rt-thread-official/bsp/ft32/libraries/FT32F0xx/FT32F0xx_Driver/Src/ft32f0xx_rtc.c

1903 lines
64 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
******************************************************************************
* @file ft32f0xx_rtc.c
* @author FMD AE
* @brief This file provides firmware functions to manage the following
* functionalities of the Real-Time Clock (RTC) peripheral:
* + Initialization
* + Calendar (Time and Date) configuration
* + Alarms (Alarm A) configuration
* + Daylight Saving configuration
* + Output pin Configuration
* + Digital Calibration configuration
* + TimeStamp configuration
* + Tampers configuration
* + Backup Data Registers configuration
* + Output Type Config configuration
* + Shift control synchronisation
* + Interrupts and flags management
* @version V1.0.0
* @data 2021-07-01
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "ft32f0xx_rtc.h"
/* Masks Definition */
#define RTC_TR_RESERVED_MASK ((uint32_t)0x007F7F7F)
#define RTC_DR_RESERVED_MASK ((uint32_t)0x00FFFF3F)
#define RTC_INIT_MASK ((uint32_t)0xFFFFFFFF)
#define RTC_RSF_MASK ((uint32_t)0xFFFFFF5F)
#define RTC_FLAGS_MASK ((uint32_t)(RTC_FLAG_TSOVF | RTC_FLAG_TSF | RTC_FLAG_ALRAF | \
RTC_FLAG_RSF | RTC_FLAG_INITS |RTC_FLAG_INITF | \
RTC_FLAG_TAMP1F | RTC_FLAG_TAMP2F | RTC_FLAG_RECALPF | \
RTC_FLAG_SHPF))
#define INITMODE_TIMEOUT ((uint32_t) 0x00004000)
#define SYNCHRO_TIMEOUT ((uint32_t) 0x00008000)
#define RECALPF_TIMEOUT ((uint32_t) 0x00001000)
#define SHPF_TIMEOUT ((uint32_t) 0x00001000)
static uint8_t RTC_ByteToBcd2(uint8_t Value);
static uint8_t RTC_Bcd2ToByte(uint8_t Value);
/**
* @brief Deinitializes the RTC registers to their default reset values.
* @note This function doesn't reset the RTC Clock source and RTC Backup Data
* registers.
* @param None
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RTC registers are deinitialized
* - ERROR: RTC registers are not deinitialized
*/
ErrorStatus RTC_DeInit(void)
{
ErrorStatus status = ERROR;
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Set Initialization mode */
if (RTC_EnterInitMode() == ERROR)
{
status = ERROR;
}
else
{
/* Reset TR, DR and CR registers */
RTC->TR = (uint32_t)0x00000000;
RTC->DR = (uint32_t)0x00002101;
RTC->CR &= (uint32_t)0x00000000;
RTC->PRER = (uint32_t)0x007F00FF;
RTC->ALRMAR = (uint32_t)0x00000000;
RTC->SHIFTR = (uint32_t)0x00000000;
RTC->CALR = (uint32_t)0x00000000;
RTC->ALRMASSR = (uint32_t)0x00000000;
/* Reset ISR register and exit initialization mode */
RTC->ISR = (uint32_t)0x00000000;
/* Reset Tamper and alternate functions configuration register */
RTC->TAFCR = 0x00000000;
/* Wait till the RTC RSF flag is set */
if (RTC_WaitForSynchro() == ERROR)
{
status = ERROR;
}
else
{
status = SUCCESS;
}
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
return status;
}
/**
* @brief Initializes the RTC registers according to the specified parameters
* in RTC_InitStruct.
* @param RTC_InitStruct: pointer to a RTC_InitTypeDef structure that contains
* the configuration information for the RTC peripheral.
* @note The RTC Prescaler register is write protected and can be written in
* initialization mode only.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RTC registers are initialized
* - ERROR: RTC registers are not initialized
*/
ErrorStatus RTC_Init(RTC_InitTypeDef* RTC_InitStruct)
{
ErrorStatus status = ERROR;
/* Check the parameters */
assert_param(IS_RTC_HOUR_FORMAT(RTC_InitStruct->RTC_HourFormat));
assert_param(IS_RTC_ASYNCH_PREDIV(RTC_InitStruct->RTC_AsynchPrediv));
assert_param(IS_RTC_SYNCH_PREDIV(RTC_InitStruct->RTC_SynchPrediv));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Set Initialization mode */
if (RTC_EnterInitMode() == ERROR)
{
status = ERROR;
}
else
{
/* Clear RTC CR FMT Bit */
RTC->CR &= ((uint32_t)~(RTC_CR_FMT));
/* Set RTC_CR register */
RTC->CR |= ((uint32_t)(RTC_InitStruct->RTC_HourFormat));
/* Configure the RTC PRER */
RTC->PRER = (uint32_t)(RTC_InitStruct->RTC_SynchPrediv);
RTC->PRER |= (uint32_t)(RTC_InitStruct->RTC_AsynchPrediv << 16);
/* Exit Initialization mode */
RTC_ExitInitMode();
status = SUCCESS;
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
return status;
}
/**
* @brief Fills each RTC_InitStruct member with its default value.
* @param RTC_InitStruct: pointer to a RTC_InitTypeDef structure which will be
* initialized.
* @retval None
*/
void RTC_StructInit(RTC_InitTypeDef* RTC_InitStruct)
{
/* Initialize the RTC_HourFormat member */
RTC_InitStruct->RTC_HourFormat = RTC_HourFormat_24;
/* Initialize the RTC_AsynchPrediv member */
RTC_InitStruct->RTC_AsynchPrediv = (uint32_t)0x7F;
/* Initialize the RTC_SynchPrediv member */
RTC_InitStruct->RTC_SynchPrediv = (uint32_t)0xFF;
}
/**
* @brief Enables or disables the RTC registers write protection.
* @note All the RTC registers are write protected except for RTC_ISR[13:8],
* RTC_TAFCR and RTC_BKPxR.
* @note Writing a wrong key reactivates the write protection.
* @note The protection mechanism is not affected by system reset.
* @param NewState: new state of the write protection.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RTC_WriteProtectionCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
else
{
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
}
}
/**
* @brief Enters the RTC Initialization mode.
* @note The RTC Initialization mode is write protected, use the
* RTC_WriteProtectionCmd(DISABLE) before calling this function.
* @param None
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RTC is in Init mode
* - ERROR: RTC is not in Init mode
*/
ErrorStatus RTC_EnterInitMode(void)
{
__IO uint32_t initcounter = 0x00;
ErrorStatus status = ERROR;
uint32_t initstatus = 0x00;
/* Check if the Initialization mode is set */
if ((RTC->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
{
/* Set the Initialization mode */
RTC->ISR = (uint32_t)RTC_INIT_MASK;
/* Wait till RTC is in INIT state and if Time out is reached exit */
do
{
initstatus = RTC->ISR & RTC_ISR_INITF;
initcounter++;
} while((initcounter != INITMODE_TIMEOUT) && (initstatus == 0x00));
if ((RTC->ISR & RTC_ISR_INITF) != RESET)
{
status = SUCCESS;
}
else
{
status = ERROR;
}
}
else
{
status = SUCCESS;
}
return (status);
}
/**
* @brief Exits the RTC Initialization mode.
* @note When the initialization sequence is complete, the calendar restarts
* counting after 4 RTCCLK cycles.
* @note The RTC Initialization mode is write protected, use the
* RTC_WriteProtectionCmd(DISABLE) before calling this function.
* @param None
* @retval None
*/
void RTC_ExitInitMode(void)
{
/* Exit Initialization mode */
RTC->ISR &= (uint32_t)~RTC_ISR_INIT;
/*when BypassShadow is enable,this bit should wait to clear zero.edit:2020.5.23*/
while((RTC->ISR & RTC_ISR_INITF) != RESET)
{
;
}
}
/**
* @brief Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are
* synchronized with RTC APB clock.
* @note The RTC Resynchronization mode is write protected, use the
* RTC_WriteProtectionCmd(DISABLE) before calling this function.
* @note To read the calendar through the shadow registers after Calendar
* initialization, calendar update or after wakeup from low power modes
* the software must first clear the RSF flag.
* The software must then wait until it is set again before reading
* the calendar, which means that the calendar registers have been
* correctly copied into the RTC_TR and RTC_DR shadow registers.
