mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-02-10 10:01:08 +08:00
1018 lines
34 KiB
C
1018 lines
34 KiB
C
/**
|
|
* @file
|
|
* Dynamic memory manager
|
|
*
|
|
* This is a lightweight replacement for the standard C library malloc().
|
|
*
|
|
* If you want to use the standard C library malloc() instead, define
|
|
* MEM_LIBC_MALLOC to 1 in your lwipopts.h
|
|
*
|
|
* To let mem_malloc() use pools (prevents fragmentation and is much faster than
|
|
* a heap but might waste some memory), define MEM_USE_POOLS to 1, define
|
|
* MEMP_USE_CUSTOM_POOLS to 1 and create a file "lwippools.h" that includes a list
|
|
* of pools like this (more pools can be added between _START and _END):
|
|
*
|
|
* Define three pools with sizes 256, 512, and 1512 bytes
|
|
* LWIP_MALLOC_MEMPOOL_START
|
|
* LWIP_MALLOC_MEMPOOL(20, 256)
|
|
* LWIP_MALLOC_MEMPOOL(10, 512)
|
|
* LWIP_MALLOC_MEMPOOL(5, 1512)
|
|
* LWIP_MALLOC_MEMPOOL_END
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
|
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
|
|
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
|
|
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
|
* OF SUCH DAMAGE.
|
|
*
|
|
* This file is part of the lwIP TCP/IP stack.
|
|
*
|
|
* Author: Adam Dunkels <adam@sics.se>
|
|
* Simon Goldschmidt
|
|
*
|
|
*/
|
|
|
|
#include "lwip/opt.h"
|
|
#include "lwip/mem.h"
|
|
#include "lwip/def.h"
|
|
#include "lwip/sys.h"
|
|
#include "lwip/stats.h"
|
|
#include "lwip/err.h"
|
|
|
|
#include <string.h>
|
|
|
|
#if MEM_LIBC_MALLOC
|
|
#include <stdlib.h> /* for malloc()/free() */
|
|
#endif
|
|
|
|
/* This is overridable for tests only... */
|
|
#ifndef LWIP_MEM_ILLEGAL_FREE
|
|
#define LWIP_MEM_ILLEGAL_FREE(msg) LWIP_ASSERT(msg, 0)
|
|
#endif
|
|
|
|
#define MEM_STATS_INC_LOCKED(x) SYS_ARCH_LOCKED(MEM_STATS_INC(x))
|
|
#define MEM_STATS_INC_USED_LOCKED(x, y) SYS_ARCH_LOCKED(MEM_STATS_INC_USED(x, y))
|
|
#define MEM_STATS_DEC_USED_LOCKED(x, y) SYS_ARCH_LOCKED(MEM_STATS_DEC_USED(x, y))
|
|
|
|
#if MEM_OVERFLOW_CHECK
|
|
#define MEM_SANITY_OFFSET MEM_SANITY_REGION_BEFORE_ALIGNED
|
|
#define MEM_SANITY_OVERHEAD (MEM_SANITY_REGION_BEFORE_ALIGNED + MEM_SANITY_REGION_AFTER_ALIGNED)
|
|
#else
|
|
#define MEM_SANITY_OFFSET 0
|
|
#define MEM_SANITY_OVERHEAD 0
|
|
#endif
|
|
|
|
#if MEM_OVERFLOW_CHECK || MEMP_OVERFLOW_CHECK
|
|
/**
|
|
* Check if a mep element was victim of an overflow or underflow
|
|
* (e.g. the restricted area after/before it has been altered)
|
|
*
|
|
* @param p the mem element to check
|
|
* @param size allocated size of the element
|
|
* @param descr1 description of the element source shown on error
|
|
* @param descr2 description of the element source shown on error
|
|
*/
|
|
void
|
|
mem_overflow_check_raw(void *p, size_t size, const char *descr1, const char *descr2)
|
|
{
|
|
#if MEM_SANITY_REGION_AFTER_ALIGNED || MEM_SANITY_REGION_BEFORE_ALIGNED
|
|
u16_t k;
|
|
u8_t *m;
|
|
|
|
#if MEM_SANITY_REGION_AFTER_ALIGNED > 0
|
|
m = (u8_t *)p + size;
|
|
for (k = 0; k < MEM_SANITY_REGION_AFTER_ALIGNED; k++) {
|
|
if (m[k] != 0xcd) {
|
|
char errstr[128];
|
|
snprintf(errstr, sizeof(errstr), "detected mem overflow in %s%s", descr1, descr2);
|
|
LWIP_ASSERT(errstr, 0);
|
|
}
|
|
}
|
|
#endif /* MEM_SANITY_REGION_AFTER_ALIGNED > 0 */
|
|
|
|
#if MEM_SANITY_REGION_BEFORE_ALIGNED > 0
|
|
m = (u8_t *)p - MEM_SANITY_REGION_BEFORE_ALIGNED;
|
|
for (k = 0; k < MEM_SANITY_REGION_BEFORE_ALIGNED; k++) {
|
|
if (m[k] != 0xcd) {
|
|
char errstr[128];
|
|
snprintf(errstr, sizeof(errstr), "detected mem underflow in %s%s", descr1, descr2);
|
|
LWIP_ASSERT(errstr, 0);
|
|
}
|
|
}
|
|
#endif /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 */
|
|
#else
|
|
LWIP_UNUSED_ARG(p);
|
|
LWIP_UNUSED_ARG(desc);
|
|
LWIP_UNUSED_ARG(descr);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Initialize the restricted area of a mem element.
