rt-thread-official/bsp/hpmicro/libraries/drivers/drv_i2c.c

538 lines
17 KiB
C

/*
* Copyright (c) 2022-2023 HPMicro
*
* SPDX-License-Identifier: BSD-3-Clause
*
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <rtdbg.h>
#ifdef BSP_USING_I2C
#include "drv_i2c.h"
#include "hpm_i2c_drv.h"
#include "hpm_dma_mgr.h"
#include "hpm_dmamux_drv.h"
#include "hpm_l1c_drv.h"
#include "board.h"
#ifdef RT_USING_I2C
#define HPM_RTT_DRV_RETRY_TIMEOUT (1000000)
#ifndef HPM_I2C_DRV_DEFAULT_RETRY_COUNT
#define HPM_I2C_DRV_DEFAULT_RETRY_COUNT (5000U)
#endif
struct hpm_i2c
{
struct rt_i2c_bus_device bus;
I2C_Type *base;
clock_name_t clk_name;
char *bus_name;
rt_sem_t xfer_sem;
rt_bool_t enable_dma;
rt_uint8_t dmamux;
dma_resource_t dma;
rt_uint8_t i2c_irq;
rt_uint8_t is_read;
};
static struct hpm_i2c hpm_i2cs[] =
{
#if defined(BSP_USING_I2C0)
{
.base = HPM_I2C0,
.bus_name = "i2c0",
.clk_name = clock_i2c0,
#if defined(BSP_I2C0_USING_DMA)
.enable_dma = RT_TRUE,
#endif
.dmamux = HPM_DMA_SRC_I2C0,
.i2c_irq = IRQn_I2C0,
},
#endif
#if defined(BSP_USING_I2C1)
{
.base = HPM_I2C1,
.bus_name = "i2c1",
.clk_name = clock_i2c1,
#if defined(BSP_I2C1_USING_DMA)
.enable_dma = RT_TRUE,
#endif
.dmamux = HPM_DMA_SRC_I2C1,
.i2c_irq = IRQn_I2C1,
},
#endif
#if defined(BSP_USING_I2C2)
{
.base = HPM_I2C2,
.bus_name = "i2c2",
.clk_name = clock_i2c2,
#if defined(BSP_I2C2_USING_DMA)
.enable_dma = RT_TRUE,
#endif
.dmamux = HPM_DMA_SRC_I2C2,
.i2c_irq = IRQn_I2C2,
},
#endif
#if defined(BSP_USING_I2C3)
{
.base = HPM_I2C3,
.bus_name = "i2c3",
.clk_name = clock_i2c3,
#if defined(BSP_I2C3_USING_DMA)
.enable_dma = RT_TRUE,
#endif
.dmamux = HPM_DMA_SRC_I2C3,
.i2c_irq = IRQn_I2C3,
},
#endif
};
static hpm_stat_t i2c_transfer(I2C_Type *ptr, const uint16_t device_address,
uint8_t *buf, const uint32_t size, uint16_t flags);
static rt_ssize_t hpm_i2c_master_transfer(struct rt_i2c_bus_device *bus, struct rt_i2c_msg msgs[], rt_uint32_t num);
static hpm_stat_t i2c_tx_trigger_dma(DMA_Type *dma_ptr, uint8_t ch_num, I2C_Type *i2c_ptr, uint32_t src, uint32_t size);
static hpm_stat_t i2c_rx_trigger_dma(DMA_Type *dma_ptr, uint8_t ch_num, I2C_Type *i2c_ptr, uint32_t dst, uint32_t size);
struct rt_i2c_bus_device_ops hpm_i2c_ops =
{
hpm_i2c_master_transfer,
RT_NULL,
RT_NULL
};
static inline void handle_i2c_isr(I2C_Type *ptr)
{
volatile uint32_t irq_status;
RT_ASSERT(ptr != RT_NULL);
rt_base_t level;
level = rt_hw_interrupt_disable();
irq_status = i2c_get_status(ptr);
if (irq_status & I2C_EVENT_TRANSACTION_COMPLETE)
{
for (uint32_t i = 0; i < sizeof(hpm_i2cs) / sizeof(hpm_i2cs[0]); i++)
{
if (hpm_i2cs[i].base == ptr)
{
