param[in] adc_periph: ADCx,x=0,1,2
\param[out] none
\retval none
*/
void adc_oversample_mode_disable(uint32_t adc_periph)
{
ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)ADC_OVSAMPCTL_OVSEN);
}
/*!
\brief configure the ADC sync mode
\param[in] sync_mode: ADC sync mode
\arg ADC_SYNC_MODE_INDEPENDENT: all the ADCs work independently
\arg ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL: ADC0 and ADC1 work in combined regular parallel & inserted parallel mode
\arg ADC_DAUL_REGULAL_PARALLEL_INSERTED_ROTATION: ADC0 and ADC1 work in combined regular parallel & trigger rotation mode
\arg ADC_DAUL_INSERTED_PARALLEL: ADC0 and ADC1 work in inserted parallel mode
\arg ADC_DAUL_REGULAL_PARALLEL: ADC0 and ADC1 work in regular parallel mode
\arg ADC_DAUL_REGULAL_FOLLOW_UP: ADC0 and ADC1 work in follow-up mode
\arg ADC_DAUL_INSERTED_TRRIGGER_ROTATION: ADC0 and ADC1 work in trigger rotation mode
\arg ADC_ALL_REGULAL_PARALLEL_INSERTED_PARALLEL: all ADCs work in combined regular parallel & inserted parallel mode
\arg ADC_ALL_REGULAL_PARALLEL_INSERTED_ROTATION: all ADCs work in combined regular parallel & trigger rotation mode
\arg ADC_ALL_INSERTED_PARALLEL: all ADCs work in inserted parallel mode
\arg ADC_ALL_REGULAL_PARALLEL: all ADCs work in regular parallel mode
\arg ADC_ALL_REGULAL_FOLLOW_UP: all ADCs work in follow-up mode
\arg ADC_ALL_INSERTED_TRRIGGER_ROTATION: all ADCs work in trigger rotation mode
\param[out] none
\retval none
*/
void adc_sync_mode_config(uint32_t sync_mode)
{
ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCM);
ADC_SYNCCTL |= sync_mode;
}
/*!
\brief configure the delay between 2 sampling phases in ADC sync modes
\param[in] sample_delay: the delay between 2 sampling phases in ADC sync modes
\arg ADC_SYNC_DELAY_xCYCLE: x=5..20,the delay between 2 sampling phases in ADC sync modes is x ADC clock cycles
\param[out] none
\retval none
*/
void adc_sync_delay_config(uint32_t sample_delay)
{
ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCDLY);
ADC_SYNCCTL |= sample_delay;
}
/*!
\brief configure ADC sync DMA mode selection
\param[in] dma_mode: ADC sync DMA mode
\arg ADC_SYNC_DMA_DISABLE: ADC sync DMA disabled
\arg ADC_SYNC_DMA_MODE0: ADC sync DMA disabled
\arg ADC_SYNC_DMA_MODE1: ADC sync DMA disabled
\param[out] none
\retval none
*/
void adc_sync_dma_config(uint32_t dma_mode )
{
ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCDMA);
ADC_SYNCCTL |= dma_mode;
}
/*!
\brief configure ADC sync DMA engine is disabled after the end of transfer signal from DMA controller is detected
\param[in] none
\param[out] none
\retval none
*/
void adc_sync_dma_request_after_last_enable(void)
{
ADC_SYNCCTL |= ADC_SYNCCTL_SYNCDDM;
}
/*!
\brief configure ADC sync DMA engine issues requests according to the SYNCDMA bits
\param[in] none
\param[out] none
\retval none
*/
void adc_sync_dma_request_after_last_disable(void)
{
ADC_SYNCCTL &= ~(ADC_SYNCCTL_SYNCDDM);
}
/*!
\brief ADC sync regular data register read
\param[in] none
\param[out] none
\retval sync regular data
*/
uint32_t adc_sync_regular_data_read(void)
{
return (uint32_t)ADC_SYNCDATA;
}