rt-thread-official/components/drivers/sdio/mmcsd_core.c

663 lines
14 KiB
C

/*
* File : mmcsd_core.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#include <rtthread.h>
#include "mmcsd_core.h"
#include "mmcsd_card.h"
#include "mmcsd_cmd.h"
#include "sd.h"
#ifndef RT_MMCSD_STACK_SIZE
#define RT_MMCSD_STACK_SIZE 1024
#endif
#ifndef RT_MMCSD_THREAD_PREORITY
#define RT_MMCSD_THREAD_PREORITY 0x40
#endif
//static struct rt_semaphore mmcsd_sem;
static struct rt_thread mmcsd_detect_thread;
static rt_uint8_t mmcsd_stack[RT_MMCSD_STACK_SIZE];
static struct rt_mailbox mmcsd_detect_mb;
static rt_uint32_t mmcsd_detect_mb_pool[4];
void mmcsd_host_lock(struct rt_mmcsd_host *host)
{
rt_sem_take(&host->bus_lock, RT_WAITING_FOREVER);
}
void mmcsd_host_unlock(struct rt_mmcsd_host *host)
{
rt_sem_release(&host->bus_lock);
}
void mmcsd_req_complete(struct rt_mmcsd_host *host)
{
rt_sem_release(&host->sem_ack);
}
void mmcsd_send_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
req->cmd->err = 0;
req->cmd->mrq = req;
if (req->data)
{
req->cmd->data = req->data;
req->data->err = 0;
req->data->mrq = req;
if (req->stop)
{
req->data->stop = req->stop;
req->stop->err = 0;
req->stop->mrq = req;
}
}
host->ops->request(host, req);
rt_sem_take(&host->sem_ack, RT_WAITING_FOREVER);
}
rt_int32_t mmcsd_send_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_cmd *cmd, int retries)
{
struct rt_mmcsd_req req;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(cmd->resp, 0, sizeof(cmd->resp));
req.cmd = cmd;
cmd->data = RT_NULL;
mmcsd_send_request(host, &req);
return cmd->err;
}
rt_int32_t mmcsd_go_idle(struct rt_mmcsd_host *host)
{
rt_int32_t err;
struct rt_mmcsd_cmd cmd;
if (!controller_is_spi(host)) {
mmcsd_set_chip_select(host, MMCSD_CS_HIGH);
mmcsd_delay_ms(1);
}
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = GO_IDLE_STATE;
cmd.arg = 0;
cmd.flags = RESP_SPI_R1 | RESP_NONE | CMD_BC;
err = mmcsd_send_cmd(host, &cmd, 0);
mmcsd_delay_ms(1);
if (!controller_is_spi(host))
{
mmcsd_set_chip_select(host, MMCSD_CS_IGNORE);
mmcsd_delay_ms(1);
}
return err;
}
rt_int32_t mmcsd_spi_read_ocr(struct rt_mmcsd_host *host, rt_int32_t high_capacity, rt_uint32_t *ocr)
{
struct rt_mmcsd_cmd cmd;
rt_int32_t err;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SPI_READ_OCR;
cmd.arg = high_capacity ? (1 << 30) : 0;
cmd.flags = RESP_SPI_R3;
err = mmcsd_send_cmd(host, &cmd, 0);
*ocr = cmd.resp[1];
return err;
}
rt_int32_t mmcsd_all_get_cid(struct rt_mmcsd_host *host, rt_uint32_t *cid)
{
rt_int32_t err;
struct rt_mmcsd_cmd cmd;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = ALL_SEND_CID;
cmd.arg = 0;
cmd.flags = RESP_R2 | CMD_BCR;
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
return err;
rt_memcpy(cid, cmd.resp, sizeof(rt_uint32_t) * 4);
return 0;
}
rt_int32_t mmcsd_get_cid(struct rt_mmcsd_host *host, rt_uint32_t *cid)
{
rt_int32_t err, i;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
rt_uint32_t *buf = RT_NULL;
if (!controller_is_spi(host))
{
if (!host->card)
return -RT_ERROR;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SEND_CID;
cmd.arg = host->card->rca << 16;
cmd.flags = RESP_R2 | CMD_AC;
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
return err;
rt_memcpy(cid, cmd.resp, sizeof(rt_uint32_t) * 4);
return 0;
}
buf = (rt_uint32_t *)rt_malloc(16);
if (!buf)
{
rt_kprintf("allocate memory failed\n");
return -RT_ENOMEM;
}
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.cmd_code = SEND_CID;
cmd.arg = 0;
/* NOTE HACK: the RESP_SPI_R1 is always correct here, but we
* rely on callers to never use this with "native" calls for reading
* CSD or CID. Native versions of those commands use the R2 type,
* not R1 plus a data block.