rt_sem_release(hpm_i2cs[i].xfer_sem);
}
}
i2c_disable_irq(ptr, I2C_EVENT_TRANSACTION_COMPLETE);
i2c_clear_status(ptr, I2C_EVENT_TRANSACTION_COMPLETE);
}
rt_hw_interrupt_enable(level);
}
#if defined(BSP_USING_I2C0)
void i2c0_isr(void)
{
handle_i2c_isr(HPM_I2C0);
}
SDK_DECLARE_EXT_ISR_M(IRQn_I2C0, i2c0_isr);
#endif
#if defined(BSP_USING_I2C1)
void i2c1_isr(void)
{
handle_i2c_isr(HPM_I2C1);
}
SDK_DECLARE_EXT_ISR_M(IRQn_I2C1, i2c1_isr);
#endif
#if defined(BSP_USING_I2C2)
void i2c2_isr(void)
{
handle_i2c_isr(HPM_I2C2);
}
SDK_DECLARE_EXT_ISR_M(IRQn_I2C2, i2c2_isr);
#endif
#if defined(BSP_USING_I2C3)
void i2c3_isr(void)
{
handle_i2c_isr(HPM_I2C3);
}
SDK_DECLARE_EXT_ISR_M(IRQn_I2C3, i2c3_isr);
#endif
static hpm_stat_t i2c_transfer(I2C_Type *ptr, const uint16_t device_address,
uint8_t *buf, const uint32_t size, uint16_t flags)
{
uint32_t ctrl = 0;
uint32_t retry = 0;
uint32_t left = 0;
if (((size == 0) || (size > I2C_SOC_TRANSFER_COUNT_MAX))) {
return status_invalid_argument;
}
/* W1C, clear CMPL bit to avoid blocking the transmission */
ptr->STATUS = I2C_STATUS_CMPL_MASK;
ptr->CMD = I2C_CMD_CLEAR_FIFO;
ptr->ADDR = I2C_ADDR_ADDR_SET(device_address);
if (flags & RT_I2C_RD) {
ctrl |= I2C_CTRL_DIR_SET(I2C_DIR_MASTER_READ);
} else {
ctrl |= I2C_CTRL_DIR_SET(I2C_DIR_MASTER_WRITE);/* is write flag */
}
/* no start signal send*/
if (flags & RT_I2C_NO_START) {
ctrl |= I2C_CTRL_PHASE_START_SET(false) | I2C_CTRL_PHASE_STOP_SET(true) \
| I2C_CTRL_PHASE_ADDR_SET(true);
} else if (flags & RT_I2C_NO_STOP) { /* no end signal send*/
ctrl |= I2C_CTRL_PHASE_START_SET(true) | I2C_CTRL_PHASE_STOP_SET(false) \
| I2C_CTRL_PHASE_ADDR_SET(true);
} else {
ctrl |= I2C_CTRL_PHASE_START_SET(true) | I2C_CTRL_PHASE_STOP_SET(true) \
| I2C_CTRL_PHASE_ADDR_SET(true);
}
ptr->CTRL = ctrl | I2C_CTRL_PHASE_DATA_SET(true) \
| I2C_CTRL_DATACNT_HIGH_SET(I2C_DATACNT_MAP(size) >> 8U) \
| I2C_CTRL_DATACNT_SET(I2C_DATACNT_MAP(size));
/* disable auto ack */
ptr->INTEN |= I2C_EVENT_BYTE_RECEIVED;
ptr->CMD = I2C_CMD_ISSUE_DATA_TRANSMISSION;
retry = 0;
left = size;
if (flags & RT_I2C_RD) {
while (left) {
if (!(ptr->STATUS & I2C_STATUS_FIFOEMPTY_MASK)) {
*(buf++) = ptr->DATA;
left--;
if (left == 0) {
ptr->CMD = I2C_CMD_NACK;
} else {
/* ACK is sent when reading */
if (!(flags & RT_I2C_NO_READ_ACK)) {
ptr->CMD = I2C_CMD_ACK;
}
}
retry = 0;
} else {
if (retry > HPM_I2C_DRV_DEFAULT_RETRY_COUNT) {
break;
}
retry++;
}
}
if (retry > HPM_I2C_DRV_DEFAULT_RETRY_COUNT) {
return status_timeout;
}
} else {
while (left) {
if (!(ptr->STATUS & I2C_STATUS_FIFOFULL_MASK)) {
ptr->DATA = *(buf++);
left--;
retry = 0;
} else {
if (retry > HPM_I2C_DRV_DEFAULT_RETRY_COUNT) {