* @param None
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RTC registers are synchronised
* - ERROR: RTC registers are not synchronised
*/
ErrorStatus RTC_WaitForSynchro(void)
{
__IO uint32_t synchrocounter = 0;
ErrorStatus status = ERROR;
uint32_t synchrostatus = 0x00;
if ((RTC->CR & RTC_CR_BYPSHAD) != RESET)
{
/* Bypass shadow mode */
status = SUCCESS;
}
else
{
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Clear RSF flag */
RTC->ISR &= (uint32_t)RTC_RSF_MASK;
/* Wait the registers to be synchronised */
do
{
synchrostatus = RTC->ISR & RTC_ISR_RSF;
synchrocounter++;
} while((synchrocounter != SYNCHRO_TIMEOUT) && (synchrostatus == 0x00));
if ((RTC->ISR & RTC_ISR_RSF) != RESET)
{
status = SUCCESS;
}
else
{
status = ERROR;
}
/* Disable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
return (status);
}
/**
* @brief Enables or disables the RTC reference clock detection.
* @param NewState: new state of the RTC reference clock.
* This parameter can be: ENABLE or DISABLE.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RTC reference clock detection is enabled
* - ERROR: RTC reference clock detection is disabled
*/
ErrorStatus RTC_RefClockCmd(FunctionalState NewState)
{
ErrorStatus status = ERROR;
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Set Initialization mode */
if (RTC_EnterInitMode() == ERROR)
{
status = ERROR;
}
else
{
if (NewState != DISABLE)
{
/* Enable the RTC reference clock detection */
RTC->CR |= RTC_CR_REFCKON;
}
else
{
/* Disable the RTC reference clock detection */
RTC->CR &= ~RTC_CR_REFCKON;
}
/* Exit Initialization mode */
RTC_ExitInitMode();
status = SUCCESS;
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
return status;
}
/**
* @brief Enables or Disables the Bypass Shadow feature.
* @note When the Bypass Shadow is enabled the calendar value are taken
* directly from the Calendar counter.
* @param NewState: new state of the Bypass Shadow feature.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RTC_BypassShadowCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
if (NewState != DISABLE)
{
/* Set the BYPSHAD bit */
RTC->CR |= (uint8_t)RTC_CR_BYPSHAD;
}
else
{
/* Reset the BYPSHAD bit */
RTC->CR &= (uint8_t)~RTC_CR_BYPSHAD;
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
/**
* @}
*/
/**
* @brief Set the RTC current time.
* @param RTC_Format: specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg RTC_Format_BIN: Binary data format
* @arg RTC_Format_BCD: BCD data format
* @param RTC_TimeStruct: pointer to a RTC_TimeTypeDef structure that contains
* the time configuration information for the RTC.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RTC Time register is configured
* - ERROR: RTC Time register is not configured
*/
ErrorStatus RTC_SetTime(uint32_t RTC_Format, RTC_TimeTypeDef* RTC_TimeStruct)
{
uint32_t tmpreg = 0;
ErrorStatus status = ERROR;
/* Check the parameters */
assert_param(IS_RTC_FORMAT(RTC_Format));
if (RTC_Format == RTC_Format_BIN)
{
if ((RTC->CR & RTC_CR_FMT) != (uint32_t)RESET)
{
assert_param(IS_RTC_HOUR12(RTC_TimeStruct->RTC_Hours));
assert_param(IS_RTC_H12(RTC_TimeStruct->RTC_H12));
}
else
{
RTC_TimeStruct->RTC_H12 = 0x00;
assert_param(IS_RTC_HOUR24(RTC_TimeStruct->RTC_Hours));
}
assert_param(IS_RTC_MINUTES(RTC_TimeStruct->RTC_Minutes));
assert_param(IS_RTC_SECONDS(RTC_TimeStruct->RTC_Seconds));
}
else
{
if ((RTC->CR & RTC_CR_FMT) != (uint32_t)RESET)
{
tmpreg = RTC_Bcd2ToByte(RTC_TimeStruct->RTC_Hours);
assert_param(IS_RTC_HOUR12(tmpreg));
assert_param(IS_RTC_H12(RTC_TimeStruct->RTC_H12));
}
else
{
RTC_TimeStruct->RTC_H12 = 0x00;
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(RTC_TimeStruct->RTC_Hours)));
}
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(RTC_TimeStruct->RTC_Minutes)));
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(RTC_TimeStruct->RTC_Seconds)));
}
/* Check the input parameters format */
if (RTC_Format != RTC_Format_BIN)
{
tmpreg = (((uint32_t)(RTC_TimeStruct->RTC_Hours) << 16) | \
((uint32_t)(RTC_TimeStruct->RTC_Minutes) << 8) | \
((uint32_t)RTC_TimeStruct->RTC_Seconds) | \
((uint32_t)(RTC_TimeStruct->RTC_H12) << 16));
}
else
{
tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(RTC_TimeStruct->RTC_Hours) << 16) | \
((uint32_t)RTC_ByteToBcd2(RTC_TimeStruct->RTC_Minutes) << 8) | \
((uint32_t)RTC_ByteToBcd2(RTC_TimeStruct->RTC_Seconds)) | \
(((uint32_t)RTC_TimeStruct->RTC_H12) << 16));
}
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Set Initialization mode */
if (RTC_EnterInitMode() == ERROR)
{
status = ERROR;
}
else
{
/* Set the RTC_TR register */
RTC->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
/* Exit Initialization mode */
RTC_ExitInitMode();
/* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
if ((RTC->CR & RTC_CR_BYPSHAD) == RESET)
{
if (RTC_WaitForSynchro() == ERROR)
{
status = ERROR;
}
else
{
status = SUCCESS;
}
}
else
{
status = SUCCESS;
}
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
return status;
}
/**
* @brief Fills each RTC_TimeStruct member with its default value
* (Time = 00h:00min:00sec).
* @param RTC_TimeStruct: pointer to a RTC_TimeTypeDef structure which will be
* initialized.
* @retval None
*/
void RTC_TimeStructInit(RTC_TimeTypeDef* RTC_TimeStruct)
{
/* Time = 00h:00min:00sec */
RTC_TimeStruct->RTC_H12 = RTC_H12_AM;
RTC_TimeStruct->RTC_Hours = 0;
RTC_TimeStruct->RTC_Minutes = 0;
RTC_TimeStruct->RTC_Seconds = 0;
}
/**
* @brief Get the RTC current Time.
* @param RTC_Format: specifies the format of the returned parameters.
* This parameter can be one of the following values:
* @arg RTC_Format_BIN: Binary data format
* @arg RTC_Format_BCD: BCD data format
* @param RTC_TimeStruct: pointer to a RTC_TimeTypeDef structure that will
* contain the returned current time configuration.
* @retval None
*/
void RTC_GetTime(uint32_t RTC_Format, RTC_TimeTypeDef* RTC_TimeStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RTC_FORMAT(RTC_Format));
/* Get the RTC_TR register */
tmpreg = (uint32_t)(RTC->TR & RTC_TR_RESERVED_MASK);
/* Fill the structure fields with the read parameters */
RTC_TimeStruct->RTC_Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16);
RTC_TimeStruct->RTC_Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8);
RTC_TimeStruct->RTC_Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU));
RTC_TimeStruct->RTC_H12 = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16);
/* Check the input parameters format */
if (RTC_Format == RTC_Format_BIN)
{
/* Convert the structure parameters to Binary format */
RTC_TimeStruct->RTC_Hours = (uint8_t)RTC_Bcd2ToByte(RTC_TimeStruct->RTC_Hours);
RTC_TimeStruct->RTC_Minutes = (uint8_t)RTC_Bcd2ToByte(RTC_TimeStruct->RTC_Minutes);
RTC_TimeStruct->RTC_Seconds = (uint8_t)RTC_Bcd2ToByte(RTC_TimeStruct->RTC_Seconds);
}
}
/**
* @brief Gets the RTC current Calendar Subseconds value.
* @note This function freeze the Time and Date registers after reading the
* SSR register.
* @param None
* @retval RTC current Calendar Subseconds value.
*/
uint32_t RTC_GetSubSecond(void)
{
uint32_t tmpreg = 0;
/* Get subseconds values from the correspondent registers*/
tmpreg = (uint32_t)(RTC->SSR);
/* Read DR register to unfroze calendar registers */
(void) (RTC->DR);
return (tmpreg);
}
/**
* @brief Set the RTC current date.