|
|
*/
|
|
void
|
|
mem_overflow_init_raw(void *p, size_t size)
|
|
{
|
|
#if MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0
|
|
u8_t *m;
|
|
#if MEM_SANITY_REGION_BEFORE_ALIGNED > 0
|
|
m = (u8_t *)p - MEM_SANITY_REGION_BEFORE_ALIGNED;
|
|
memset(m, 0xcd, MEM_SANITY_REGION_BEFORE_ALIGNED);
|
|
#endif
|
|
#if MEM_SANITY_REGION_AFTER_ALIGNED > 0
|
|
m = (u8_t *)p + size;
|
|
memset(m, 0xcd, MEM_SANITY_REGION_AFTER_ALIGNED);
|
|
#endif
|
|
#else /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0 */
|
|
LWIP_UNUSED_ARG(p);
|
|
LWIP_UNUSED_ARG(desc);
|
|
#endif /* MEM_SANITY_REGION_BEFORE_ALIGNED > 0 || MEM_SANITY_REGION_AFTER_ALIGNED > 0 */
|
|
}
|
|
#endif /* MEM_OVERFLOW_CHECK || MEMP_OVERFLOW_CHECK */
|
|
|
|
#if MEM_LIBC_MALLOC || MEM_USE_POOLS
|
|
|
|
/** mem_init is not used when using pools instead of a heap or using
|
|
* C library malloc().
|
|
*/
|
|
void
|
|
mem_init(void)
|
|
{
|
|
}
|
|
|
|
/** mem_trim is not used when using pools instead of a heap or using
|
|
* C library malloc(): we can't free part of a pool element and the stack
|
|
* support mem_trim() to return a different pointer
|
|
*/
|
|
void *
|
|
mem_trim(void *mem, mem_size_t size)
|
|
{
|
|
LWIP_UNUSED_ARG(size);
|
|
return mem;
|
|
}
|
|
#endif /* MEM_LIBC_MALLOC || MEM_USE_POOLS */
|
|
|
|
#if MEM_LIBC_MALLOC
|
|
/* lwIP heap implemented using C library malloc() */
|
|
|
|
/* in case C library malloc() needs extra protection,
|
|
* allow these defines to be overridden.
|
|
*/
|
|
#ifndef mem_clib_free
|
|
#define mem_clib_free free
|
|
#endif
|
|
#ifndef mem_clib_malloc
|
|
#define mem_clib_malloc malloc
|
|
#endif
|
|
#ifndef mem_clib_calloc
|
|
#define mem_clib_calloc calloc
|
|
#endif
|
|
|
|
#if LWIP_STATS && MEM_STATS
|
|
#define MEM_LIBC_STATSHELPER_SIZE LWIP_MEM_ALIGN_SIZE(sizeof(mem_size_t))
|
|
#else
|
|
#define MEM_LIBC_STATSHELPER_SIZE 0
|
|
#endif
|
|
|
|
/**
|
|
* Allocate a block of memory with a minimum of 'size' bytes.
|
|
*
|
|
* @param size is the minimum size of the requested block in bytes.
|
|
* @return pointer to allocated memory or NULL if no free memory was found.
|
|
*
|
|
* Note that the returned value must always be aligned (as defined by MEM_ALIGNMENT).
|
|
*/
|
|
void *
|
|
mem_malloc(mem_size_t size)
|
|
{
|
|
void *ret = mem_clib_malloc(size + MEM_LIBC_STATSHELPER_SIZE);
|
|
if (ret == NULL) {
|
|
MEM_STATS_INC_LOCKED(err);
|
|
} else {
|
|
LWIP_ASSERT("malloc() must return aligned memory", LWIP_MEM_ALIGN(ret) == ret);
|
|
#if LWIP_STATS && MEM_STATS
|
|
*(mem_size_t *)ret = size;
|
|
ret = (u8_t *)ret + MEM_LIBC_STATSHELPER_SIZE;
|
|
MEM_STATS_INC_USED_LOCKED(used, size);
|
|
#endif
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/** Put memory back on the heap
|
|
*
|
|
* @param rmem is the pointer as returned by a previous call to mem_malloc()
|
|
*/
|
|
void
|
|
mem_free(void *rmem)
|
|
{
|
|
LWIP_ASSERT("rmem != NULL", (rmem != NULL));
|
|
LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
|
|
#if LWIP_STATS && MEM_STATS
|
|
rmem = (u8_t *)rmem - MEM_LIBC_STATSHELPER_SIZE;
|
|
MEM_STATS_DEC_USED_LOCKED(used, *(mem_size_t *)rmem);
|
|
#endif
|
|
mem_clib_free(rmem);
|
|
}
|
|
|
|
#elif MEM_USE_POOLS
|
|
|
|
/* lwIP heap implemented with different sized pools */
|
|
|
|
/**
|
|
* Allocate memory: determine the smallest pool that is big enough
|
|
* to contain an element of 'size' and get an element from that pool.