break;
}
retry++;
}
}
if (retry > HPM_I2C_DRV_DEFAULT_RETRY_COUNT) {
return status_timeout;
}
}
retry = 0;
while (!(ptr->STATUS & I2C_STATUS_CMPL_MASK)) {
if (retry > HPM_I2C_DRV_DEFAULT_RETRY_COUNT) {
break;
}
retry++;
};
if (retry > HPM_I2C_DRV_DEFAULT_RETRY_COUNT) {
return status_timeout;
}
if (i2c_get_data_count(ptr) && (size)) {
return status_i2c_transmit_not_completed;
}
}
static hpm_stat_t i2c_tx_trigger_dma(DMA_Type *dma_ptr, uint8_t ch_num, I2C_Type *i2c_ptr, uint32_t src, uint32_t size)
{
dma_handshake_config_t config;
dma_default_handshake_config(dma_ptr, &config);
config.ch_index = ch_num;
config.dst = (uint32_t)&i2c_ptr->DATA;
config.dst_fixed = true;
config.src = src;
config.src_fixed = false;
config.data_width = DMA_TRANSFER_WIDTH_BYTE;
config.size_in_byte = size;
return dma_setup_handshake(dma_ptr, &config, true);
}
static hpm_stat_t i2c_rx_trigger_dma(DMA_Type *dma_ptr, uint8_t ch_num, I2C_Type *i2c_ptr, uint32_t dst, uint32_t size)
{
dma_handshake_config_t config;
dma_default_handshake_config(dma_ptr, &config);
config.ch_index = ch_num;
config.dst = dst;
config.dst_fixed = false;
config.src = (uint32_t)&i2c_ptr->DATA;
config.src_fixed = true;
config.data_width = DMA_TRANSFER_WIDTH_BYTE;
config.size_in_byte = size;
return dma_setup_handshake(dma_ptr, &config, true);
}
void i2c_dma_channel_tc_callback(DMA_Type *ptr, uint32_t channel, void *user_data)
{
struct hpm_i2c *i2c = (struct hpm_i2c *)user_data;
RT_ASSERT(i2c != RT_NULL);
RT_ASSERT(ptr != RT_NULL);
rt_base_t level;
level = rt_hw_interrupt_disable();
if ((i2c->dma.base == ptr) && i2c->dma.channel == channel)
{
dma_mgr_disable_chn_irq(&i2c->dma, DMA_MGR_INTERRUPT_MASK_TC);
if (i2c->is_read == true)
{
rt_sem_release(i2c->xfer_sem);
}
}
rt_hw_interrupt_enable(level);
}
static rt_ssize_t hpm_i2c_master_transfer(struct rt_i2c_bus_device *bus, struct rt_i2c_msg msgs[], rt_uint32_t num)
{
RT_ASSERT(bus != RT_NULL);
RT_ASSERT(msgs != RT_NULL);
struct rt_i2c_msg *msg;
struct hpm_i2c *i2c_info = (struct hpm_i2c *)bus;
hpm_stat_t i2c_stat = status_success;
rt_size_t ret = 0;
rt_uint32_t i;
rt_uint8_t *raw_alloc_buf = RT_NULL;
rt_uint8_t *aligned_buf = RT_NULL;
rt_uint8_t *dummy_buf = RT_NULL;
rt_uint32_t aligned_len = 0;
rt_uint32_t remaining_size = 0;
rt_uint32_t transfer_len;
for (i = 0; i < num; i++)
{
msg = &msgs[i];
remaining_size = msg->len;
if ((msg->len > 0) && (i2c_info->enable_dma))
{
aligned_len = (msg->len + HPM_L1C_CACHELINE_SIZE - 1U) & ~(HPM_L1C_CACHELINE_SIZE - 1U);
if (l1c_dc_is_enabled())
{
if (msg->flags & RT_I2C_RD)
{
/* The allocated pointer is always RT_ALIGN_SIZE aligned */
