rt-thread-official/components/drivers/sdio/dev_gpt.c

564 lines
14 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-05-05 linzhenxing first version
*/
#include <rtthread.h>
#include <dfs_fs.h>
#include <drivers/dev_gpt.h>
#include <drivers/dev_mmcsd_core.h>
#define DBG_TAG "GPT"
#ifdef RT_SDIO_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* RT_SDIO_DEBUG */
#include <rtdbg.h>
#define min(a, b) a < b ? a : b
static int force_gpt = 0;
static gpt_header *_gpt;
static gpt_entry *_ptes;
#define GPT_TYPE 1
#define MBR_TYPE 0
static inline int efi_guidcmp (gpt_guid_t left, gpt_guid_t right)
{
return rt_memcmp(&left, &right, sizeof (gpt_guid_t));
}
static uint32_t last_lba(struct rt_mmcsd_card *card)
{
RT_ASSERT(card != RT_NULL);
return (card->card_sec_cnt) - 1;
}
static inline int pmbr_part_valid(gpt_mbr_record *part)
{
if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT)
{
goto invalid;
}
/* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */
if ((uint32_t)(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA)
{
goto invalid;
}
return GPT_MBR_PROTECTIVE;
invalid:
return 0;
}
/*
*
* return ret
* ret = 0, invalid mbr
* ret = 1, protect mbr
* ret = 2, hybrid mbr
*/
int is_pmbr_valid(legacy_mbr *mbr, uint64_t total_sectors)
{
uint32_t sz = 0;
int i, part = 0, ret = 0; /* invalid by default */
if (!mbr || (uint16_t)(mbr->signature) != MSDOS_MBR_SIGNATURE)
{
goto done;
}
for (i = 0; i < 4; i++)
{
ret = pmbr_part_valid(&mbr->partition_record[i]);
if (ret == GPT_MBR_PROTECTIVE)
{
part = i;
/*
* Ok, we at least know that there's a protective MBR,
* now check if there are other partition types for
* hybrid MBR.
*/
goto check_hybrid;
}
}
if (ret != GPT_MBR_PROTECTIVE)
{
goto done;
}
check_hybrid:
for (i = 0; i < 4; i++)
{
if ((mbr->partition_record[i].os_type !=
EFI_PMBR_OSTYPE_EFI_GPT) &&
(mbr->partition_record[i].os_type != 0x00))
{
ret = GPT_MBR_HYBRID;
}
}
/*
* Protective MBRs take up the lesser of the whole disk
* or 2 TiB (32bit LBA), ignoring the rest of the disk.
* Some partitioning programs, nonetheless, choose to set
* the size to the maximum 32-bit limitation, disregarding
* the disk size.
*
* Hybrid MBRs do not necessarily comply with this.
*
* Consider a bad value here to be a warning to support dd'ing
* an image from a smaller disk to a larger disk.