* @param RTC_Format: specifies the format of the entered parameters.
* This parameter can be one of the following values:
* @arg RTC_Format_BIN: Binary data format
* @arg RTC_Format_BCD: BCD data format
* @param RTC_DateStruct: pointer to a RTC_DateTypeDef structure that contains
* the date configuration information for the RTC.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RTC Date register is configured
* - ERROR: RTC Date register is not configured
*/
ErrorStatus RTC_SetDate(uint32_t RTC_Format, RTC_DateTypeDef* RTC_DateStruct)
{
uint32_t tmpreg = 0;
ErrorStatus status = ERROR;
/* Check the parameters */
assert_param(IS_RTC_FORMAT(RTC_Format));
if ((RTC_Format == RTC_Format_BIN) && ((RTC_DateStruct->RTC_Month & 0x10) == 0x10))
{
RTC_DateStruct->RTC_Month = (RTC_DateStruct->RTC_Month & (uint32_t)~(0x10)) + 0x0A;
}
if (RTC_Format == RTC_Format_BIN)
{
assert_param(IS_RTC_YEAR(RTC_DateStruct->RTC_Year));
assert_param(IS_RTC_MONTH(RTC_DateStruct->RTC_Month));
assert_param(IS_RTC_DATE(RTC_DateStruct->RTC_Date));
}
else
{
assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(RTC_DateStruct->RTC_Year)));
tmpreg = RTC_Bcd2ToByte(RTC_DateStruct->RTC_Month);
assert_param(IS_RTC_MONTH(tmpreg));
tmpreg = RTC_Bcd2ToByte(RTC_DateStruct->RTC_Date);
assert_param(IS_RTC_DATE(tmpreg));
}
assert_param(IS_RTC_WEEKDAY(RTC_DateStruct->RTC_WeekDay));
/* Check the input parameters format */
if (RTC_Format != RTC_Format_BIN)
{
tmpreg = ((((uint32_t)RTC_DateStruct->RTC_Year) << 16) | \
(((uint32_t)RTC_DateStruct->RTC_Month) << 8) | \
((uint32_t)RTC_DateStruct->RTC_Date) | \
(((uint32_t)RTC_DateStruct->RTC_WeekDay) << 13));
}
else
{
tmpreg = (((uint32_t)RTC_ByteToBcd2(RTC_DateStruct->RTC_Year) << 16) | \
((uint32_t)RTC_ByteToBcd2(RTC_DateStruct->RTC_Month) << 8) | \
((uint32_t)RTC_ByteToBcd2(RTC_DateStruct->RTC_Date)) | \
((uint32_t)RTC_DateStruct->RTC_WeekDay << 13));
}
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Set Initialization mode */
if (RTC_EnterInitMode() == ERROR)
{
status = ERROR;
}
else
{
/* Set the RTC_DR register */
RTC->DR = (uint32_t)(tmpreg & RTC_DR_RESERVED_MASK);
/* Exit Initialization mode */
RTC_ExitInitMode();
/* If RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
if ((RTC->CR & RTC_CR_BYPSHAD) == RESET)
{
if (RTC_WaitForSynchro() == ERROR)
{
status = ERROR;
}
else
{
status = SUCCESS;
}
}
else
{
status = SUCCESS;
}
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
return status;
}
/**
* @brief Fills each RTC_DateStruct member with its default value
* (Monday, January 01 xx00).
* @param RTC_DateStruct: pointer to a RTC_DateTypeDef structure which will be
* initialized.
* @retval None
*/
void RTC_DateStructInit(RTC_DateTypeDef* RTC_DateStruct)
{
/* Monday, January 01 xx00 */
RTC_DateStruct->RTC_WeekDay = RTC_Weekday_Monday;
RTC_DateStruct->RTC_Date = 1;
RTC_DateStruct->RTC_Month = RTC_Month_January;
RTC_DateStruct->RTC_Year = 0;
}
/**
* @brief Get the RTC current date.
* @param RTC_Format: specifies the format of the returned parameters.
* This parameter can be one of the following values:
* @arg RTC_Format_BIN: Binary data format
* @arg RTC_Format_BCD: BCD data format
* @param RTC_DateStruct: pointer to a RTC_DateTypeDef structure that will
* contain the returned current date configuration.
* @retval None
*/
void RTC_GetDate(uint32_t RTC_Format, RTC_DateTypeDef* RTC_DateStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RTC_FORMAT(RTC_Format));
/* Get the RTC_TR register */
tmpreg = (uint32_t)(RTC->DR & RTC_DR_RESERVED_MASK);
/* Fill the structure fields with the read parameters */
RTC_DateStruct->RTC_Year = (uint8_t)((tmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16);
RTC_DateStruct->RTC_Month = (uint8_t)((tmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8);
RTC_DateStruct->RTC_Date = (uint8_t)(tmpreg & (RTC_DR_DT | RTC_DR_DU));
RTC_DateStruct->RTC_WeekDay = (uint8_t)((tmpreg & (RTC_DR_WDU)) >> 13);
/* Check the input parameters format */
if (RTC_Format == RTC_Format_BIN)
{
/* Convert the structure parameters to Binary format */
RTC_DateStruct->RTC_Year = (uint8_t)RTC_Bcd2ToByte(RTC_DateStruct->RTC_Year);
RTC_DateStruct->RTC_Month = (uint8_t)RTC_Bcd2ToByte(RTC_DateStruct->RTC_Month);
RTC_DateStruct->RTC_Date = (uint8_t)RTC_Bcd2ToByte(RTC_DateStruct->RTC_Date);
RTC_DateStruct->RTC_WeekDay = (uint8_t)(RTC_DateStruct->RTC_WeekDay);
}
}
/**
* @}
*/
/**
* @brief Set the specified RTC Alarm.
* @note The Alarm register can only be written when the corresponding Alarm
* is disabled (Use the RTC_AlarmCmd(DISABLE)).
* @param RTC_Format: specifies the format of the returned parameters.
* This parameter can be one of the following values:
* @arg RTC_Format_BIN: Binary data format
* @arg RTC_Format_BCD: BCD data format
* @param RTC_Alarm: specifies the alarm to be configured.
* This parameter can be one of the following values:
* @arg RTC_Alarm_A: to select Alarm A
* @param RTC_AlarmStruct: pointer to a RTC_AlarmTypeDef structure that
* contains the alarm configuration parameters.