*/
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
data.blksize = 16;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = buf;
/*
* The spec states that CSR and CID accesses have a timeout
* of 64 clock cycles.
*/
data.timeout_ns = 0;
data.timeout_clks = 64;
mmcsd_send_request(host, &req);
if (cmd.err || data.err)
{
rt_free(buf);
return -RT_ERROR;
}
for (i = 0;i < 4;i++)
cid[i] = buf[i];
rt_free(buf);
return 0;
}
rt_int32_t mmcsd_get_csd(struct rt_mmcsd_card *card, rt_uint32_t *csd)
{
rt_int32_t err, i;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
rt_uint32_t *buf = RT_NULL;
if (!controller_is_spi(card->host))
{
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SEND_CSD;
cmd.arg = card->rca << 16;
cmd.flags = RESP_R2 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 3);
if (err)
return err;
rt_memcpy(csd, cmd.resp, sizeof(rt_uint32_t) * 4);
return 0;
}
buf = (rt_uint32_t*)rt_malloc(16);
if (!buf)
{
rt_kprintf("allocate memory failed\n");
return -RT_ENOMEM;
}
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.cmd_code = SEND_CSD;
cmd.arg = 0;
/* NOTE HACK: the RESP_SPI_R1 is always correct here, but we
* rely on callers to never use this with "native" calls for reading
* CSD or CID. Native versions of those commands use the R2 type,
* not R1 plus a data block.
*/
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
data.blksize = 16;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = buf;
/*
* The spec states that CSR and CID accesses have a timeout
* of 64 clock cycles.
*/
data.timeout_ns = 0;
data.timeout_clks = 64;
mmcsd_send_request(card->host, &req);
if (cmd.err || data.err)
{
rt_free(buf);
return -RT_ERROR;
}
for (i = 0;i < 4;i++)
csd[i] = buf[i];
rt_free(buf);
return 0;
}
static rt_int32_t _mmcsd_select_card(struct rt_mmcsd_host *host, struct rt_mmcsd_card *card)
{
rt_int32_t err;
struct rt_mmcsd_cmd cmd;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SELECT_CARD;
if (card)
{
cmd.arg = card->rca << 16;
cmd.flags = RESP_R1 | CMD_AC;
}
else
{
cmd.arg = 0;
cmd.flags = RESP_NONE | CMD_AC;
}
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
return err;
return 0;
}
rt_int32_t mmcsd_select_card(struct rt_mmcsd_card *card)
{
return _mmcsd_select_card(card->host, card);
}
rt_int32_t mmcsd_deselect_cards(struct rt_mmcsd_card *card)
{
return _mmcsd_select_card(card->host, RT_NULL);
}
rt_int32_t mmcsd_spi_use_crc(struct rt_mmcsd_host *host, rt_int32_t use_crc)
{
struct rt_mmcsd_cmd cmd;
rt_int32_t err;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SPI_CRC_ON_OFF;
cmd.flags = RESP_SPI_R1;
cmd.arg = use_crc;
err = mmcsd_send_cmd(host, &cmd, 0);
if (!err)
host->spi_use_crc = use_crc;
return err;
}
rt_inline void mmcsd_set_iocfg(struct rt_mmcsd_host *host)
{
struct rt_mmcsd_io_cfg *io_cfg = &host->io_cfg;
mmcsd_dbg("clock %uHz busmode %u powermode %u cs %u Vdd %u "
"width %u \n",
io_cfg->clock, io_cfg->bus_mode,
io_cfg->power_mode, io_cfg->chip_select, io_cfg->vdd,
io_cfg->bus_width);
host->ops->set_iocfg(host, io_cfg);
}
/*
* Control chip select pin on a host.