|
|
*
|
|
* @param size the size in bytes of the memory needed
|
|
* @return a pointer to the allocated memory or NULL if the pool is empty
|
|
*/
|
|
void *
|
|
mem_malloc(mem_size_t size)
|
|
{
|
|
void *ret;
|
|
struct memp_malloc_helper *element = NULL;
|
|
memp_t poolnr;
|
|
mem_size_t required_size = size + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));
|
|
|
|
for (poolnr = MEMP_POOL_FIRST; poolnr <= MEMP_POOL_LAST; poolnr = (memp_t)(poolnr + 1)) {
|
|
/* is this pool big enough to hold an element of the required size
|
|
plus a struct memp_malloc_helper that saves the pool this element came from? */
|
|
if (required_size <= memp_pools[poolnr]->size) {
|
|
element = (struct memp_malloc_helper *)memp_malloc(poolnr);
|
|
if (element == NULL) {
|
|
/* No need to DEBUGF or ASSERT: This error is already taken care of in memp.c */
|
|
#if MEM_USE_POOLS_TRY_BIGGER_POOL
|
|
/** Try a bigger pool if this one is empty! */
|
|
if (poolnr < MEMP_POOL_LAST) {
|
|
continue;
|
|
}
|
|
#endif /* MEM_USE_POOLS_TRY_BIGGER_POOL */
|
|
MEM_STATS_INC_LOCKED(err);
|
|
return NULL;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (poolnr > MEMP_POOL_LAST) {
|
|
LWIP_ASSERT("mem_malloc(): no pool is that big!", 0);
|
|
MEM_STATS_INC_LOCKED(err);
|
|
return NULL;
|
|
}
|
|
|
|
/* save the pool number this element came from */
|
|
element->poolnr = poolnr;
|
|
/* and return a pointer to the memory directly after the struct memp_malloc_helper */
|
|
ret = (u8_t *)element + LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper));
|
|
|
|
#if MEMP_OVERFLOW_CHECK || (LWIP_STATS && MEM_STATS)
|
|
/* truncating to u16_t is safe because struct memp_desc::size is u16_t */
|
|
element->size = (u16_t)size;
|
|
MEM_STATS_INC_USED_LOCKED(used, element->size);
|
|
#endif /* MEMP_OVERFLOW_CHECK || (LWIP_STATS && MEM_STATS) */
|
|
#if MEMP_OVERFLOW_CHECK
|
|
/* initialize unused memory (diff between requested size and selected pool's size) */
|
|
memset((u8_t *)ret + size, 0xcd, memp_pools[poolnr]->size - size);
|
|
#endif /* MEMP_OVERFLOW_CHECK */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Free memory previously allocated by mem_malloc. Loads the pool number
|
|
* and calls memp_free with that pool number to put the element back into
|
|
* its pool
|
|
*
|
|
* @param rmem the memory element to free
|
|
*/
|
|
void
|
|
mem_free(void *rmem)
|
|
{
|
|
struct memp_malloc_helper *hmem;
|
|
|
|
LWIP_ASSERT("rmem != NULL", (rmem != NULL));
|
|
LWIP_ASSERT("rmem == MEM_ALIGN(rmem)", (rmem == LWIP_MEM_ALIGN(rmem)));
|
|
|
|
/* get the original struct memp_malloc_helper */
|
|
/* cast through void* to get rid of alignment warnings */
|
|
hmem = (struct memp_malloc_helper *)(void *)((u8_t *)rmem - LWIP_MEM_ALIGN_SIZE(sizeof(struct memp_malloc_helper)));
|
|
|
|
LWIP_ASSERT("hmem != NULL", (hmem != NULL));
|
|
LWIP_ASSERT("hmem == MEM_ALIGN(hmem)", (hmem == LWIP_MEM_ALIGN(hmem)));
|
|
LWIP_ASSERT("hmem->poolnr < MEMP_MAX", (hmem->poolnr < MEMP_MAX));
|
|
|
|
MEM_STATS_DEC_USED_LOCKED(used, hmem->size);
|
|
#if MEMP_OVERFLOW_CHECK
|
|
{
|
|
u16_t i;
|
|
LWIP_ASSERT("MEM_USE_POOLS: invalid chunk size",
|
|
hmem->size <= memp_pools[hmem->poolnr]->size);
|
|
/* check that unused memory remained untouched (diff between requested size and selected pool's size) */
|
|
for (i = hmem->size; i < memp_pools[hmem->poolnr]->size; i++) {
|
|
u8_t data = *((u8_t *)rmem + i);
|
|
LWIP_ASSERT("MEM_USE_POOLS: mem overflow detected", data == 0xcd);
|
|
}
|
|
}
|
|
#endif /* MEMP_OVERFLOW_CHECK */
|
|
|
|
/* and put it in the pool we saved earlier */
|
|
memp_free(hmem->poolnr, hmem);
|
|
}
|
|
|
|
#else /* MEM_USE_POOLS */
|
|
/* lwIP replacement for your libc malloc() */
|
|
|
|
/**
|
|
* The heap is made up as a list of structs of this type.
|
|
* This does not have to be aligned since for getting its size,
|
|
* we only use the macro SIZEOF_STRUCT_MEM, which automatically aligns.
|
|
*/
|
|
struct mem {
|
|
/** index (-> ram[next]) of the next struct */
|
|
mem_size_t next;
|
|
/** index (-> ram[prev]) of the previous struct */
|
|
mem_size_t prev;
|
|
/** 1: this area is used; 0: this area is unused */
|
|
u8_t used;
|
|
#if MEM_OVERFLOW_CHECK
|
|
/** this keeps track of the user allocation size for guard checks */
|
|
mem_size_t user_size;
|
|
#endif
|
|
};
|
|
|
|
/** All allocated blocks will be MIN_SIZE bytes big, at least!
|
|
* MIN_SIZE can be overridden to suit your needs. Smaller values save space,
|
|
* larger values could prevent too small blocks to fragment the RAM too much. */
|
|
#ifndef MIN_SIZE
|
|
#define MIN_SIZE 12
|
|
#endif /* MIN_SIZE */
|
|
/* some alignment macros: we define them here for better source code layout */
|
|
#define MIN_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MIN_SIZE)
|
|
#define SIZEOF_STRUCT_MEM LWIP_MEM_ALIGN_SIZE(sizeof(struct mem))
|
|
#define MEM_SIZE_ALIGNED LWIP_MEM_ALIGN_SIZE(MEM_SIZE)
|
|
|
|
/** If you want to relocate the heap to external memory, simply define
|
|
* LWIP_RAM_HEAP_POINTER as a void-pointer to that location.