* @retval None
*/
void RTC_SetAlarm(uint32_t RTC_Format, uint32_t RTC_Alarm, RTC_AlarmTypeDef* RTC_AlarmStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RTC_FORMAT(RTC_Format));
assert_param(IS_RTC_ALARM(RTC_Alarm));
assert_param(IS_RTC_ALARM_MASK(RTC_AlarmStruct->RTC_AlarmMask));
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(RTC_AlarmStruct->RTC_AlarmDateWeekDaySel));
if (RTC_Format == RTC_Format_BIN)
{
if ((RTC->CR & RTC_CR_FMT) != (uint32_t)RESET)
{
assert_param(IS_RTC_HOUR12(RTC_AlarmStruct->RTC_AlarmTime.RTC_Hours));
assert_param(IS_RTC_H12(RTC_AlarmStruct->RTC_AlarmTime.RTC_H12));
}
else
{
RTC_AlarmStruct->RTC_AlarmTime.RTC_H12 = 0x00;
assert_param(IS_RTC_HOUR24(RTC_AlarmStruct->RTC_AlarmTime.RTC_Hours));
}
assert_param(IS_RTC_MINUTES(RTC_AlarmStruct->RTC_AlarmTime.RTC_Minutes));
assert_param(IS_RTC_SECONDS(RTC_AlarmStruct->RTC_AlarmTime.RTC_Seconds));
if(RTC_AlarmStruct->RTC_AlarmDateWeekDaySel == RTC_AlarmDateWeekDaySel_Date)
{
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_AlarmStruct->RTC_AlarmDateWeekDay));
}
else
{
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_AlarmStruct->RTC_AlarmDateWeekDay));
}
}
else
{
if ((RTC->CR & RTC_CR_FMT) != (uint32_t)RESET)
{
tmpreg = RTC_Bcd2ToByte(RTC_AlarmStruct->RTC_AlarmTime.RTC_Hours);
assert_param(IS_RTC_HOUR12(tmpreg));
assert_param(IS_RTC_H12(RTC_AlarmStruct->RTC_AlarmTime.RTC_H12));
}
else
{
RTC_AlarmStruct->RTC_AlarmTime.RTC_H12 = 0x00;
assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(RTC_AlarmStruct->RTC_AlarmTime.RTC_Hours)));
}
assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(RTC_AlarmStruct->RTC_AlarmTime.RTC_Minutes)));
assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(RTC_AlarmStruct->RTC_AlarmTime.RTC_Seconds)));
if(RTC_AlarmStruct->RTC_AlarmDateWeekDaySel == RTC_AlarmDateWeekDaySel_Date)
{
tmpreg = RTC_Bcd2ToByte(RTC_AlarmStruct->RTC_AlarmDateWeekDay);
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(tmpreg));
}
else
{
tmpreg = RTC_Bcd2ToByte(RTC_AlarmStruct->RTC_AlarmDateWeekDay);
assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(tmpreg));
}
}
/* Check the input parameters format */
if (RTC_Format != RTC_Format_BIN)
{
tmpreg = (((uint32_t)(RTC_AlarmStruct->RTC_AlarmTime.RTC_Hours) << 16) | \
((uint32_t)(RTC_AlarmStruct->RTC_AlarmTime.RTC_Minutes) << 8) | \
((uint32_t)RTC_AlarmStruct->RTC_AlarmTime.RTC_Seconds) | \
((uint32_t)(RTC_AlarmStruct->RTC_AlarmTime.RTC_H12) << 16) | \
((uint32_t)(RTC_AlarmStruct->RTC_AlarmDateWeekDay) << 24) | \
((uint32_t)RTC_AlarmStruct->RTC_AlarmDateWeekDaySel) | \
((uint32_t)RTC_AlarmStruct->RTC_AlarmMask));
}
else
{
tmpreg = (((uint32_t)RTC_ByteToBcd2(RTC_AlarmStruct->RTC_AlarmTime.RTC_Hours) << 16) | \
((uint32_t)RTC_ByteToBcd2(RTC_AlarmStruct->RTC_AlarmTime.RTC_Minutes) << 8) | \
((uint32_t)RTC_ByteToBcd2(RTC_AlarmStruct->RTC_AlarmTime.RTC_Seconds)) | \
((uint32_t)(RTC_AlarmStruct->RTC_AlarmTime.RTC_H12) << 16) | \
((uint32_t)RTC_ByteToBcd2(RTC_AlarmStruct->RTC_AlarmDateWeekDay) << 24) | \
((uint32_t)RTC_AlarmStruct->RTC_AlarmDateWeekDaySel) | \
((uint32_t)RTC_AlarmStruct->RTC_AlarmMask));
}
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Configure the Alarm register */
RTC->ALRMAR = (uint32_t)tmpreg;
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
/**
* @brief Fills each RTC_AlarmStruct member with its default value
* (Time = 00h:00mn:00sec / Date = 1st day of the month/Mask =
* all fields are masked).
* @param RTC_AlarmStruct: pointer to a @ref RTC_AlarmTypeDef structure which
* will be initialized.
* @retval None
*/
void RTC_AlarmStructInit(RTC_AlarmTypeDef* RTC_AlarmStruct)
{
/* Alarm Time Settings : Time = 00h:00mn:00sec */
RTC_AlarmStruct->RTC_AlarmTime.RTC_H12 = RTC_H12_AM;
RTC_AlarmStruct->RTC_AlarmTime.RTC_Hours = 0;
RTC_AlarmStruct->RTC_AlarmTime.RTC_Minutes = 0;
RTC_AlarmStruct->RTC_AlarmTime.RTC_Seconds = 0;
/* Alarm Date Settings : Date = 1st day of the month */
RTC_AlarmStruct->RTC_AlarmDateWeekDaySel = RTC_AlarmDateWeekDaySel_Date;
RTC_AlarmStruct->RTC_AlarmDateWeekDay = 1;
/* Alarm Masks Settings : Mask = all fields are not masked */
RTC_AlarmStruct->RTC_AlarmMask = RTC_AlarmMask_None;
}
/**
* @brief Get the RTC Alarm value and masks.
* @param RTC_Format: specifies the format of the output parameters.
* This parameter can be one of the following values:
* @arg RTC_Format_BIN: Binary data format
* @arg RTC_Format_BCD: BCD data format
* @param RTC_Alarm: specifies the alarm to be read.
* This parameter can be one of the following values:
* @arg RTC_Alarm_A: to select Alarm A
* @param RTC_AlarmStruct: pointer to a RTC_AlarmTypeDef structure that will
* contains the output alarm configuration values.
* @retval None
*/
void RTC_GetAlarm(uint32_t RTC_Format, uint32_t RTC_Alarm, RTC_AlarmTypeDef* RTC_AlarmStruct)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RTC_FORMAT(RTC_Format));
assert_param(IS_RTC_ALARM(RTC_Alarm));
/* Get the RTC_ALRMAR register */
tmpreg = (uint32_t)(RTC->ALRMAR);
/* Fill the structure with the read parameters */
RTC_AlarmStruct->RTC_AlarmTime.RTC_Hours = (uint32_t)((tmpreg & (RTC_ALRMAR_HT | \
RTC_ALRMAR_HU)) >> 16);
RTC_AlarmStruct->RTC_AlarmTime.RTC_Minutes = (uint32_t)((tmpreg & (RTC_ALRMAR_MNT | \
RTC_ALRMAR_MNU)) >> 8);
RTC_AlarmStruct->RTC_AlarmTime.RTC_Seconds = (uint32_t)(tmpreg & (RTC_ALRMAR_ST | \
RTC_ALRMAR_SU));
RTC_AlarmStruct->RTC_AlarmTime.RTC_H12 = (uint32_t)((tmpreg & RTC_ALRMAR_PM) >> 16);
RTC_AlarmStruct->RTC_AlarmDateWeekDay = (uint32_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> 24);
RTC_AlarmStruct->RTC_AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
RTC_AlarmStruct->RTC_AlarmMask = (uint32_t)(tmpreg & RTC_AlarmMask_All);
if (RTC_Format == RTC_Format_BIN)
{
RTC_AlarmStruct->RTC_AlarmTime.RTC_Hours = RTC_Bcd2ToByte(RTC_AlarmStruct-> \
RTC_AlarmTime.RTC_Hours);
RTC_AlarmStruct->RTC_AlarmTime.RTC_Minutes = RTC_Bcd2ToByte(RTC_AlarmStruct-> \
RTC_AlarmTime.RTC_Minutes);
RTC_AlarmStruct->RTC_AlarmTime.RTC_Seconds = RTC_Bcd2ToByte(RTC_AlarmStruct-> \
RTC_AlarmTime.RTC_Seconds);
RTC_AlarmStruct->RTC_AlarmDateWeekDay = RTC_Bcd2ToByte(RTC_AlarmStruct->RTC_AlarmDateWeekDay);
}
}
/**
* @brief Enables or disables the specified RTC Alarm.
* @param RTC_Alarm: specifies the alarm to be configured.
* This parameter can be any combination of the following values:
* @arg RTC_Alarm_A: to select Alarm A
* @param NewState: new state of the specified alarm.
* This parameter can be: ENABLE or DISABLE.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RTC Alarm is enabled/disabled
* - ERROR: RTC Alarm is not enabled/disabled
*/
ErrorStatus RTC_AlarmCmd(uint32_t RTC_Alarm, FunctionalState NewState)
{
__IO uint32_t alarmcounter = 0x00;
uint32_t alarmstatus = 0x00;
ErrorStatus status = ERROR;
/* Check the parameters */
assert_param(IS_RTC_CMD_ALARM(RTC_Alarm));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Configure the Alarm state */
if (NewState != DISABLE)
{
RTC->CR |= (uint32_t)RTC_Alarm;
status = SUCCESS;
}
else
{
/* Disable the Alarm in RTC_CR register */
RTC->CR &= (uint32_t)~RTC_Alarm;
/* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
do
{
alarmstatus = RTC->ISR & (RTC_Alarm >> 8);
alarmcounter++;
} while((alarmcounter != INITMODE_TIMEOUT) && (alarmstatus == 0x00));
if ((RTC->ISR & (RTC_Alarm >> 8)) == RESET)
{
status = ERROR;
}
else
{
status = SUCCESS;
}
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
return status;
}
/**
* @brief Configure the RTC AlarmA/B Subseconds value and mask.
