rt-thread-official/src/slab.c

857 lines
25 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*/
/*
* File : slab.c
*
* Change Logs:
* Date Author Notes
* 2008-07-12 Bernard the first version
* 2010-07-13 Bernard fix RT_ALIGN issue found by kuronca
* 2010-10-23 yi.qiu add module memory allocator
* 2010-12-18 yi.qiu fix zone release bug
*/
/*
* KERN_SLABALLOC.C - Kernel SLAB memory allocator
*
* Copyright (c) 2003,2004 The DragonFly Project. All rights reserved.
*
* This code is derived from software contributed to The DragonFly Project
* by Matthew Dillon <dillon@backplane.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name of The DragonFly Project nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific, prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <rthw.h>
#include <rtthread.h>
#ifdef RT_USING_SLAB
#define DBG_TAG "kernel.slab"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
/*
* slab allocator implementation
*
* A slab allocator reserves a ZONE for each chunk size, then lays the
* chunks out in an array within the zone. Allocation and deallocation
* is nearly instantanious, and fragmentation/overhead losses are limited
* to a fixed worst-case amount.
*
* The downside of this slab implementation is in the chunk size
* multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu.
* In a kernel implementation all this memory will be physical so
* the zone size is adjusted downward on machines with less physical
* memory. The upside is that overhead is bounded... this is the *worst*
* case overhead.
*
* Slab management is done on a per-cpu basis and no locking or mutexes
* are required, only a critical section. When one cpu frees memory
* belonging to another cpu's slab manager an asynchronous IPI message
* will be queued to execute the operation. In addition, both the
* high level slab allocator and the low level zone allocator optimize
* M_ZERO requests, and the slab allocator does not have to pre initialize
* the linked list of chunks.
*
* XXX Balancing is needed between cpus. Balance will be handled through
* asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks.
*
* XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of
* the new zone should be restricted to M_USE_RESERVE requests only.
*
* Alloc Size Chunking Number of zones
* 0-127 8 16
* 128-255 16 8
* 256-511 32 8
* 512-1023 64 8
* 1024-2047 128 8
* 2048-4095 256 8
* 4096-8191 512 8
* 8192-16383 1024 8
* 16384-32767 2048 8
* (if RT_MM_PAGE_SIZE is 4K the maximum zone allocation is 16383)
*
* Allocations >= zone_limit go directly to kmem.
*
* API REQUIREMENTS AND SIDE EFFECTS
*
* To operate as a drop-in replacement to the FreeBSD-4.x malloc() we
* have remained compatible with the following API requirements:
*
* + small power-of-2 sized allocations are power-of-2 aligned (kern_tty)
* + all power-of-2 sized allocations are power-of-2 aligned (twe)
* + malloc(0) is allowed and returns non-RT_NULL (ahc driver)
* + ability to allocate arbitrarily large chunks of memory
*/
#define ZALLOC_SLAB_MAGIC 0x51ab51ab
#define ZALLOC_ZONE_LIMIT (16 * 1024) /* max slab-managed alloc */
#define ZALLOC_MIN_ZONE_SIZE (32 * 1024) /* minimum zone size */
#define ZALLOC_MAX_ZONE_SIZE (128 * 1024) /* maximum zone size */
#define ZONE_RELEASE_THRESH 2 /* threshold number of zones */
/*
* Misc constants. Note that allocations that are exact multiples of
* RT_MM_PAGE_SIZE, or exceed the zone limit, fall through to the kmem module.
*/
#define MIN_CHUNK_SIZE 8 /* in bytes */
#define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1)
/*
* Array of descriptors that describe the contents of each page
*/
#define PAGE_TYPE_FREE 0x00
#define PAGE_TYPE_SMALL 0x01
#define PAGE_TYPE_LARGE 0x02
#define btokup(addr) \
(&slab->memusage[((rt_uintptr_t)(addr) - slab->heap_start) >> RT_MM_PAGE_BITS])
/**
* Base structure of slab memory object
*/
/*
* The IN-BAND zone header is placed at the beginning of each zone.