*/
void mmcsd_set_chip_select(struct rt_mmcsd_host *host, rt_int32_t mode)
{
host->io_cfg.chip_select = mode;
mmcsd_set_iocfg(host);
}
/*
* Sets the host clock to the highest possible frequency that
* is below "hz".
*/
void mmcsd_set_clock(struct rt_mmcsd_host *host, rt_uint32_t clk)
{
if (clk < host->freq_min)
{
rt_kprintf("clock too low\n");
}
host->io_cfg.clock = clk;
mmcsd_set_iocfg(host);
}
/*
* Change the bus mode (open drain/push-pull) of a host.
*/
void mmcsd_set_bus_mode(struct rt_mmcsd_host *host, rt_uint32_t mode)
{
host->io_cfg.bus_mode = mode;
mmcsd_set_iocfg(host);
}
/*
* Change data bus width of a host.
*/
void mmcsd_set_bus_width(struct rt_mmcsd_host *host, rt_uint32_t width)
{
host->io_cfg.bus_width = width;
mmcsd_set_iocfg(host);
}
void mmcsd_set_data_timeout(struct rt_mmcsd_data *data, const struct rt_mmcsd_card *card)
{
rt_uint32_t mult;
if (card->card_type == CARD_TYPE_SDIO)
{
data->timeout_ns = 1000000000; /* SDIO card 1s */
data->timeout_clks = 0;
return;
}
/*
* SD cards use a 100 multiplier rather than 10
*/
mult = (card->card_type == CARD_TYPE_SD) ? 100 : 10;
/*
* Scale up the multiplier (and therefore the timeout) by
* the r2w factor for writes.
*/
if (data->flags & DATA_DIR_WRITE)
mult <<= card->csd.r2w_factor;
data->timeout_ns = card->tacc_ns * mult;
data->timeout_clks = card->tacc_clks * mult;
/*
* SD cards also have an upper limit on the timeout.
*/
if (card->card_type == CARD_TYPE_SD)
{
rt_uint32_t timeout_us, limit_us;
timeout_us = data->timeout_ns / 1000;
timeout_us += data->timeout_clks * 1000 /
(card->host->io_cfg.clock / 1000);
if (data->flags & DATA_DIR_WRITE)
/*
* The limit is really 250 ms, but that is
* insufficient for some crappy cards.
*/
limit_us = 300000;
else
limit_us = 100000;
/*
* SDHC cards always use these fixed values.
*/
if (timeout_us > limit_us || card->flags & CARD_FLAG_SDHC)
{
data->timeout_ns = limit_us * 1000; /* SDHC card fixed 250ms */
data->timeout_clks = 0;
}
}
if (controller_is_spi(card->host))
{
if (data->flags & DATA_DIR_WRITE)
{
if (data->timeout_ns < 1000000000)
data->timeout_ns = 1000000000; /* 1s */
}
else
{
if (data->timeout_ns < 100000000)
data->timeout_ns = 100000000; /* 100ms */
}
}
}
/*
* Mask off any voltages we don't support and select
* the lowest voltage
*/
rt_uint32_t mmcsd_select_voltage(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
int bit;
ocr &= host->valid_ocr;
bit = ffs(ocr);
if (bit)
{
bit -= 1;
ocr &= 3 << bit;
host->io_cfg.vdd = bit;
mmcsd_set_iocfg(host);
}
else
{
rt_kprintf("host doesn't support card's voltages\n");
ocr = 0;
}
return ocr;
}
static void mmcsd_power_up(struct rt_mmcsd_host *host)
{
int bit = fls(host->valid_ocr) - 1;
host->io_cfg.vdd = bit;
if (controller_is_spi(host))
{
host->io_cfg.chip_select = MMCSD_CS_HIGH;
host->io_cfg.bus_mode = MMCSD_BUSMODE_PUSHPULL;
}
else
{
host->io_cfg.chip_select = MMCSD_CS_IGNORE;
host->io_cfg.bus_mode = MMCSD_BUSMODE_OPENDRAIN;
}
host->io_cfg.power_mode = MMCSD_POWER_UP;
host->io_cfg.bus_width = MMCSD_BUS_WIDTH_1;
mmcsd_set_iocfg(host);
/*
* This delay should be sufficient to allow the power supply
* to reach the minimum voltage.