* @note This function is performed only when the Alarm is disabled.
* @param RTC_Alarm: specifies the alarm to be configured.
* This parameter can be one of the following values:
* @arg RTC_Alarm_A: to select Alarm A
* @param RTC_AlarmSubSecondValue: specifies the Subseconds value.
* This parameter can be a value from 0 to 0x00007FFF.
* @param RTC_AlarmSubSecondMask: specifies the Subseconds Mask.
* This parameter can be any combination of the following values:
* @arg RTC_AlarmSubSecondMask_All: All Alarm SS fields are masked.
* There is no comparison on sub seconds for Alarm.
* @arg RTC_AlarmSubSecondMask_SS14_1: SS[14:1] are don't care in Alarm comparison.
* Only SS[0] is compared
* @arg RTC_AlarmSubSecondMask_SS14_2: SS[14:2] are don't care in Alarm comparison.
* Only SS[1:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_3: SS[14:3] are don't care in Alarm comparison.
* Only SS[2:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_4: SS[14:4] are don't care in Alarm comparison.
* Only SS[3:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_5: SS[14:5] are don't care in Alarm comparison.
* Only SS[4:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_6: SS[14:6] are don't care in Alarm comparison.
* Only SS[5:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_7: SS[14:7] are don't care in Alarm comparison.
* Only SS[6:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_8: SS[14:8] are don't care in Alarm comparison.
* Only SS[7:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_9: SS[14:9] are don't care in Alarm comparison.
* Only SS[8:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_10: SS[14:10] are don't care in Alarm comparison.
* Only SS[9:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_11: SS[14:11] are don't care in Alarm comparison.
* Only SS[10:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_12: SS[14:12] are don't care in Alarm comparison.
* Only SS[11:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14_13: SS[14:13] are don't care in Alarm comparison.
* Only SS[12:0] are compared
* @arg RTC_AlarmSubSecondMask_SS14: SS[14] is don't care in Alarm comparison.
* Only SS[13:0] are compared
* @arg RTC_AlarmSubSecondMask_None: SS[14:0] are compared and must match to activate alarm
* @retval None
*/
void RTC_AlarmSubSecondConfig(uint32_t RTC_Alarm, uint32_t RTC_AlarmSubSecondValue, uint8_t RTC_AlarmSubSecondMask)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RTC_ALARM(RTC_Alarm));
assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(RTC_AlarmSubSecondValue));
assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(RTC_AlarmSubSecondMask));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Configure the Alarm A or Alarm B SubSecond registers */
tmpreg = (uint32_t) (((uint32_t)(RTC_AlarmSubSecondValue)) | ((uint32_t)(RTC_AlarmSubSecondMask) << 24));
/* Configure the AlarmA SubSecond register */
RTC->ALRMASSR = tmpreg;
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
/**
* @brief Gets the RTC Alarm Subseconds value.
* @param RTC_Alarm: specifies the alarm to be read.
* This parameter can be one of the following values:
* @arg RTC_Alarm_A: to select Alarm A
* @param None
* @retval RTC Alarm Subseconds value.
*/
uint32_t RTC_GetAlarmSubSecond(uint32_t RTC_Alarm)
{
uint32_t tmpreg = 0;
/* Get the RTC_ALRMAR register */
tmpreg = (uint32_t)((RTC->ALRMASSR) & RTC_ALRMASSR_SS);
return (tmpreg);
}
/**
* @}
*/
/**
* @brief Adds or substract one hour from the current time.
* @param RTC_DayLightSaveOperation: the value of hour adjustment.
* This parameter can be one of the following values:
* @arg RTC_DayLightSaving_SUB1H: Substract one hour (winter time)
* @arg RTC_DayLightSaving_ADD1H: Add one hour (summer time)
* @param RTC_StoreOperation: Specifies the value to be written in the BCK bit
* in CR register to store the operation.
* This parameter can be one of the following values:
* @arg RTC_StoreOperation_Reset: BCK Bit Reset
* @arg RTC_StoreOperation_Set: BCK Bit Set
* @retval None
*/
void RTC_DayLightSavingConfig(uint32_t RTC_DayLightSaving, uint32_t RTC_StoreOperation)
{
/* Check the parameters */
assert_param(IS_RTC_DAYLIGHT_SAVING(RTC_DayLightSaving));
assert_param(IS_RTC_STORE_OPERATION(RTC_StoreOperation));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Clear the bits to be configured */
RTC->CR &= (uint32_t)~(RTC_CR_BCK);
/* Configure the RTC_CR register */
RTC->CR |= (uint32_t)(RTC_DayLightSaving | RTC_StoreOperation);
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
/**
* @brief Returns the RTC Day Light Saving stored operation.
* @param None
* @retval RTC Day Light Saving stored operation.
* - RTC_StoreOperation_Reset
* - RTC_StoreOperation_Set
*/
uint32_t RTC_GetStoreOperation(void)
{
return (RTC->CR & RTC_CR_BCK);
}
/**
* @}
*/
/**
* @brief Configures the RTC output source (AFO_ALARM).
* @param RTC_Output: Specifies which signal will be routed to the RTC output.
* This parameter can be one of the following values:
* @arg RTC_Output_Disable: No output selected
* @arg RTC_Output_AlarmA: signal of AlarmA mapped to output
* @arg RTC_Output_WakeUp: signal of WakeUp mapped to output
* @param RTC_OutputPolarity: Specifies the polarity of the output signal.
* This parameter can be one of the following:
* @arg RTC_OutputPolarity_High: The output pin is high when the
* ALRAF is high (depending on OSEL)
* @arg RTC_OutputPolarity_Low: The output pin is low when the
* ALRAF is high (depending on OSEL)
* @retval None
*/
void RTC_OutputConfig(uint32_t RTC_Output, uint32_t RTC_OutputPolarity)
{
/* Check the parameters */
assert_param(IS_RTC_OUTPUT(RTC_Output));
assert_param(IS_RTC_OUTPUT_POL(RTC_OutputPolarity));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Clear the bits to be configured */
RTC->CR &= (uint32_t)~(RTC_CR_OSEL | RTC_CR_POL);
/* Configure the output selection and polarity */
RTC->CR |= (uint32_t)(RTC_Output | RTC_OutputPolarity);
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
/**
* @}
*/
/**
* @brief Enables or disables the RTC clock to be output through the relative pin.
* @param NewState: new state of the digital calibration Output.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RTC_CalibOutputCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
if (NewState != DISABLE)
{
/* Enable the RTC clock output */
RTC->CR |= (uint32_t)RTC_CR_COE;
}
else
{
/* Disable the RTC clock output */
RTC->CR &= (uint32_t)~RTC_CR_COE;
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
/**
* @brief Configure the Calibration Pinout (RTC_CALIB) Selection (1Hz or 512Hz).
* @param RTC_CalibOutput: Select the Calibration output Selection .
* This parameter can be one of the following values:
* @arg RTC_CalibOutput_512Hz: A signal has a regular waveform at 512Hz.
* @arg RTC_CalibOutput_1Hz: A signal has a regular waveform at 1Hz.
* @retval None
*/
void RTC_CalibOutputConfig(uint32_t RTC_CalibOutput)
{
/* Check the parameters */
assert_param(IS_RTC_CALIB_OUTPUT(RTC_CalibOutput));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/*clear flags before config*/
RTC->CR &= (uint32_t)~(RTC_CR_CALSEL);
/* Configure the RTC_CR register */
RTC->CR |= (uint32_t)RTC_CalibOutput;
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
/**
* @brief Configures the Smooth Calibration Settings.
* @param RTC_SmoothCalibPeriod: Select the Smooth Calibration Period.
* This parameter can be can be one of the following values:
* @arg RTC_SmoothCalibPeriod_32sec: The smooth calibration periode is 32s.
* @arg RTC_SmoothCalibPeriod_16sec: The smooth calibration periode is 16s.
* @arg RTC_SmoothCalibPeriod_8sec: The smooth calibartion periode is 8s.
* @param RTC_SmoothCalibPlusPulses: Select to Set or reset the CALP bit.
* This parameter can be one of the following values:
* @arg RTC_SmoothCalibPlusPulses_Set: Add one RTCCLK puls every 2**11 pulses.
* @arg RTC_SmoothCalibPlusPulses_Reset: No RTCCLK pulses are added.