*/
struct rt_slab_zone
{
rt_uint32_t z_magic; /**< magic number for sanity check */
rt_uint32_t z_nfree; /**< total free chunks / ualloc space in zone */
rt_uint32_t z_nmax; /**< maximum free chunks */
struct rt_slab_zone *z_next; /**< zoneary[] link if z_nfree non-zero */
rt_uint8_t *z_baseptr; /**< pointer to start of chunk array */
rt_uint32_t z_uindex; /**< current initial allocation index */
rt_uint32_t z_chunksize; /**< chunk size for validation */
rt_uint32_t z_zoneindex; /**< zone index */
struct rt_slab_chunk *z_freechunk; /**< free chunk list */
};
/*
* Chunk structure for free elements
*/
struct rt_slab_chunk
{
struct rt_slab_chunk *c_next;
};
struct rt_slab_memusage
{
rt_uint32_t type: 2 ; /**< page type */
rt_uint32_t size: 30; /**< pages allocated or offset from zone */
};
/*
* slab page allocator
*/
struct rt_slab_page
{
struct rt_slab_page *next; /**< next valid page */
rt_size_t page; /**< number of page */
/* dummy */
char dummy[RT_MM_PAGE_SIZE - (sizeof(struct rt_slab_page *) + sizeof(rt_size_t))];
};
#define RT_SLAB_NZONES 72 /* number of zones */
/*
* slab object
*/
struct rt_slab
{
struct rt_memory parent; /**< inherit from rt_memory */
rt_uintptr_t heap_start; /**< memory start address */
rt_uintptr_t heap_end; /**< memory end address */
struct rt_slab_memusage *memusage;
struct rt_slab_zone *zone_array[RT_SLAB_NZONES]; /* linked list of zones NFree > 0 */
struct rt_slab_zone *zone_free; /* whole zones that have become free */
rt_uint32_t zone_free_cnt;
rt_uint32_t zone_size;
rt_uint32_t zone_limit;
rt_uint32_t zone_page_cnt;
struct rt_slab_page *page_list;
};
/**
* @brief Alloc memory size by page.
*
* @param m the slab memory management object.
*
* @param npages the number of pages.
*/
void *rt_slab_page_alloc(rt_slab_t m, rt_size_t npages)
{
struct rt_slab_page *b, *n;
struct rt_slab_page **prev;
struct rt_slab *slab = (struct rt_slab *)m;
if (npages == 0)
return RT_NULL;
for (prev = &slab->page_list; (b = *prev) != RT_NULL; prev = &(b->next))
{
if (b->page > npages)
{
/* splite pages */
n = b + npages;
n->next = b->next;
n->page = b->page - npages;
*prev = n;
break;
}
if (b->page == npages)
{
/* this node fit, remove this node */
*prev = b->next;
break;
}
}
return b;
}
/**
* @brief Free memory by page.
*
* @param m the slab memory management object.
*
* @param addr is the head address of first page.
*
* @param npages is the number of pages.
*/
void rt_slab_page_free(rt_slab_t m, void *addr, rt_size_t npages)
{
struct rt_slab_page *b, *n;
struct rt_slab_page **prev;
struct rt_slab *slab = (struct rt_slab *)m;
RT_ASSERT(addr != RT_NULL);
RT_ASSERT((rt_uintptr_t)addr % RT_MM_PAGE_SIZE == 0);
RT_ASSERT(npages != 0);
n = (struct rt_slab_page *)addr;
for (prev = &slab->page_list; (b = *prev) != RT_NULL; prev = &(b->next))
{
RT_ASSERT(b->page > 0);
RT_ASSERT(b > n || b + b->page <= n);
if (b + b->page == n)
{
if (b + (b->page += npages) == b->next)
{
b->page += b->next->page;
b->next = b->next->next;
}
return;
}
if (b == n + npages)
{
n->page = b->page + npages;
n->next = b->next;
*prev = n;
return;
}
if (b > n + npages)
break;
}
n->page = npages;
n->next = b;
*prev = n;
}
/*
* Initialize the page allocator
*/
static void rt_slab_page_init(struct rt_slab *slab, void *addr, rt_size_t npages)
{
RT_ASSERT(addr != RT_NULL);
RT_ASSERT(npages != 0);
slab->page_list = RT_NULL;
rt_slab_page_free((rt_slab_t)(&slab->parent), addr, npages);
}
/**
* @brief This function will init slab memory management algorithm
*
* @param name is the name of the slab memory management object.