*/
mmcsd_delay_ms(10);
host->io_cfg.clock = host->freq_min;
host->io_cfg.power_mode = MMCSD_POWER_ON;
mmcsd_set_iocfg(host);
/*
* This delay must be at least 74 clock sizes, or 1 ms, or the
* time required to reach a stable voltage.
*/
mmcsd_delay_ms(10);
}
static void mmcsd_power_off(struct rt_mmcsd_host *host)
{
host->io_cfg.clock = 0;
host->io_cfg.vdd = 0;
if (!controller_is_spi(host))
{
host->io_cfg.bus_mode = MMCSD_BUSMODE_OPENDRAIN;
host->io_cfg.chip_select = MMCSD_CS_IGNORE;
}
host->io_cfg.power_mode = MMCSD_POWER_OFF;
host->io_cfg.bus_width = MMCSD_BUS_WIDTH_1;
mmcsd_set_iocfg(host);
}
void mmcsd_change(struct rt_mmcsd_host *host)
{
rt_mb_send(&mmcsd_detect_mb, (rt_uint32_t)host);
}
void mmcsd_detect(void *param)
{
struct rt_mmcsd_host *host;
rt_uint32_t ocr;
rt_int32_t err;
while (1)
{
if (rt_mb_recv(&mmcsd_detect_mb, (rt_uint32_t*)&host, RT_WAITING_FOREVER) == RT_EOK)
{
if (host->card == RT_NULL)
{
mmcsd_host_lock(host);
mmcsd_power_up(host);
mmcsd_go_idle(host);
mmcsd_send_if_cond(host, host->valid_ocr);
err = sdio_io_send_op_cond(host, 0, &ocr);
if (!err) {
if (init_sdio(host, ocr))
mmcsd_power_off(host);
mmcsd_host_unlock(host);
continue;
}
/*
* detect SD card
*/
err = mmcsd_send_app_op_cond(host, 0, &ocr);
if (!err)
{
if (init_sd(host, ocr))
mmcsd_power_off(host);
mmcsd_host_unlock(host);
continue;
}
mmcsd_host_unlock(host);
}
}
}
}
struct rt_mmcsd_host *mmcsd_alloc_host(void)
{
struct rt_mmcsd_host *host;
host = rt_malloc(sizeof(struct rt_mmcsd_host));
if (!host)
{
rt_kprintf("alloc host failed\n");
return RT_NULL;
}
rt_memset(host, 0, sizeof(struct rt_mmcsd_host));
host->max_seg_size = 65535;
host->max_dma_segs = 1;
host->max_blk_size = 512;
host->max_blk_count = 4096;
rt_sem_init(&host->bus_lock, "sd_bus_lock", 1, RT_IPC_FLAG_FIFO);
rt_sem_init(&host->sem_ack, "sd_ack", 0, RT_IPC_FLAG_FIFO);
return host;
}
void mmcsd_free_host(struct rt_mmcsd_host *host)
{
rt_sem_detach(&host->bus_lock);
rt_sem_detach(&host->sem_ack);
rt_free(host);
}
void rt_mmcsd_core_init(void)
{
rt_err_t ret;
/* init detect sd cart thread */
/* init mailbox and create detect sd card thread */
ret = rt_mb_init(&mmcsd_detect_mb, "mmcsdmb",
&mmcsd_detect_mb_pool[0], sizeof(mmcsd_detect_mb_pool),
RT_IPC_FLAG_FIFO);
RT_ASSERT(ret == RT_EOK);
ret = rt_thread_init(&mmcsd_detect_thread, "mmcsd_detect", mmcsd_detect, RT_NULL,
&mmcsd_stack[0], RT_MMCSD_STACK_SIZE, RT_MMCSD_THREAD_PREORITY, 20);
if (ret == RT_EOK)
{
rt_thread_startup(&mmcsd_detect_thread);
}
rt_sdio_init();
}