* @param RTC_SmouthCalibMinusPulsesValue: Select the value of CALM[8:0] bits.
* This parameter can be one any value from 0 to 0x000001FF.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RTC Calib registers are configured
* - ERROR: RTC Calib registers are not configured
*/
ErrorStatus RTC_SmoothCalibConfig(uint32_t RTC_SmoothCalibPeriod,
uint32_t RTC_SmoothCalibPlusPulses,
uint32_t RTC_SmouthCalibMinusPulsesValue)
{
ErrorStatus status = ERROR;
uint32_t recalpfcount = 0;
/* Check the parameters */
assert_param(IS_RTC_SMOOTH_CALIB_PERIOD(RTC_SmoothCalibPeriod));
assert_param(IS_RTC_SMOOTH_CALIB_PLUS(RTC_SmoothCalibPlusPulses));
assert_param(IS_RTC_SMOOTH_CALIB_MINUS(RTC_SmouthCalibMinusPulsesValue));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* check if a calibration is pending*/
if ((RTC->ISR & RTC_ISR_RECALPF) != RESET)
{
/* wait until the Calibration is completed*/
while (((RTC->ISR & RTC_ISR_RECALPF) != RESET) && (recalpfcount != RECALPF_TIMEOUT))
{
recalpfcount++;
}
}
/* check if the calibration pending is completed or if there is no calibration operation at all*/
if ((RTC->ISR & RTC_ISR_RECALPF) == RESET)
{
/* Configure the Smooth calibration settings */
RTC->CALR = (uint32_t)((uint32_t)RTC_SmoothCalibPeriod | (uint32_t)RTC_SmoothCalibPlusPulses | (uint32_t)RTC_SmouthCalibMinusPulsesValue);
status = SUCCESS;
}
else
{
status = ERROR;
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
return (ErrorStatus)(status);
}
/**
* @}
*/
/**
* @brief Enables or Disables the RTC TimeStamp functionality with the
* specified time stamp pin stimulating edge.
* @param RTC_TimeStampEdge: Specifies the pin edge on which the TimeStamp is
* activated.
* This parameter can be one of the following:
* @arg RTC_TimeStampEdge_Rising: the Time stamp event occurs on the rising
* edge of the related pin.
* @arg RTC_TimeStampEdge_Falling: the Time stamp event occurs on the
* falling edge of the related pin.
* @param NewState: new state of the TimeStamp.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RTC_TimeStampCmd(uint32_t RTC_TimeStampEdge, FunctionalState NewState)
{
uint32_t tmpreg = 0;
/* 设置Edge的边缘触发没有特定位的情况 */
/* Check the parameters */
assert_param(IS_RTC_TIMESTAMP_EDGE(RTC_TimeStampEdge));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Get the RTC_CR register and clear the bits to be configured */
tmpreg = (uint32_t)(RTC->CR & (uint32_t)~(RTC_CR_TSEDGE | RTC_CR_TSE));
/* Get the new configuration */
if (NewState != DISABLE)
{
tmpreg |= (uint32_t)(RTC_TimeStampEdge | RTC_CR_TSE);
}
else
{
tmpreg |= (uint32_t)(RTC_TimeStampEdge);
}
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Configure the Time Stamp TSEDGE and Enable bits */
RTC->CR = (uint32_t)tmpreg;
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
/**
* @brief Get the RTC TimeStamp value and masks.
* @param RTC_Format: specifies the format of the output parameters.
* This parameter can be one of the following values:
* @arg RTC_Format_BIN: Binary data format
* @arg RTC_Format_BCD: BCD data format
* @param RTC_StampTimeStruct: pointer to a RTC_TimeTypeDef structure that will
* contains the TimeStamp time values.
* @param RTC_StampDateStruct: pointer to a RTC_DateTypeDef structure that will
* contains the TimeStamp date values.
* @retval None
*/
void RTC_GetTimeStamp(uint32_t RTC_Format, RTC_TimeTypeDef* RTC_StampTimeStruct,
RTC_DateTypeDef* RTC_StampDateStruct)
{
uint32_t tmptime = 0, tmpdate = 0;
/* Check the parameters */
assert_param(IS_RTC_FORMAT(RTC_Format));
/* Get the TimeStamp time and date registers values */
tmptime = (uint32_t)(RTC->TSTR & RTC_TR_RESERVED_MASK);
tmpdate = (uint32_t)(RTC->TSDR & RTC_DR_RESERVED_MASK);
/* Fill the Time structure fields with the read parameters */
RTC_StampTimeStruct->RTC_Hours = (uint8_t)((tmptime & (RTC_TR_HT | RTC_TR_HU)) >> 16);
RTC_StampTimeStruct->RTC_Minutes = (uint8_t)((tmptime & (RTC_TR_MNT | RTC_TR_MNU)) >> 8);
RTC_StampTimeStruct->RTC_Seconds = (uint8_t)(tmptime & (RTC_TR_ST | RTC_TR_SU));
RTC_StampTimeStruct->RTC_H12 = (uint8_t)((tmptime & (RTC_TR_PM)) >> 16);
/* Fill the Date structure fields with the read parameters */
RTC_StampDateStruct->RTC_Year = 0;
RTC_StampDateStruct->RTC_Month = (uint8_t)((tmpdate & (RTC_DR_MT | RTC_DR_MU)) >> 8);
RTC_StampDateStruct->RTC_Date = (uint8_t)(tmpdate & (RTC_DR_DT | RTC_DR_DU));
RTC_StampDateStruct->RTC_WeekDay = (uint8_t)((tmpdate & (RTC_DR_WDU)) >> 13);
/* Check the input parameters format */
if (RTC_Format == RTC_Format_BIN)
{
/* Convert the Time structure parameters to Binary format */
RTC_StampTimeStruct->RTC_Hours = (uint8_t)RTC_Bcd2ToByte(RTC_StampTimeStruct->RTC_Hours);
RTC_StampTimeStruct->RTC_Minutes = (uint8_t)RTC_Bcd2ToByte(RTC_StampTimeStruct->RTC_Minutes);
RTC_StampTimeStruct->RTC_Seconds = (uint8_t)RTC_Bcd2ToByte(RTC_StampTimeStruct->RTC_Seconds);
/* Convert the Date structure parameters to Binary format */
RTC_StampDateStruct->RTC_Month = (uint8_t)RTC_Bcd2ToByte(RTC_StampDateStruct->RTC_Month);
RTC_StampDateStruct->RTC_Date = (uint8_t)RTC_Bcd2ToByte(RTC_StampDateStruct->RTC_Date);
RTC_StampDateStruct->RTC_WeekDay = (uint8_t)RTC_Bcd2ToByte(RTC_StampDateStruct->RTC_WeekDay);
}
}
/**
* @brief Get the RTC timestamp Subseconds value.
* @param None
* @retval RTC current timestamp Subseconds value.
*/
uint32_t RTC_GetTimeStampSubSecond(void)
{
/* Get timestamp subseconds values from the correspondent registers */
return (uint32_t)(RTC->TSSSR);
}
/**
* @}
*/
/**
* @brief Configures the select Tamper pin edge.
* @param RTC_Tamper: Selected tamper pin.
* This parameter can be any combination of the following values:
* @arg RTC_Tamper_1: Select Tamper 1.
* @arg RTC_Tamper_2: Select Tamper 2.
* @param RTC_TamperTrigger: Specifies the trigger on the tamper pin that
* stimulates tamper event.
* This parameter can be one of the following values:
* @arg RTC_TamperTrigger_RisingEdge: Rising Edge of the tamper pin causes tamper event.
* @arg RTC_TamperTrigger_FallingEdge: Falling Edge of the tamper pin causes tamper event.
* @arg RTC_TamperTrigger_LowLevel: Low Level of the tamper pin causes tamper event.
* @arg RTC_TamperTrigger_HighLevel: High Level of the tamper pin causes tamper event.
* @retval None
*/
void RTC_TamperTriggerConfig(uint32_t RTC_Tamper, uint32_t RTC_TamperTrigger)
{
/* Check the parameters */
assert_param(IS_RTC_TAMPER(RTC_Tamper));
assert_param(IS_RTC_TAMPER_TRIGGER(RTC_TamperTrigger));
if (RTC_TamperTrigger == RTC_TamperTrigger_RisingEdge)
{
/* Configure the RTC_TAFCR register */
RTC->TAFCR &= (uint32_t)((uint32_t)~(RTC_Tamper << 1));
}
else
{
/* Configure the RTC_TAFCR register */
RTC->TAFCR |= (uint32_t)(RTC_Tamper << 1);
}
}
/**
* @brief Enables or Disables the Tamper detection.