|
|
* If so, make sure the memory at that location is big enough (see below on
|
|
* how that space is calculated). */
|
|
#ifndef LWIP_RAM_HEAP_POINTER
|
|
/** the heap. we need one struct mem at the end and some room for alignment */
|
|
LWIP_DECLARE_MEMORY_ALIGNED(ram_heap, MEM_SIZE_ALIGNED + (2U * SIZEOF_STRUCT_MEM));
|
|
#define LWIP_RAM_HEAP_POINTER ram_heap
|
|
#endif /* LWIP_RAM_HEAP_POINTER */
|
|
|
|
/** pointer to the heap (ram_heap): for alignment, ram is now a pointer instead of an array */
|
|
static u8_t *ram;
|
|
/** the last entry, always unused! */
|
|
static struct mem *ram_end;
|
|
|
|
/** concurrent access protection */
|
|
#if !NO_SYS
|
|
static sys_mutex_t mem_mutex;
|
|
#endif
|
|
|
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
|
|
|
static volatile u8_t mem_free_count;
|
|
|
|
/* Allow mem_free from other (e.g. interrupt) context */
|
|
#define LWIP_MEM_FREE_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_free)
|
|
#define LWIP_MEM_FREE_PROTECT() SYS_ARCH_PROTECT(lev_free)
|
|
#define LWIP_MEM_FREE_UNPROTECT() SYS_ARCH_UNPROTECT(lev_free)
|
|
#define LWIP_MEM_ALLOC_DECL_PROTECT() SYS_ARCH_DECL_PROTECT(lev_alloc)
|
|
#define LWIP_MEM_ALLOC_PROTECT() SYS_ARCH_PROTECT(lev_alloc)
|
|
#define LWIP_MEM_ALLOC_UNPROTECT() SYS_ARCH_UNPROTECT(lev_alloc)
|
|
#define LWIP_MEM_LFREE_VOLATILE volatile
|
|
|
|
#else /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
|
|
|
/* Protect the heap only by using a mutex */
|
|
#define LWIP_MEM_FREE_DECL_PROTECT()
|
|
#define LWIP_MEM_FREE_PROTECT() sys_mutex_lock(&mem_mutex)
|
|
#define LWIP_MEM_FREE_UNPROTECT() sys_mutex_unlock(&mem_mutex)
|
|
/* mem_malloc is protected using mutex AND LWIP_MEM_ALLOC_PROTECT */
|
|
#define LWIP_MEM_ALLOC_DECL_PROTECT()
|
|
#define LWIP_MEM_ALLOC_PROTECT()
|
|
#define LWIP_MEM_ALLOC_UNPROTECT()
|
|
#define LWIP_MEM_LFREE_VOLATILE
|
|
|
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
|
|
|
/** pointer to the lowest free block, this is used for faster search */
|
|
static struct mem * LWIP_MEM_LFREE_VOLATILE lfree;
|
|
|
|
#if MEM_SANITY_CHECK
|
|
static void mem_sanity(void);
|
|
#define MEM_SANITY() mem_sanity()
|
|
#else
|
|
#define MEM_SANITY()
|
|
#endif
|
|
|
|
#if MEM_OVERFLOW_CHECK
|
|
static void
|
|
mem_overflow_init_element(struct mem *mem, mem_size_t user_size)
|
|
{
|
|
void *p = (u8_t *)mem + SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET;
|
|
mem->user_size = user_size;
|
|
mem_overflow_init_raw(p, user_size);
|
|
}
|
|
|
|
static void
|
|
mem_overflow_check_element(struct mem *mem)
|
|
{
|
|
void *p = (u8_t *)mem + SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET;
|
|
mem_overflow_check_raw(p, mem->user_size, "heap", "");
|
|
}
|
|
#else /* MEM_OVERFLOW_CHECK */
|
|
#define mem_overflow_init_element(mem, size)
|
|
#define mem_overflow_check_element(mem)
|
|
#endif /* MEM_OVERFLOW_CHECK */
|
|
|
|
static struct mem *
|
|
ptr_to_mem(mem_size_t ptr)
|
|
{
|
|
return (struct mem *)(void *)&ram[ptr];
|
|
}
|
|
|
|
static mem_size_t
|
|
mem_to_ptr(void *mem)
|
|
{
|
|
return (mem_size_t)((u8_t *)mem - ram);
|
|
}
|
|
|
|
/**
|
|
* "Plug holes" by combining adjacent empty struct mems.
|
|
* After this function is through, there should not exist
|
|
* one empty struct mem pointing to another empty struct mem.
|
|
*
|
|
* @param mem this points to a struct mem which just has been freed
|
|
* @internal this function is only called by mem_free() and mem_trim()
|
|
*
|
|
* This assumes access to the heap is protected by the calling function
|
|
* already.
|
|
*/
|
|
static void
|
|
plug_holes(struct mem *mem)
|
|
{
|
|
struct mem *nmem;
|
|
struct mem *pmem;
|
|
|
|
LWIP_ASSERT("plug_holes: mem >= ram", (u8_t *)mem >= ram);
|
|
LWIP_ASSERT("plug_holes: mem < ram_end", (u8_t *)mem < (u8_t *)ram_end);
|
|
LWIP_ASSERT("plug_holes: mem->used == 0", mem->used == 0);
|
|
|
|
/* plug hole forward */
|
|
LWIP_ASSERT("plug_holes: mem->next <= MEM_SIZE_ALIGNED", mem->next <= MEM_SIZE_ALIGNED);
|
|
|
|
nmem = ptr_to_mem(mem->next);
|
|
if (mem != nmem && nmem->used == 0 && (u8_t *)nmem != (u8_t *)ram_end) {
|
|
/* if mem->next is unused and not end of ram, combine mem and mem->next */
|
|
if (lfree == nmem) {
|
|
lfree = mem;
|
|
}
|
|
mem->next = nmem->next;
|
|
if (nmem->next != MEM_SIZE_ALIGNED) {
|
|
ptr_to_mem(nmem->next)->prev = mem_to_ptr(mem);
|
|
}
|
|
}
|
|
|
|
/* plug hole backward */
|
|
pmem = ptr_to_mem(mem->prev);
|
|
if (pmem != mem && pmem->used == 0) {
|
|
/* if mem->prev is unused, combine mem and mem->prev */
|
|
if (lfree == mem) {
|
|
lfree = pmem;
|
|
}
|
|
pmem->next = mem->next;
|
|
if (mem->next != MEM_SIZE_ALIGNED) {
|
|
ptr_to_mem(mem->next)->prev = mem_to_ptr(pmem);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Zero the heap and initialize start, end and lowest-free
|
|
*/
|
|
void
|
|
mem_init(void)
|
|
{
|
|
struct mem *mem;
|
|
|
|
LWIP_ASSERT("Sanity check alignment",
|
|
(SIZEOF_STRUCT_MEM & (MEM_ALIGNMENT - 1)) == 0);
|
|
|
|
/* align the heap */
|
|
ram = (u8_t *)LWIP_MEM_ALIGN(LWIP_RAM_HEAP_POINTER);
|
|
/* initialize the start of the heap */
|
|
mem = (struct mem *)(void *)ram;
|
|
mem->next = MEM_SIZE_ALIGNED;
|
|
mem->prev = 0;
|
|
mem->used = 0;
|
|
/* initialize the end of the heap */
|
|
ram_end = ptr_to_mem(MEM_SIZE_ALIGNED);
|
|
ram_end->used = 1;
|
|
ram_end->next = MEM_SIZE_ALIGNED;
|
|
ram_end->prev = MEM_SIZE_ALIGNED;
|
|
MEM_SANITY();
|
|
|
|
/* initialize the lowest-free pointer to the start of the heap */
|
|
lfree = (struct mem *)(void *)ram;
|
|
|
|
MEM_STATS_AVAIL(avail, MEM_SIZE_ALIGNED);
|
|
|
|
if (sys_mutex_new(&mem_mutex) != ERR_OK) {
|
|
LWIP_ASSERT("failed to create mem_mutex", 0);
|
|
}
|
|
}
|
|
|
|
/* Check if a struct mem is correctly linked.