raw_alloc_buf = (uint8_t*)rt_malloc(aligned_len + HPM_L1C_CACHELINE_SIZE - RT_ALIGN_SIZE);
RT_ASSERT(raw_alloc_buf != RT_NULL);
}
else
{
aligned_buf = (uint8_t*)HPM_L1C_CACHELINE_ALIGN_UP((uint32_t)raw_alloc_buf);
/* The allocated pointer is always RT_ALIGN_SIZE aligned */
raw_alloc_buf = (uint8_t*)rt_malloc(aligned_len + HPM_L1C_CACHELINE_SIZE - RT_ALIGN_SIZE);
RT_ASSERT(raw_alloc_buf != RT_NULL);
aligned_buf = (uint8_t*)HPM_L1C_CACHELINE_ALIGN_UP((uint32_t)raw_alloc_buf);
rt_memcpy(aligned_buf, msg->buf, msg->len);
l1c_dc_flush((uint32_t)aligned_buf, aligned_len);
}
}
}
else
{
aligned_buf = (uint8_t*) msg->buf;
}
if (msg->flags & RT_I2C_ADDR_10BIT)
{
i2c_enable_10bit_address_mode(i2c_info->base, true);
}
else
{
i2c_enable_10bit_address_mode(i2c_info->base, false);
}
dummy_buf = aligned_buf;
if (msg->flags & RT_I2C_RD)
{
/* maybe probe i2c device */
if (msg->len == 0)
{
i2c_stat = i2c_master_read(i2c_info->base, msg->addr, dummy_buf, remaining_size);
}
else
{
while (remaining_size)
{
transfer_len = MIN(I2C_SOC_TRANSFER_COUNT_MAX, remaining_size);
if ((i2c_info->enable_dma))
{
/* sequential transfer now is not support dma */
if ((msg->flags & RT_I2C_NO_START) || (msg->flags & RT_I2C_NO_STOP) ||
(msg->flags & RT_I2C_NO_READ_ACK) || (msg->flags & RT_I2C_NO_READ_ACK) ) {
i2c_stat = status_invalid_argument;
break;
}
i2c_info->is_read = true;
i2c_enable_irq(i2c_info->base, I2C_EVENT_TRANSACTION_COMPLETE);
dmamux_config(HPM_DMAMUX, i2c_info->dma.channel, i2c_info->dmamux, true);
i2c_stat = i2c_rx_trigger_dma(i2c_info->dma.base, i2c_info->dma.channel, i2c_info->base,
core_local_mem_to_sys_address(0, (uint32_t) dummy_buf), transfer_len);
if (i2c_stat != status_success)
{
break;
}
i2c_stat = i2c_master_start_dma_read(i2c_info->base, msg->addr, msg->len);
if (i2c_stat != status_success)
{
break;
}
rt_sem_take(i2c_info->xfer_sem, RT_WAITING_FOREVER);
}
else
{
i2c_transfer(i2c_info->base, msg->addr, dummy_buf, transfer_len, msg->flags);
}
dummy_buf += transfer_len;
remaining_size -= transfer_len;
}
if (raw_alloc_buf != RT_NULL)
{
l1c_dc_invalidate((uint32_t) aligned_buf, aligned_len);
rt_memcpy(msg->buf, aligned_buf, msg->len);
rt_free(raw_alloc_buf);
raw_alloc_buf = RT_NULL;
aligned_buf = RT_NULL;
}
}
}
else
{
/* maybe probe i2c device */
if (msg->len == 0)
{
i2c_stat = i2c_master_write(i2c_info->base, msg->addr, dummy_buf, remaining_size);
}
else
{
while (remaining_size)
{
transfer_len = MIN(I2C_SOC_TRANSFER_COUNT_MAX, remaining_size);
if (i2c_info->enable_dma)
{
/* sequential transfer now is not support dma */
if ((msg->flags & RT_I2C_NO_START) || (msg->flags & RT_I2C_NO_STOP) ||