* @param RTC_Tamper: Selected tamper pin.
* This parameter can be any combination of the following values:
* @arg RTC_Tamper_1: Select Tamper 1.
* @arg RTC_Tamper_2: Select Tamper 2.
* @param NewState: new state of the tamper pin.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RTC_TamperCmd(uint32_t RTC_Tamper, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RTC_TAMPER(RTC_Tamper));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected Tamper pin */
RTC->TAFCR |= (uint32_t)RTC_Tamper;
}
else
{
/* Disable the selected Tamper pin */
RTC->TAFCR &= (uint32_t)~RTC_Tamper;
}
}
/**
* @brief Configures the Tampers Filter.
* @param RTC_TamperFilter: Specifies the tampers filter.
* This parameter can be one of the following values:
* @arg RTC_TamperFilter_Disable: Tamper filter is disabled.
* @arg RTC_TamperFilter_2Sample: Tamper is activated after 2 consecutive
* samples at the active level
* @arg RTC_TamperFilter_4Sample: Tamper is activated after 4 consecutive
* samples at the active level
* @arg RTC_TamperFilter_8Sample: Tamper is activated after 8 consecutive
* samples at the active level
* @retval None
*/
void RTC_TamperFilterConfig(uint32_t RTC_TamperFilter)
{
/* Check the parameters */
assert_param(IS_RTC_TAMPER_FILTER(RTC_TamperFilter));
/* Clear TAMPFLT[1:0] bits in the RTC_TAFCR register */
RTC->TAFCR &= (uint32_t)~(RTC_TAFCR_TAMPFLT);
/* Configure the RTC_TAFCR register */
RTC->TAFCR |= (uint32_t)RTC_TamperFilter;
}
/**
* @brief Configures the Tampers Sampling Frequency.
* @param RTC_TamperSamplingFreq: Specifies the tampers Sampling Frequency.
* This parameter can be one of the following values:
* @arg RTC_TamperSamplingFreq_RTCCLK_Div32768: Each of the tamper inputs are sampled
* with a frequency = RTCCLK / 32768
* @arg RTC_TamperSamplingFreq_RTCCLK_Div16384: Each of the tamper inputs are sampled
* with a frequency = RTCCLK / 16384
* @arg RTC_TamperSamplingFreq_RTCCLK_Div8192: Each of the tamper inputs are sampled
* with a frequency = RTCCLK / 8192
* @arg RTC_TamperSamplingFreq_RTCCLK_Div4096: Each of the tamper inputs are sampled
* with a frequency = RTCCLK / 4096
* @arg RTC_TamperSamplingFreq_RTCCLK_Div2048: Each of the tamper inputs are sampled
* with a frequency = RTCCLK / 2048
* @arg RTC_TamperSamplingFreq_RTCCLK_Div1024: Each of the tamper inputs are sampled
* with a frequency = RTCCLK / 1024
* @arg RTC_TamperSamplingFreq_RTCCLK_Div512: Each of the tamper inputs are sampled
* with a frequency = RTCCLK / 512
* @arg RTC_TamperSamplingFreq_RTCCLK_Div256: Each of the tamper inputs are sampled
* with a frequency = RTCCLK / 256
* @retval None
*/
void RTC_TamperSamplingFreqConfig(uint32_t RTC_TamperSamplingFreq)
{
/* Check the parameters */
assert_param(IS_RTC_TAMPER_SAMPLING_FREQ(RTC_TamperSamplingFreq));
/* Clear TAMPFREQ[2:0] bits in the RTC_TAFCR register */
RTC->TAFCR &= (uint32_t)~(RTC_TAFCR_TAMPFREQ);
/* Configure the RTC_TAFCR register */
RTC->TAFCR |= (uint32_t)RTC_TamperSamplingFreq;
}
/**
* @brief Configures the Tampers Pins input Precharge Duration.
* @param RTC_TamperPrechargeDuration: Specifies the Tampers Pins input
* Precharge Duration.
* This parameter can be one of the following values:
* @arg RTC_TamperPrechargeDuration_1RTCCLK: Tamper pins are pre-charged before sampling during 1 RTCCLK cycle
* @arg RTC_TamperPrechargeDuration_2RTCCLK: Tamper pins are pre-charged before sampling during 2 RTCCLK cycle
* @arg RTC_TamperPrechargeDuration_4RTCCLK: Tamper pins are pre-charged before sampling during 4 RTCCLK cycle
* @arg RTC_TamperPrechargeDuration_8RTCCLK: Tamper pins are pre-charged before sampling during 8 RTCCLK cycle
* @retval None
*/
void RTC_TamperPinsPrechargeDuration(uint32_t RTC_TamperPrechargeDuration)
{
/* Check the parameters */
assert_param(IS_RTC_TAMPER_PRECHARGE_DURATION(RTC_TamperPrechargeDuration));
/* Clear TAMPPRCH[1:0] bits in the RTC_TAFCR register */
RTC->TAFCR &= (uint32_t)~(RTC_TAFCR_TAMPPRCH);
/* Configure the RTC_TAFCR register */
RTC->TAFCR |= (uint32_t)RTC_TamperPrechargeDuration;
}
/**
* @brief Enables or Disables the TimeStamp on Tamper Detection Event.
* @note The timestamp is valid even the TSE bit in tamper control register
* is reset.
* @param NewState: new state of the timestamp on tamper event.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RTC_TimeStampOnTamperDetectionCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Save timestamp on tamper detection event */
RTC->TAFCR |= (uint32_t)RTC_TAFCR_TAMPTS;
}
else
{
/* Tamper detection does not cause a timestamp to be saved */
RTC->TAFCR &= (uint32_t)~RTC_TAFCR_TAMPTS;
}
}
/**
* @brief Enables or Disables the Precharge of Tamper pin.
* @param NewState: new state of tamper pull up.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RTC_TamperPullUpCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable precharge of the selected Tamper pin */
RTC->TAFCR &= (uint32_t)~RTC_TAFCR_TAMPPUDIS;
}
else
{
/* Disable precharge of the selected Tamper pin */
RTC->TAFCR |= (uint32_t)RTC_TAFCR_TAMPPUDIS;
}
}
/**
* @}
*/
/**
* @brief Configures the RTC Output Pin mode.
* @param RTC_OutputType: specifies the RTC Output (PC13) pin mode.
* This parameter can be one of the following values:
* @arg RTC_OutputType_OpenDrain: RTC Output (PC13) is configured in
* Open Drain mode.
* @arg RTC_OutputType_PushPull: RTC Output (PC13) is configured in
* Push Pull mode.
* @retval None
*/
void RTC_OutputTypeConfig(uint32_t RTC_OutputType)
{
/* Check the parameters */
assert_param(IS_RTC_OUTPUT_TYPE(RTC_OutputType));
RTC->TAFCR &= (uint32_t)~(RTC_TAFCR_ALARMOUTTYPE);
RTC->TAFCR |= (uint32_t)(RTC_OutputType);
}
/**
* @}
*/
/**
* @brief Configures the Synchronization Shift Control Settings.
* @note When REFCKON is set, firmware must not write to Shift control register
* @param RTC_ShiftAdd1S: Select to add or not 1 second to the time Calendar.
* This parameter can be one of the following values :
* @arg RTC_ShiftAdd1S_Set: Add one second to the clock calendar.
* @arg RTC_ShiftAdd1S_Reset: No effect.
* @param RTC_ShiftSubFS: Select the number of Second Fractions to Substitute.