*
* @param begin_addr the beginning address of system page.
*
* @param size is the size of the memory.
*
* @return Return a pointer to the slab memory object.
*/
rt_slab_t rt_slab_init(const char *name, void *begin_addr, rt_size_t size)
{
rt_uint32_t limsize, npages;
rt_uintptr_t start_addr, begin_align, end_align;
struct rt_slab *slab;
slab = (struct rt_slab *)RT_ALIGN((rt_uintptr_t)begin_addr, RT_ALIGN_SIZE);
start_addr = (rt_uintptr_t)slab + sizeof(*slab);
/* align begin and end addr to page */
begin_align = RT_ALIGN((rt_uintptr_t)start_addr, RT_MM_PAGE_SIZE);
end_align = RT_ALIGN_DOWN((rt_uintptr_t)begin_addr + size, RT_MM_PAGE_SIZE);
if (begin_align >= end_align)
{
rt_kprintf("slab init errr. wrong address[0x%x - 0x%x]\n",
(rt_uintptr_t)begin_addr, (rt_uintptr_t)begin_addr + size);
return RT_NULL;
}
limsize = end_align - begin_align;
npages = limsize / RT_MM_PAGE_SIZE;
LOG_D("heap[0x%x - 0x%x], size 0x%x, 0x%x pages",
begin_align, end_align, limsize, npages);
rt_memset(slab, 0, sizeof(*slab));
/* initialize slab memory object */
rt_object_init(&(slab->parent.parent), RT_Object_Class_Memory, name);
slab->parent.algorithm = "slab";
slab->parent.address = begin_align;
slab->parent.total = limsize;
slab->parent.used = 0;
slab->parent.max = 0;
slab->heap_start = begin_align;
slab->heap_end = end_align;
/* init pages */
rt_slab_page_init(slab, (void *)slab->heap_start, npages);
/* calculate zone size */
slab->zone_size = ZALLOC_MIN_ZONE_SIZE;
while (slab->zone_size < ZALLOC_MAX_ZONE_SIZE && (slab->zone_size << 1) < (limsize / 1024))
slab->zone_size <<= 1;
slab->zone_limit = slab->zone_size / 4;
if (slab->zone_limit > ZALLOC_ZONE_LIMIT)
slab->zone_limit = ZALLOC_ZONE_LIMIT;
slab->zone_page_cnt = slab->zone_size / RT_MM_PAGE_SIZE;
LOG_D("zone size 0x%x, zone page count 0x%x",
slab->zone_size, slab->zone_page_cnt);
/* allocate slab->memusage array */
limsize = npages * sizeof(struct rt_slab_memusage);
limsize = RT_ALIGN(limsize, RT_MM_PAGE_SIZE);
slab->memusage = rt_slab_page_alloc((rt_slab_t)(&slab->parent), limsize / RT_MM_PAGE_SIZE);
LOG_D("slab->memusage 0x%x, size 0x%x",
(rt_uintptr_t)slab->memusage, limsize);
return &slab->parent;
}
RTM_EXPORT(rt_slab_init);
/**
* @brief This function will remove a slab object from the system.
*
* @param m the slab memory management object.
*
* @return RT_EOK
*/
rt_err_t rt_slab_detach(rt_slab_t m)
{
struct rt_slab *slab = (struct rt_slab *)m;
RT_ASSERT(slab != RT_NULL);
RT_ASSERT(rt_object_get_type(&slab->parent.parent) == RT_Object_Class_Memory);
RT_ASSERT(rt_object_is_systemobject(&slab->parent.parent));
rt_object_detach(&(slab->parent.parent));
return RT_EOK;
}
RTM_EXPORT(rt_slab_detach);
/*
* Calculate the zone index for the allocation request size and set the
* allocation request size to that particular zone's chunk size.