|
|
* If not, double-free is a possible reason.
|
|
*/
|
|
static int
|
|
mem_link_valid(struct mem *mem)
|
|
{
|
|
struct mem *nmem, *pmem;
|
|
mem_size_t rmem_idx;
|
|
rmem_idx = mem_to_ptr(mem);
|
|
nmem = ptr_to_mem(mem->next);
|
|
pmem = ptr_to_mem(mem->prev);
|
|
if ((mem->next > MEM_SIZE_ALIGNED) || (mem->prev > MEM_SIZE_ALIGNED) ||
|
|
((mem->prev != rmem_idx) && (pmem->next != rmem_idx)) ||
|
|
((nmem != ram_end) && (nmem->prev != rmem_idx))) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#if MEM_SANITY_CHECK
|
|
static void
|
|
mem_sanity(void)
|
|
{
|
|
struct mem *mem;
|
|
u8_t last_used;
|
|
|
|
/* begin with first element here */
|
|
mem = (struct mem *)ram;
|
|
LWIP_ASSERT("heap element used valid", (mem->used == 0) || (mem->used == 1));
|
|
last_used = mem->used;
|
|
LWIP_ASSERT("heap element prev ptr valid", mem->prev == 0);
|
|
LWIP_ASSERT("heap element next ptr valid", mem->next <= MEM_SIZE_ALIGNED);
|
|
LWIP_ASSERT("heap element next ptr aligned", LWIP_MEM_ALIGN(ptr_to_mem(mem->next) == ptr_to_mem(mem->next)));
|
|
|
|
/* check all elements before the end of the heap */
|
|
for (mem = ptr_to_mem(mem->next);
|
|
((u8_t *)mem > ram) && (mem < ram_end);
|
|
mem = ptr_to_mem(mem->next)) {
|
|
LWIP_ASSERT("heap element aligned", LWIP_MEM_ALIGN(mem) == mem);
|
|
LWIP_ASSERT("heap element prev ptr valid", mem->prev <= MEM_SIZE_ALIGNED);
|
|
LWIP_ASSERT("heap element next ptr valid", mem->next <= MEM_SIZE_ALIGNED);
|
|
LWIP_ASSERT("heap element prev ptr aligned", LWIP_MEM_ALIGN(ptr_to_mem(mem->prev) == ptr_to_mem(mem->prev)));
|
|
LWIP_ASSERT("heap element next ptr aligned", LWIP_MEM_ALIGN(ptr_to_mem(mem->next) == ptr_to_mem(mem->next)));
|
|
|
|
if (last_used == 0) {
|
|
/* 2 unused elements in a row? */
|
|
LWIP_ASSERT("heap element unused?", mem->used == 1);
|
|
} else {
|
|
LWIP_ASSERT("heap element unused member", (mem->used == 0) || (mem->used == 1));
|
|
}
|
|
|
|
LWIP_ASSERT("heap element link valid", mem_link_valid(mem));
|
|
|
|
/* used/unused altering */
|
|
last_used = mem->used;
|
|
}
|
|
LWIP_ASSERT("heap end ptr sanity", mem == ptr_to_mem(MEM_SIZE_ALIGNED));
|
|
LWIP_ASSERT("heap element used valid", mem->used == 1);
|
|
LWIP_ASSERT("heap element prev ptr valid", mem->prev == MEM_SIZE_ALIGNED);
|
|
LWIP_ASSERT("heap element next ptr valid", mem->next == MEM_SIZE_ALIGNED);
|
|
}
|
|
#endif /* MEM_SANITY_CHECK */
|
|
|
|
/**
|
|
* Put a struct mem back on the heap
|
|
*
|
|
* @param rmem is the data portion of a struct mem as returned by a previous
|
|
* call to mem_malloc()
|
|
*/
|
|
void
|
|
mem_free(void *rmem)
|
|
{
|
|
struct mem *mem;
|
|
LWIP_MEM_FREE_DECL_PROTECT();
|
|
|
|
if (rmem == NULL) {
|
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("mem_free(p == NULL) was called.\n"));
|
|
return;
|
|
}
|
|
if ((((mem_ptr_t)rmem) & (MEM_ALIGNMENT - 1)) != 0) {
|
|
LWIP_MEM_ILLEGAL_FREE("mem_free: sanity check alignment");
|
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: sanity check alignment\n"));
|
|
/* protect mem stats from concurrent access */
|
|
MEM_STATS_INC_LOCKED(illegal);
|
|
return;
|
|
}
|
|
|
|
/* Get the corresponding struct mem: */
|
|
/* cast through void* to get rid of alignment warnings */
|
|
mem = (struct mem *)(void *)((u8_t *)rmem - (SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET));
|
|
|
|
if ((u8_t *)mem < ram || (u8_t *)rmem + MIN_SIZE_ALIGNED > (u8_t *)ram_end) {
|
|
LWIP_MEM_ILLEGAL_FREE("mem_free: illegal memory");
|
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory\n"));
|
|
/* protect mem stats from concurrent access */
|
|
MEM_STATS_INC_LOCKED(illegal);
|
|
return;
|
|
}
|
|
#if MEM_OVERFLOW_CHECK
|
|
mem_overflow_check_element(mem);
|
|
#endif
|
|
/* protect the heap from concurrent access */
|
|
LWIP_MEM_FREE_PROTECT();
|
|
/* mem has to be in a used state */
|
|
if (!mem->used) {
|
|
LWIP_MEM_ILLEGAL_FREE("mem_free: illegal memory: double free");
|
|
LWIP_MEM_FREE_UNPROTECT();
|
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory: double free?\n"));
|
|
/* protect mem stats from concurrent access */
|
|
MEM_STATS_INC_LOCKED(illegal);
|
|
return;
|
|
}
|
|
|
|
if (!mem_link_valid(mem)) {
|
|
LWIP_MEM_ILLEGAL_FREE("mem_free: illegal memory: non-linked: double free");
|
|
LWIP_MEM_FREE_UNPROTECT();
|
