4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-29 05:50:23 +08:00

192 lines
5.6 KiB
C

/*****************************************************************************
*
* \file
*
* \brief ADC driver for AVR UC3.
*
* This file defines a useful set of functions for ADC on AVR UC3 devices.
*
* Copyright (c) 2009-2018 Microchip Technology Inc. and its subsidiaries.
*
* \asf_license_start
*
* \page License
*
* Subject to your compliance with these terms, you may use Microchip
* software and any derivatives exclusively with Microchip products.
* It is your responsibility to comply with third party license terms applicable
* to your use of third party software (including open source software) that
* may accompany Microchip software.
*
* THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES,
* WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE,
* INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY,
* AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE
* LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL
* LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
* SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
* POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT
* ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY
* RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
* THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
*
* \asf_license_stop
*
*****************************************************************************/
/*
* Support and FAQ: visit <a href="https://www.microchip.com/support/">Microchip Support</a>
*/
#include <avr32/io.h>
#include "compiler.h"
#include "adc.h"
/** \brief Configure ADC. Mandatory to call.
* If not called, ADC channels will have side effects
*
* \param *adc Base address of the ADC
*/
void adc_configure(volatile avr32_adc_t *adc)
{
Assert( adc != NULL );
#ifdef USE_ADC_8_BITS
adc->mr |= 1 << AVR32_ADC_LOWRES_OFFSET;
#endif
/* Set Sample/Hold time to max so that the ADC capacitor should be
* loaded entirely */
adc->mr |= 0xF << AVR32_ADC_SHTIM_OFFSET;
/* Set Startup to max so that the ADC capacitor should be loaded
* entirely */
adc->mr |= 0x1F << AVR32_ADC_STARTUP_OFFSET;
}
/** \brief Start analog to digital conversion
* \param *adc Base address of the ADC
*/
void adc_start(volatile avr32_adc_t *adc)
{
Assert( adc != NULL );
/* start conversion */
adc->cr = AVR32_ADC_START_MASK;
}
/** \brief Enable channel
*
* \param *adc Base address of the ADC
* \param channel channel to enable (0 to 7)
*/
void adc_enable(volatile avr32_adc_t *adc, uint16_t channel)
{
Assert( adc != NULL );
Assert( channel <= AVR32_ADC_CHANNELS_MSB ); /* check if channel exist
**/
/* enable channel */
adc->cher = (1 << channel);
}
/** \brief Disable channel
*
* \param *adc Base address of the ADC
* \param channel channel to disable (0 to 7)
*/
void adc_disable(volatile avr32_adc_t *adc, uint16_t channel)
{
Assert( adc != NULL );
Assert( channel <= AVR32_ADC_CHANNELS_MSB ); /* check if channel exist
**/
if (adc_get_status(adc, channel) == true) {
/* disable channel */
adc->chdr |= (1 << channel);
}
}
/** \brief Get channel 0 to 7 status
*
* \param *adc Base address of the ADC
* \param channel channel to handle (0 to 7)
* \return bool true if channel is enabled
* false if channel is disabled
*/
bool adc_get_status(volatile avr32_adc_t *adc, uint16_t channel)
{
Assert( adc != NULL );
Assert( channel <= AVR32_ADC_CHANNELS_MSB ); /* check if channel exist
**/
return ((adc->chsr & (1 << channel)) ? true : false);
}
/** \brief Check channel conversion status
*
* \param *adc Base address of the ADC
* \param channel channel to check (0 to 7)
* \return bool true if conversion not running
* false if conversion running
*/
bool adc_check_eoc(volatile avr32_adc_t *adc, uint16_t channel)
{
Assert( adc != NULL );
Assert( channel <= AVR32_ADC_CHANNELS_MSB ); /* check if channel exist
**/
/* get SR register : EOC bit for channel */
return ((adc->sr & (1 << channel)) ? true : false);
}
/** \brief Check channel conversion overrun error
*
* \param *adc Base address of the ADC
* \param channel channel to check (0 to 7)
* \return bool FAIL if an error occurred
* PASS if no error occurred
*/
bool adc_check_ovr(volatile avr32_adc_t *adc, uint16_t channel)
{
Assert( adc != NULL );
Assert( channel <= AVR32_ADC_CHANNELS_MSB ); /* check if channel exist
**/
/* get SR register : OVR bit for channel */
return ((adc->sr & (1 << (channel + 8))) ? FAIL : PASS);
}
/** \brief Get channel value
*
* \param *adc Base address of the ADC
* \param channel channel to handle (0 to 7)
* \return The value acquired (unsigned long)
*/
uint32_t adc_get_value(volatile avr32_adc_t *adc, uint16_t channel)
{
Assert( adc != NULL );
Assert( channel <= AVR32_ADC_CHANNELS_MSB );
/* wait for end of conversion */
while (adc_check_eoc(adc, channel) != true) {
}
return *((uint32_t *)((&(adc->cdr0)) + channel));
}
/** \brief Wait for the next converted data and return its value
*
* \param *adc Base address of the ADC
* \return The latest converted value (unsigned long)
*/
uint32_t adc_get_latest_value(volatile avr32_adc_t *adc)
{
Assert( adc != NULL );
/* Wait for the data ready flag */
while ((adc->sr & AVR32_ADC_DRDY_MASK) != AVR32_ADC_DRDY_MASK) {
}
return adc->lcdr;
}