*/
rt_inline int zoneindex(rt_size_t *bytes)
{
/* unsigned for shift opt */
rt_uintptr_t n = (rt_uintptr_t)(*bytes);
if (n < 128)
{
*bytes = n = (n + 7) & ~7;
/* 8 byte chunks, 16 zones */
return (n / 8 - 1);
}
if (n < 256)
{
*bytes = n = (n + 15) & ~15;
return (n / 16 + 7);
}
if (n < 8192)
{
if (n < 512)
{
*bytes = n = (n + 31) & ~31;
return (n / 32 + 15);
}
if (n < 1024)
{
*bytes = n = (n + 63) & ~63;
return (n / 64 + 23);
}
if (n < 2048)
{
*bytes = n = (n + 127) & ~127;
return (n / 128 + 31);
}
if (n < 4096)
{
*bytes = n = (n + 255) & ~255;
return (n / 256 + 39);
}
*bytes = n = (n + 511) & ~511;
return (n / 512 + 47);
}
if (n < 16384)
{
*bytes = n = (n + 1023) & ~1023;
return (n / 1024 + 55);
}
rt_kprintf("Unexpected byte count %d", n);
return 0;
}
/**
* @addtogroup MM
*/
/**@{*/
/**
* @brief This function will allocate a block from slab object.
*
* @note the RT_NULL is returned if
* - the nbytes is less than zero.
* - there is no nbytes sized memory valid in system.
*
* @param m the slab memory management object.
*
* @param size is the size of memory to be allocated.
*
* @return the allocated memory.
*/
void *rt_slab_alloc(rt_slab_t m, rt_size_t size)
{
struct rt_slab_zone *z;
rt_int32_t zi;
struct rt_slab_chunk *chunk;
struct rt_slab_memusage *kup;
struct rt_slab *slab = (struct rt_slab *)m;
/* zero size, return RT_NULL */
if (size == 0)
return RT_NULL;
/*
* Handle large allocations directly. There should not be very many of
* these so performance is not a big issue.
*/
if (size >= slab->zone_limit)
{
size = RT_ALIGN(size, RT_MM_PAGE_SIZE);
chunk = rt_slab_page_alloc(m, size >> RT_MM_PAGE_BITS);
if (chunk == RT_NULL)
return RT_NULL;
/* set kup */
kup = btokup(chunk);
kup->type = PAGE_TYPE_LARGE;
kup->size = size >> RT_MM_PAGE_BITS;
LOG_D("alloc a large memory 0x%x, page cnt %d, kup %d",
size,
size >> RT_MM_PAGE_BITS,
((rt_uintptr_t)chunk - slab->heap_start) >> RT_MM_PAGE_BITS);
/* mem stat */
slab->parent.used += size;
if (slab->parent.used > slab->parent.max)
slab->parent.max = slab->parent.used;
return chunk;
}
/*
* Attempt to allocate out of an existing zone. First try the free list,
* then allocate out of unallocated space. If we find a good zone move
* it to the head of the list so later allocations find it quickly
* (we might have thousands of zones in the list).
*
* Note: zoneindex() will panic of size is too large.
*/
zi = zoneindex(&size);
RT_ASSERT(zi < RT_SLAB_NZONES);
LOG_D("try to alloc 0x%x on zone: %d", size, zi);
if ((z = slab->zone_array[zi]) != RT_NULL)
{
RT_ASSERT(z->z_nfree > 0);
/* Remove us from the zone_array[] when we become full */
if (--z->z_nfree == 0)
{
slab->zone_array[zi] = z->z_next;
z->z_next = RT_NULL;
}
/*
* No chunks are available but nfree said we had some memory, so
* it must be available in the never-before-used-memory area
* governed by uindex. The consequences are very serious if our zone
* got corrupted so we use an explicit rt_kprintf rather then a KASSERT.
*/
if (z->z_uindex + 1 != z->z_nmax)
{
z->z_uindex = z->z_uindex + 1;
chunk = (struct rt_slab_chunk *)(z->z_baseptr + z->z_uindex * size);
}
else
{
/* find on free chunk list */
chunk = z->z_freechunk;
/* remove this chunk from list */
z->z_freechunk = z->z_freechunk->c_next;
}
/* mem stats */
slab->parent.used += z->z_chunksize;
if (slab->parent.used > slab->parent.max)
slab->parent.max = slab->parent.used;
return chunk;
}
/*
* If all zones are exhausted we need to allocate a new zone for this
* index.