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_free: illegal memory: non-linked: double free?\n"));
|
|
/* protect mem stats from concurrent access */
|
|
MEM_STATS_INC_LOCKED(illegal);
|
|
return;
|
|
}
|
|
|
|
/* mem is now unused. */
|
|
mem->used = 0;
|
|
|
|
if (mem < lfree) {
|
|
/* the newly freed struct is now the lowest */
|
|
lfree = mem;
|
|
}
|
|
|
|
MEM_STATS_DEC_USED(used, mem->next - (mem_size_t)(((u8_t *)mem - ram)));
|
|
|
|
/* finally, see if prev or next are free also */
|
|
plug_holes(mem);
|
|
MEM_SANITY();
|
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
|
mem_free_count = 1;
|
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
|
LWIP_MEM_FREE_UNPROTECT();
|
|
}
|
|
|
|
/**
|
|
* Shrink memory returned by mem_malloc().
|
|
*
|
|
* @param rmem pointer to memory allocated by mem_malloc the is to be shrinked
|
|
* @param new_size required size after shrinking (needs to be smaller than or
|
|
* equal to the previous size)
|
|
* @return for compatibility reasons: is always == rmem, at the moment
|
|
* or NULL if newsize is > old size, in which case rmem is NOT touched
|
|
* or freed!
|
|
*/
|
|
void *
|
|
mem_trim(void *rmem, mem_size_t new_size)
|
|
{
|
|
mem_size_t size, newsize;
|
|
mem_size_t ptr, ptr2;
|
|
struct mem *mem, *mem2;
|
|
/* use the FREE_PROTECT here: it protects with sem OR SYS_ARCH_PROTECT */
|
|
LWIP_MEM_FREE_DECL_PROTECT();
|
|
|
|
/* Expand the size of the allocated memory region so that we can
|
|
adjust for alignment. */
|
|
newsize = (mem_size_t)LWIP_MEM_ALIGN_SIZE(new_size);
|
|
if (newsize < MIN_SIZE_ALIGNED) {
|
|
/* every data block must be at least MIN_SIZE_ALIGNED long */
|
|
newsize = MIN_SIZE_ALIGNED;
|
|
}
|
|
#if MEM_OVERFLOW_CHECK
|
|
newsize += MEM_SANITY_REGION_BEFORE_ALIGNED + MEM_SANITY_REGION_AFTER_ALIGNED;
|
|
#endif
|
|
if ((newsize > MEM_SIZE_ALIGNED) || (newsize < new_size)) {
|
|
return NULL;
|
|
}
|
|
|
|
LWIP_ASSERT("mem_trim: legal memory", (u8_t *)rmem >= (u8_t *)ram &&
|
|
(u8_t *)rmem < (u8_t *)ram_end);
|
|
|
|
if ((u8_t *)rmem < (u8_t *)ram || (u8_t *)rmem >= (u8_t *)ram_end) {
|
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SEVERE, ("mem_trim: illegal memory\n"));
|
|
/* protect mem stats from concurrent access */
|
|
MEM_STATS_INC_LOCKED(illegal);
|
|
return rmem;
|
|
}
|
|
/* Get the corresponding struct mem ... */
|
|
/* cast through void* to get rid of alignment warnings */
|
|
mem = (struct mem *)(void *)((u8_t *)rmem - (SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET));
|
|
#if MEM_OVERFLOW_CHECK
|
|
mem_overflow_check_element(mem);
|
|
#endif
|
|
/* ... and its offset pointer */
|
|
ptr = mem_to_ptr(mem);
|
|
|
|
size = (mem_size_t)((mem_size_t)(mem->next - ptr) - (SIZEOF_STRUCT_MEM + MEM_SANITY_OVERHEAD));
|
|
LWIP_ASSERT("mem_trim can only shrink memory", newsize <= size);
|
|
if (newsize > size) {
|
|
/* not supported */
|
|
return NULL;
|
|
}
|
|
if (newsize == size) {
|
|
/* No change in size, simply return */
|
|
return rmem;
|
|
}
|
|
|
|
/* protect the heap from concurrent access */
|
|
LWIP_MEM_FREE_PROTECT();
|
|
|
|
mem2 = ptr_to_mem(mem->next);
|
|
if (mem2->used == 0) {
|
|
/* The next struct is unused, we can simply move it at little */
|
|
mem_size_t next;
|
|
LWIP_ASSERT("invalid next ptr", mem->next != MEM_SIZE_ALIGNED);
|
|
/* remember the old next pointer */
|
|
next = mem2->next;
|
|
/* create new struct mem which is moved directly after the shrinked mem */
|
|
ptr2 = (mem_size_t)(ptr + SIZEOF_STRUCT_MEM + newsize);
|
|
if (lfree == mem2) {
|
|
lfree = ptr_to_mem(ptr2);
|
|
}
|
|
mem2 = ptr_to_mem(ptr2);
|
|
mem2->used = 0;
|
|
/* restore the next pointer */
|
|
mem2->next = next;
|
|
/* link it back to mem */
|
|
mem2->prev = ptr;
|
|
/* link mem to it */
|
|
mem->next = ptr2;
|
|
/* last thing to restore linked list: as we have moved mem2,
|
|
* let 'mem2->next->prev' point to mem2 again. but only if mem2->next is not
|
|
* the end of the heap */
|
|
if (mem2->next != MEM_SIZE_ALIGNED) {
|
|
ptr_to_mem(mem2->next)->prev = ptr2;
|
|
}
|
|
MEM_STATS_DEC_USED(used, (size - newsize));
|
|
/* no need to plug holes, we've already done that */
|
|
} else if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED <= size) {
|
|
/* Next struct is used but there's room for another struct mem with
|
|
* at least MIN_SIZE_ALIGNED of data.