(msg->flags & RT_I2C_NO_READ_ACK) || (msg->flags & RT_I2C_NO_READ_ACK) ) {
i2c_stat = status_invalid_argument;
break;
}
i2c_info->is_read = false;
i2c_enable_irq(i2c_info->base, I2C_EVENT_TRANSACTION_COMPLETE);
dmamux_config(HPM_DMAMUX, i2c_info->dma.channel, i2c_info->dmamux, true);
i2c_stat = i2c_tx_trigger_dma(i2c_info->dma.base, i2c_info->dma.channel, i2c_info->base,
core_local_mem_to_sys_address(0, (uint32_t) dummy_buf), transfer_len);
if (i2c_stat != status_success)
{
break;
}
i2c_stat = i2c_master_start_dma_write(i2c_info->base, msg->addr, msg->len);
if (i2c_stat != status_success)
{
break;
}
rt_sem_take(i2c_info->xfer_sem, RT_WAITING_FOREVER);
}
else
{
i2c_transfer(i2c_info->base, msg->addr, dummy_buf, transfer_len, msg->flags);
}
dummy_buf += transfer_len;
remaining_size -= transfer_len;
}
if (raw_alloc_buf != RT_NULL)
{
rt_free(raw_alloc_buf);
raw_alloc_buf = RT_NULL;
aligned_buf = RT_NULL;
}
}
}
if (i2c_stat != status_success)
{
break;
}
}
if (i2c_stat != status_success)
{
return ret;
}
ret = i;
return ret;
}
int rt_hw_i2c_init(void)
{
rt_err_t ret = RT_EOK;
hpm_stat_t stat;
i2c_config_t config;
rt_uint32_t freq;
char sem_name[RT_NAME_MAX];
for (uint32_t i = 0; i < sizeof(hpm_i2cs) / sizeof(hpm_i2cs[0]); i++) {
init_i2c_pins(hpm_i2cs[i].base);
clock_add_to_group(hpm_i2cs[i].clk_name, 0);
clock_set_source_divider(hpm_i2cs[i].clk_name, clk_src_osc24m, 1U);
config.i2c_mode = i2c_mode_normal;
config.is_10bit_addressing = false;
freq = clock_get_frequency(hpm_i2cs[i].clk_name);
stat = i2c_init_master(hpm_i2cs[i].base, freq, &config);
if (stat != status_success) {
LOG_E("rt i2c device %s init failed", hpm_i2cs[i].bus_name);
}
hpm_i2cs[i].bus.ops = &hpm_i2c_ops;
if (hpm_i2cs[i].enable_dma)
{
stat = dma_mgr_request_resource(&hpm_i2cs[i].dma);
if (stat != status_success)
{
return -RT_ERROR;
}
dma_mgr_install_chn_tc_callback(&hpm_i2cs[i].dma, i2c_dma_channel_tc_callback, (void *)&hpm_i2cs[i]);
dma_mgr_enable_dma_irq_with_priority(&hpm_i2cs[i].dma, 1);
intc_m_enable_irq_with_priority(hpm_i2cs[i].i2c_irq, 2);
i2c_disable_irq(hpm_i2cs[i].base, I2C_EVENT_TRANSACTION_COMPLETE);
rt_sprintf(sem_name, "%s_s", hpm_i2cs[i].bus_name);
hpm_i2cs[i].xfer_sem = rt_sem_create(sem_name, 0, RT_IPC_FLAG_PRIO);
if (hpm_i2cs[i].xfer_sem == RT_NULL)
{
ret = RT_ENOMEM;
break;
}
}
ret = rt_i2c_bus_device_register(&hpm_i2cs[i].bus, hpm_i2cs[i].bus_name);
if (ret != RT_EOK) {
LOG_E("rt i2c device %s register failed, status=%d\n", hpm_i2cs[i].bus_name, ret);
}
}
return ret;
}
INIT_DEVICE_EXPORT(rt_hw_i2c_init);
#endif /* RT_USING_I2C */
#endif /*BSP_USING_I2C*/