*
* At least one subsystem, the tty code (see CROUND) expects power-of-2
* allocations to be power-of-2 aligned. We maintain compatibility by
* adjusting the base offset below.
*/
{
rt_uint32_t off;
if ((z = slab->zone_free) != RT_NULL)
{
/* remove zone from free zone list */
slab->zone_free = z->z_next;
-- slab->zone_free_cnt;
}
else
{
/* allocate a zone from page */
z = rt_slab_page_alloc(m, slab->zone_size / RT_MM_PAGE_SIZE);
if (z == RT_NULL)
{
return RT_NULL;
}
LOG_D("alloc a new zone: 0x%x",
(rt_uintptr_t)z);
/* set message usage */
for (off = 0, kup = btokup(z); off < slab->zone_page_cnt; off ++)
{
kup->type = PAGE_TYPE_SMALL;
kup->size = off;
kup ++;
}
}
/* clear to zero */
rt_memset(z, 0, sizeof(struct rt_slab_zone));
/* offset of slab zone struct in zone */
off = sizeof(struct rt_slab_zone);
/*
* Guarentee power-of-2 alignment for power-of-2-sized chunks.
* Otherwise just 8-byte align the data.
*/
if ((size | (size - 1)) + 1 == (size << 1))
off = (off + size - 1) & ~(size - 1);
else
off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK;
z->z_magic = ZALLOC_SLAB_MAGIC;
z->z_zoneindex = zi;
z->z_nmax = (slab->zone_size - off) / size;
z->z_nfree = z->z_nmax - 1;
z->z_baseptr = (rt_uint8_t *)z + off;
z->z_uindex = 0;
z->z_chunksize = size;
chunk = (struct rt_slab_chunk *)(z->z_baseptr + z->z_uindex * size);
/* link to zone array */
z->z_next = slab->zone_array[zi];
slab->zone_array[zi] = z;
/* mem stats */
slab->parent.used += z->z_chunksize;
if (slab->parent.used > slab->parent.max)
slab->parent.max = slab->parent.used;
}
return chunk;
}
RTM_EXPORT(rt_slab_alloc);
/**
* @brief This function will change the size of previously allocated memory block.
*
* @param m the slab memory management object.
*
* @param ptr is the previously allocated memory block.
*
* @param size is the new size of memory block.
*
* @return the allocated memory.
*/
void *rt_slab_realloc(rt_slab_t m, void *ptr, rt_size_t size)
{
void *nptr;
struct rt_slab_zone *z;
struct rt_slab_memusage *kup;
struct rt_slab *slab = (struct rt_slab *)m;
if (ptr == RT_NULL)
return rt_slab_alloc(m, size);
if (size == 0)
{
rt_slab_free(m, ptr);
return RT_NULL;
}
/*
* Get the original allocation's zone. If the new request winds up
* using the same chunk size we do not have to do anything.
*/
kup = btokup((rt_uintptr_t)ptr & ~RT_MM_PAGE_MASK);
if (kup->type == PAGE_TYPE_LARGE)
{
rt_size_t osize;
osize = kup->size << RT_MM_PAGE_BITS;
if ((nptr = rt_slab_alloc(m, size)) == RT_NULL)
return RT_NULL;
rt_memcpy(nptr, ptr, size > osize ? osize : size);
rt_slab_free(m, ptr);
return nptr;
}
else if (kup->type == PAGE_TYPE_SMALL)
{
z = (struct rt_slab_zone *)(((rt_uintptr_t)ptr & ~RT_MM_PAGE_MASK) -
kup->size * RT_MM_PAGE_SIZE);
RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
zoneindex(&size);
if (z->z_chunksize == size)
return (ptr); /* same chunk */
/*
* Allocate memory for the new request size. Note that zoneindex has
* already adjusted the request size to the appropriate chunk size, which
* should optimize our bcopy(). Then copy and return the new pointer.