|
|
* Old size ('size') must be big enough to contain at least 'newsize' plus a struct mem
|
|
* ('SIZEOF_STRUCT_MEM') with some data ('MIN_SIZE_ALIGNED').
|
|
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
|
|
* region that couldn't hold data, but when mem->next gets freed,
|
|
* the 2 regions would be combined, resulting in more free memory */
|
|
ptr2 = (mem_size_t)(ptr + SIZEOF_STRUCT_MEM + newsize);
|
|
LWIP_ASSERT("invalid next ptr", mem->next != MEM_SIZE_ALIGNED);
|
|
mem2 = ptr_to_mem(ptr2);
|
|
if (mem2 < lfree) {
|
|
lfree = mem2;
|
|
}
|
|
mem2->used = 0;
|
|
mem2->next = mem->next;
|
|
mem2->prev = ptr;
|
|
mem->next = ptr2;
|
|
if (mem2->next != MEM_SIZE_ALIGNED) {
|
|
ptr_to_mem(mem2->next)->prev = ptr2;
|
|
}
|
|
MEM_STATS_DEC_USED(used, (size - newsize));
|
|
/* the original mem->next is used, so no need to plug holes! */
|
|
}
|
|
/* else {
|
|
next struct mem is used but size between mem and mem2 is not big enough
|
|
to create another struct mem
|
|
-> don't do anyhting.
|
|
-> the remaining space stays unused since it is too small
|
|
} */
|
|
#if MEM_OVERFLOW_CHECK
|
|
mem_overflow_init_element(mem, new_size);
|
|
#endif
|
|
MEM_SANITY();
|
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
|
mem_free_count = 1;
|
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
|
LWIP_MEM_FREE_UNPROTECT();
|
|
return rmem;
|
|
}
|
|
|
|
/**
|
|
* Allocate a block of memory with a minimum of 'size' bytes.
|
|
*
|
|
* @param size_in is the minimum size of the requested block in bytes.
|
|
* @return pointer to allocated memory or NULL if no free memory was found.
|
|
*
|
|
* Note that the returned value will always be aligned (as defined by MEM_ALIGNMENT).
|
|
*/
|
|
void *
|
|
mem_malloc(mem_size_t size_in)
|
|
{
|
|
mem_size_t ptr, ptr2, size;
|
|
struct mem *mem, *mem2;
|
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
|
u8_t local_mem_free_count = 0;
|
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
|
LWIP_MEM_ALLOC_DECL_PROTECT();
|
|
|
|
if (size_in == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Expand the size of the allocated memory region so that we can
|
|
adjust for alignment. */
|
|
size = (mem_size_t)LWIP_MEM_ALIGN_SIZE(size_in);
|
|
if (size < MIN_SIZE_ALIGNED) {
|
|
/* every data block must be at least MIN_SIZE_ALIGNED long */
|
|
size = MIN_SIZE_ALIGNED;
|
|
}
|
|
#if MEM_OVERFLOW_CHECK
|
|
size += MEM_SANITY_REGION_BEFORE_ALIGNED + MEM_SANITY_REGION_AFTER_ALIGNED;
|
|
#endif
|
|
if ((size > MEM_SIZE_ALIGNED) || (size < size_in)) {
|
|
return NULL;
|
|
}
|
|
|
|
/* protect the heap from concurrent access */
|
|
sys_mutex_lock(&mem_mutex);
|
|
LWIP_MEM_ALLOC_PROTECT();
|
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
|
/* run as long as a mem_free disturbed mem_malloc or mem_trim */
|
|
do {
|
|
local_mem_free_count = 0;
|
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
|
|
|
/* Scan through the heap searching for a free block that is big enough,
|
|
* beginning with the lowest free block.