* This parameter can be one any value from 0 to 0x7FFF.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: RTC Shift registers are configured
* - ERROR: RTC Shift registers are not configured
*/
ErrorStatus RTC_SynchroShiftConfig(uint32_t RTC_ShiftAdd1S, uint32_t RTC_ShiftSubFS)
{
ErrorStatus status = ERROR;
uint32_t shpfcount = 0;
/* Check the parameters */
assert_param(IS_RTC_SHIFT_ADD1S(RTC_ShiftAdd1S));
assert_param(IS_RTC_SHIFT_SUBFS(RTC_ShiftSubFS));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
/* Check if a Shift is pending*/
if ((RTC->ISR & RTC_ISR_SHPF) != RESET)
{
/* Wait until the shift is completed*/
while (((RTC->ISR & RTC_ISR_SHPF) != RESET) && (shpfcount != SHPF_TIMEOUT))
{
shpfcount++;
}
}
/* Check if the Shift pending is completed or if there is no Shift operation at all*/
if ((RTC->ISR & RTC_ISR_SHPF) == RESET)
{
/* check if the reference clock detection is disabled */
if((RTC->CR & RTC_CR_REFCKON) == RESET)
{
/* Configure the Shift settings */
RTC->SHIFTR = (uint32_t)(uint32_t)(RTC_ShiftSubFS) | (uint32_t)(RTC_ShiftAdd1S);
if(RTC_WaitForSynchro() == ERROR)
{
status = ERROR;
}
else
{
status = SUCCESS;
}
}
else
{
status = ERROR;
}
}
else
{
status = ERROR;
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
return (ErrorStatus)(status);
}
/**
* @}
*/
/**
* @brief Enables or disables the specified RTC interrupts.
* @param RTC_IT: specifies the RTC interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg RTC_IT_TS: Time Stamp interrupt mask
* @arg RTC_IT_WUT: WakeUp Timer interrupt mask
* @arg RTC_IT_ALRA: Alarm A interrupt mask
* @arg RTC_IT_TAMP: Tamper event interrupt mask
* @param NewState: new state of the specified RTC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void RTC_ITConfig(uint32_t RTC_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_RTC_CONFIG_IT(RTC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
/* Disable the write protection for RTC registers */
RTC->WPR = 0xCA;
RTC->WPR = 0x53;
if (NewState != DISABLE)
{
/* Configure the Interrupts in the RTC_CR register */
RTC->CR |= (uint32_t)(RTC_IT & ~RTC_TAFCR_TAMPIE);
/* Configure the Tamper Interrupt in the RTC_TAFCR */
RTC->TAFCR |= (uint32_t)(RTC_IT & RTC_TAFCR_TAMPIE);
}
else
{
/* Configure the Interrupts in the RTC_CR register */
RTC->CR &= (uint32_t)~(RTC_IT & (uint32_t)~RTC_TAFCR_TAMPIE);
/* Configure the Tamper Interrupt in the RTC_TAFCR */
RTC->TAFCR &= (uint32_t)~(RTC_IT & RTC_TAFCR_TAMPIE);
}
/* Enable the write protection for RTC registers */
RTC->WPR = 0xFF;
}
/**
* @brief Checks whether the specified RTC flag is set or not.
* @param RTC_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg RTC_FLAG_RECALPF: RECALPF event flag
* @arg RTC_FLAG_TAMP2F: Tamper 2 event flag
* @arg RTC_FLAG_TAMP1F: Tamper 1 event flag
* @arg RTC_FLAG_TSOVF: Time Stamp OverFlow flag
* @arg RTC_FLAG_TSF: Time Stamp event flag
* @arg RTC_FLAG_WUTF: WakeUp Timer flag
* @arg RTC_FLAG_ALRAF: Alarm A flag
* @arg RTC_FLAG_INITF: Initialization mode flag
* @arg RTC_FLAG_RSF: Registers Synchronized flag
* @arg RTC_FLAG_INITS: Registers Configured flag
* @retval The new state of RTC_FLAG (SET or RESET).
*/
FlagStatus RTC_GetFlagStatus(uint32_t RTC_FLAG)
{
FlagStatus bitstatus = RESET;
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RTC_GET_FLAG(RTC_FLAG));
/* Get all the flags */
tmpreg = (uint32_t)(RTC->ISR & RTC_FLAGS_MASK);
/* Return the status of the flag */
if ((tmpreg & RTC_FLAG) != (uint32_t)RESET)
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the RTC's pending flags.
* @param RTC_FLAG: specifies the RTC flag to clear.
* This parameter can be any combination of the following values:
* @arg RTC_FLAG_TAMP2F: Tamper 2 event flag
* @arg RTC_FLAG_TAMP1F: Tamper 1 event flag
* @arg RTC_FLAG_TSOVF: Time Stamp Overflow flag
* @arg RTC_FLAG_TSF: Time Stamp event flag
* @arg RTC_FLAG_WUTF: WakeUp Timer flag
* @arg RTC_FLAG_ALRAF: Alarm A flag
* @arg RTC_FLAG_RSF: Registers Synchronized flag
* @retval None
*/
void RTC_ClearFlag(uint32_t RTC_FLAG)
{
/* Check the parameters */
assert_param(IS_RTC_CLEAR_FLAG(RTC_FLAG));
/* Clear the Flags in the RTC_ISR register */
RTC->ISR = (uint32_t)((uint32_t)(~((RTC_FLAG | RTC_ISR_INIT)& 0x0001FFFF) | (uint32_t)(RTC->ISR & RTC_ISR_INIT)));
}
/**
* @brief Checks whether the specified RTC interrupt has occurred or not.
* @param RTC_IT: specifies the RTC interrupt source to check.
* This parameter can be one of the following values:
* @arg RTC_IT_TS: Time Stamp interrupt
* @arg RTC_IT_WUT: WakeUp Timer interrupt
* @arg RTC_IT_ALRA: Alarm A interrupt
* @arg RTC_IT_TAMP1: Tamper1 event interrupt
* @arg RTC_IT_TAMP2: Tamper2 event interrupt
* @retval The new state of RTC_IT (SET or RESET).
*/
ITStatus RTC_GetITStatus(uint32_t RTC_IT)
{
ITStatus bitstatus = RESET;
uint32_t tmpreg = 0, enablestatus = 0;
/* Check the parameters */
assert_param(IS_RTC_GET_IT(RTC_IT));
/* Get the TAMPER Interrupt enable bit and pending bit */
tmpreg = (uint32_t)(RTC->TAFCR & (RTC_TAFCR_TAMPIE));
/* Get the Interrupt enable Status */
enablestatus = (uint32_t)((RTC->CR & RTC_IT) | (tmpreg & ((RTC_IT >> (RTC_IT >> 18)) >> 15)));
/* Get the Interrupt pending bit */
tmpreg = (uint32_t)((RTC->ISR & (uint32_t)(RTC_IT >> 4)));
/* Get the status of the Interrupt */
if ((enablestatus != (uint32_t)RESET) && ((tmpreg & 0x0000FFFF) != (uint32_t)RESET))
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the RTC's interrupt pending bits.
* @param RTC_IT: specifies the RTC interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg RTC_IT_TS: Time Stamp interrupt
* @arg RTC_IT_WUT: WakeUp Timer interrupt
* @arg RTC_IT_ALRA: Alarm A interrupt
* @arg RTC_IT_TAMP1: Tamper1 event interrupt
* @arg RTC_IT_TAMP2: Tamper2 event interrupt
* @retval None
*/
void RTC_ClearITPendingBit(uint32_t RTC_IT)
{
uint32_t tmpreg = 0;
/* Check the parameters */
assert_param(IS_RTC_CLEAR_IT(RTC_IT));
/* Get the RTC_ISR Interrupt pending bits mask */
tmpreg = (uint32_t)(RTC_IT >> 4);
/* Clear the interrupt pending bits in the RTC_ISR register */
RTC->ISR = (uint32_t)((uint32_t)(~((tmpreg | RTC_ISR_INIT)& 0x0000FFFF) | (uint32_t)(RTC->ISR & RTC_ISR_INIT)));
}
/**
* @}
*/
/**
* @brief Converts a 2 digit decimal to BCD format.
* @param Value: Byte to be converted.
* @retval Converted byte
*/
static uint8_t RTC_ByteToBcd2(uint8_t Value)
{
uint8_t bcdhigh = 0;
while (Value >= 10)
{
bcdhigh++;
Value -= 10;
}
return ((uint8_t)(bcdhigh << 4) | Value);
}
/**
* @brief Convert from 2 digit BCD to Binary.
* @param Value: BCD value to be converted.
* @retval Converted word
*/
static uint8_t RTC_Bcd2ToByte(uint8_t Value)
{
uint8_t tmp = 0;
tmp = ((uint8_t)(Value & (uint8_t)0xF0) >> (uint8_t)0x4) * 10;
return (tmp + (Value & (uint8_t)0x0F));
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT FMD *****END OF FILE****/