*/
if ((nptr = rt_slab_alloc(m, size)) == RT_NULL)
return RT_NULL;
rt_memcpy(nptr, ptr, size > z->z_chunksize ? z->z_chunksize : size);
rt_slab_free(m, ptr);
return nptr;
}
return RT_NULL;
}
RTM_EXPORT(rt_slab_realloc);
/**
* @brief This function will release the previous allocated memory block by rt_slab_alloc.
*
* @note The released memory block is taken back to system heap.
*
* @param m the slab memory management object.
* @param ptr is the address of memory which will be released
*/
void rt_slab_free(rt_slab_t m, void *ptr)
{
struct rt_slab_zone *z;
struct rt_slab_chunk *chunk;
struct rt_slab_memusage *kup;
struct rt_slab *slab = (struct rt_slab *)m;
/* free a RT_NULL pointer */
if (ptr == RT_NULL)
return ;
/* get memory usage */
#if (DBG_LVL == DBG_LOG)
{
rt_uintptr_t addr = ((rt_uintptr_t)ptr & ~RT_MM_PAGE_MASK);
LOG_D("free a memory 0x%x and align to 0x%x, kup index %d",
(rt_uintptr_t)ptr,
(rt_uintptr_t)addr,
((rt_uintptr_t)(addr) - slab->heap_start) >> RT_MM_PAGE_BITS);
}
#endif /* DBG_LVL == DBG_LOG */
kup = btokup((rt_uintptr_t)ptr & ~RT_MM_PAGE_MASK);
/* release large allocation */
if (kup->type == PAGE_TYPE_LARGE)
{
rt_uintptr_t size;
/* clear page counter */
size = kup->size;
kup->size = 0;
/* mem stats */
slab->parent.used -= size * RT_MM_PAGE_SIZE;
LOG_D("free large memory block 0x%x, page count %d",
(rt_uintptr_t)ptr, size);
/* free this page */
rt_slab_page_free(m, ptr, size);
return;
}
/* zone case. get out zone. */
z = (struct rt_slab_zone *)(((rt_uintptr_t)ptr & ~RT_MM_PAGE_MASK) -
kup->size * RT_MM_PAGE_SIZE);
RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC);
chunk = (struct rt_slab_chunk *)ptr;
chunk->c_next = z->z_freechunk;
z->z_freechunk = chunk;
/* mem stats */
slab->parent.used -= z->z_chunksize;
/*
* Bump the number of free chunks. If it becomes non-zero the zone
* must be added back onto the appropriate list.
*/
if (z->z_nfree++ == 0)
{
z->z_next = slab->zone_array[z->z_zoneindex];
slab->zone_array[z->z_zoneindex] = z;
}
/*
* If the zone becomes totally free, and there are other zones we
* can allocate from, move this zone to the FreeZones list. Since
* this code can be called from an IPI callback, do *NOT* try to mess
* with kernel_map here. Hysteresis will be performed at malloc() time.
*/
if (z->z_nfree == z->z_nmax &&
(z->z_next || slab->zone_array[z->z_zoneindex] != z))
{
struct rt_slab_zone **pz;
LOG_D("free zone %#x, zoneindex %d",
(rt_uintptr_t)z, z->z_zoneindex);
/* remove zone from zone array list */
for (pz = &slab->zone_array[z->z_zoneindex]; z != *pz; pz = &(*pz)->z_next)
;
*pz = z->z_next;
/* reset zone */
z->z_magic = RT_UINT32_MAX;
/* insert to free zone list */
z->z_next = slab->zone_free;
slab->zone_free = z;
++ slab->zone_free_cnt;
/* release zone to page allocator */
if (slab->zone_free_cnt > ZONE_RELEASE_THRESH)
{
register rt_uint32_t i;
z = slab->zone_free;
slab->zone_free = z->z_next;
-- slab->zone_free_cnt;
/* set message usage */
for (i = 0, kup = btokup(z); i < slab->zone_page_cnt; i ++)
{
kup->type = PAGE_TYPE_FREE;
kup->size = 0;
kup ++;
}
/* release pages */
rt_slab_page_free(m, z, slab->zone_size / RT_MM_PAGE_SIZE);
return;
}
}
}
RTM_EXPORT(rt_slab_free);
#endif /* RT_USING_SLAB */