|
|
*/
|
|
for (ptr = mem_to_ptr(lfree); ptr < MEM_SIZE_ALIGNED - size;
|
|
ptr = ptr_to_mem(ptr)->next) {
|
|
mem = ptr_to_mem(ptr);
|
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
|
mem_free_count = 0;
|
|
LWIP_MEM_ALLOC_UNPROTECT();
|
|
/* allow mem_free or mem_trim to run */
|
|
LWIP_MEM_ALLOC_PROTECT();
|
|
if (mem_free_count != 0) {
|
|
/* If mem_free or mem_trim have run, we have to restart since they
|
|
could have altered our current struct mem. */
|
|
local_mem_free_count = 1;
|
|
break;
|
|
}
|
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
|
|
|
if ((!mem->used) &&
|
|
(mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size) {
|
|
/* mem is not used and at least perfect fit is possible:
|
|
* mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
|
|
|
|
if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >= (size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED)) {
|
|
/* (in addition to the above, we test if another struct mem (SIZEOF_STRUCT_MEM) containing
|
|
* at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
|
|
* -> split large block, create empty remainder,
|
|
* remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
|
|
* mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
|
|
* struct mem would fit in but no data between mem2 and mem2->next
|
|
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
|
|
* region that couldn't hold data, but when mem->next gets freed,
|
|
* the 2 regions would be combined, resulting in more free memory
|
|
*/
|
|
ptr2 = (mem_size_t)(ptr + SIZEOF_STRUCT_MEM + size);
|
|
LWIP_ASSERT("invalid next ptr",ptr2 != MEM_SIZE_ALIGNED);
|
|
/* create mem2 struct */
|
|
mem2 = ptr_to_mem(ptr2);
|
|
mem2->used = 0;
|
|
mem2->next = mem->next;
|
|
mem2->prev = ptr;
|
|
/* and insert it between mem and mem->next */
|
|
mem->next = ptr2;
|
|
mem->used = 1;
|
|
|
|
if (mem2->next != MEM_SIZE_ALIGNED) {
|
|
ptr_to_mem(mem2->next)->prev = ptr2;
|
|
}
|
|
MEM_STATS_INC_USED(used, (size + SIZEOF_STRUCT_MEM));
|
|
} else {
|
|
/* (a mem2 struct does no fit into the user data space of mem and mem->next will always
|
|
* be used at this point: if not we have 2 unused structs in a row, plug_holes should have
|
|
* take care of this).
|
|
* -> near fit or exact fit: do not split, no mem2 creation
|
|
* also can't move mem->next directly behind mem, since mem->next
|
|
* will always be used at this point!
|
|
*/
|
|
mem->used = 1;
|
|
MEM_STATS_INC_USED(used, mem->next - mem_to_ptr(mem));
|
|
}
|
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
|
mem_malloc_adjust_lfree:
|
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
|
if (mem == lfree) {
|
|
struct mem *cur = lfree;
|
|
/* Find next free block after mem and update lowest free pointer */
|
|
while (cur->used && cur != ram_end) {
|
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
|
mem_free_count = 0;
|
|
LWIP_MEM_ALLOC_UNPROTECT();
|
|
/* prevent high interrupt latency... */
|
|
LWIP_MEM_ALLOC_PROTECT();
|
|
if (mem_free_count != 0) {
|
|
/* If mem_free or mem_trim have run, we have to restart since they
|
|
could have altered our current struct mem or lfree. */
|
|
goto mem_malloc_adjust_lfree;
|
|
}
|
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
|
cur = ptr_to_mem(cur->next);
|
|
}
|
|
lfree = cur;
|
|
LWIP_ASSERT("mem_malloc: !lfree->used", ((lfree == ram_end) || (!lfree->used)));
|
|
}
|
|
LWIP_MEM_ALLOC_UNPROTECT();
|
|
sys_mutex_unlock(&mem_mutex);
|
|
LWIP_ASSERT("mem_malloc: allocated memory not above ram_end.",
|
|
(mem_ptr_t)mem + SIZEOF_STRUCT_MEM + size <= (mem_ptr_t)ram_end);
|
|
LWIP_ASSERT("mem_malloc: allocated memory properly aligned.",
|
|
((mem_ptr_t)mem + SIZEOF_STRUCT_MEM) % MEM_ALIGNMENT == 0);
|
|
LWIP_ASSERT("mem_malloc: sanity check alignment",
|
|
(((mem_ptr_t)mem) & (MEM_ALIGNMENT - 1)) == 0);
|
|
|
|
#if MEM_OVERFLOW_CHECK
|
|
mem_overflow_init_element(mem, size_in);
|
|
#endif
|
|
MEM_SANITY();
|
|
return (u8_t *)mem + SIZEOF_STRUCT_MEM + MEM_SANITY_OFFSET;
|
|
}
|
|
}
|
|
#if LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT
|
|
/* if we got interrupted by a mem_free, try again */
|
|
} while (local_mem_free_count != 0);
|
|
#endif /* LWIP_ALLOW_MEM_FREE_FROM_OTHER_CONTEXT */
|
|
MEM_STATS_INC(err);
|
|
LWIP_MEM_ALLOC_UNPROTECT();
|
|
sys_mutex_unlock(&mem_mutex);
|
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_malloc: could not allocate %"S16_F" bytes\n", (s16_t)size));
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* MEM_USE_POOLS */
|
|
|
|
#if MEM_LIBC_MALLOC && (!LWIP_STATS || !MEM_STATS)
|
|
void *
|
|
mem_calloc(mem_size_t count, mem_size_t size)
|
|
{
|
|
return mem_clib_calloc(count, size);
|
|
}
|
|
|
|
#else /* MEM_LIBC_MALLOC && (!LWIP_STATS || !MEM_STATS) */
|
|
/**
|
|
* Contiguously allocates enough space for count objects that are size bytes
|
|
* of memory each and returns a pointer to the allocated memory.
|
|
*
|
|
* The allocated memory is filled with bytes of value zero.
|
|
*
|
|
* @param count number of objects to allocate
|
|
* @param size size of the objects to allocate
|
|
* @return pointer to allocated memory / NULL pointer if there is an error
|
|
*/
|
|
void *
|
|
mem_calloc(mem_size_t count, mem_size_t size)
|
|
{
|
|
void *p;
|
|
size_t alloc_size = (size_t)count * (size_t)size;
|
|
|
|
if ((size_t)(mem_size_t)alloc_size != alloc_size) {
|
|
LWIP_DEBUGF(MEM_DEBUG | LWIP_DBG_LEVEL_SERIOUS, ("mem_calloc: could not allocate %"SZT_F" bytes\n", alloc_size));
|
|
return NULL;
|
|
}
|
|
|
|
/* allocate 'count' objects of size 'size' */
|
|
p = mem_malloc((mem_size_t)alloc_size);
|
|
if (p) {
|
|
/* zero the memory */
|
|
memset(p, 0, alloc_size);
|
|
}
|
|
return p;
|
|
}
|
|
#endif /* MEM_LIBC_MALLOC && (!LWIP_STATS || !MEM_STATS) */
|