*/
if (ret == GPT_MBR_PROTECTIVE)
{
sz = (uint32_t)(mbr->partition_record[part].size_in_lba);
if (sz != (uint32_t) total_sectors - 1 && sz != 0xFFFFFFFF)
{
LOG_I("GPT: mbr size in lba (%u) different than whole disk (%u).",
sz, min(total_sectors - 1, 0xFFFFFFFF));
}
}
done:
return ret;
}
static gpt_entry *alloc_read_gpt_entries(struct rt_mmcsd_card *card, gpt_header *gpt)
{
size_t count;
gpt_entry *pte;
if (!gpt)
{
return RT_NULL;
}
count = (size_t)(gpt->num_partition_entries) * (gpt->sizeof_partition_entry);
if (!count)
{
return RT_NULL;
}
pte = rt_malloc(count);
if (!pte)
return RT_NULL;
if (read_lba(card, (size_t)(gpt->partition_entry_lba),(uint8_t *)pte, count/512) != RT_EOK)
{
rt_free(pte);
return RT_NULL;
}
return pte;
}
static gpt_header *alloc_read_gpt_header(struct rt_mmcsd_card *card, size_t lba)
{
gpt_header *gpt;
void *buf;
buf = rt_malloc(512);
if (!buf)
{
return RT_NULL;
}
if (read_lba(card, lba, (uint8_t *)buf, 1) != RT_EOK)
{
rt_free(buf);
return RT_NULL;
}
gpt = (gpt_header *)buf;
return gpt;
}
static int is_gpt_valid(struct rt_mmcsd_card *card, size_t lba, gpt_header **gpt, gpt_entry **ptes)
{
size_t lastlba;
if (!ptes || !gpt)
{
return 0;
}
*gpt = alloc_read_gpt_header(card, lba);
if (!(*gpt))
{
return 0;
}
/* Check the GUID Partition Table signature */
if ((uint64_t)((*gpt)->signature) != GPT_HEADER_SIGNATURE)
{
LOG_E("GUID Partition Table Header signature is wrong:"
"%ld != %ld",(uint64_t)((*gpt)->signature),(uint64_t)GPT_HEADER_SIGNATURE);
goto fail;
}
/* Check the GUID Partition Table header size is too small */
if ((uint32_t)((*gpt)->header_size) < sizeof(gpt_header))
{
LOG_E("GUID Partition Table Header size is too small: %u < %zu",
(uint32_t)((*gpt)->header_size),sizeof(gpt_header));
goto fail;
}
/* Check that the start_lba entry points to the LBA that contains
* the GUID Partition Table */
if ((uint64_t)((*gpt)->start_lba) != lba)
{
LOG_E("GPT start_lba incorrect: %ld != %ld",
(uint64_t)((*gpt)->start_lba),
(uint64_t)lba);
goto fail;
}
/* Check the first_usable_lba and last_usable_lba are
* within the disk.
*/
lastlba = last_lba(card);
if ((uint64_t)((*gpt)->first_usable_lba) > lastlba)
{
LOG_E("GPT: first_usable_lba incorrect: %ld > %ld",
((uint64_t)((*gpt)->first_usable_lba)),
(size_t)lastlba);
goto fail;
}
if ((uint64_t)((*gpt)->last_usable_lba) > lastlba)
{
LOG_E("GPT: last_usable_lba incorrect: %ld > %ld",
(uint64_t)((*gpt)->last_usable_lba),
(size_t)lastlba);
goto fail;
}
if ((uint64_t)((*gpt)->last_usable_lba) < (uint64_t)((*gpt)->first_usable_lba))
{
LOG_E("GPT: last_usable_lba incorrect: %ld > %ld",
(uint64_t)((*gpt)->last_usable_lba),
(uint64_t)((*gpt)->first_usable_lba));
goto fail;
}
/* Check that sizeof_partition_entry has the correct value */
if ((uint32_t)((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry)) {
LOG_E("GUID Partition Entry Size check failed.");
goto fail;
}
*ptes = alloc_read_gpt_entries(card, *gpt);
if (!(*ptes))
{
goto fail;
}
/* We're done, all's well */
return 1;
fail:
rt_free(*gpt);
*gpt = RT_NULL;
return 0;
}
/**
* is_pte_valid() - tests one PTE for validity
* pte:pte to check
* lastlba: last lba of the disk
*
* Description: returns 1 if valid, 0 on error.
*/
static inline int is_pte_valid(const gpt_entry *pte, const size_t lastlba)
{
if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) ||
(uint64_t)(pte->starting_lba) > lastlba ||
(uint64_t)(pte->ending_lba) > lastlba)
{
return 0;
}
return 1;
}
/**
* compare_gpts() - Search disk for valid GPT headers and PTEs
* pgpt: primary GPT header
* agpt: alternate GPT header
* lastlba: last LBA number
*
* Description: Returns nothing. Sanity checks pgpt and agpt fields
* and prints warnings on discrepancies.
*
*/
static void compare_gpts(gpt_header *pgpt, gpt_header *agpt, size_t lastlba)
{
int error_found = 0;
if (!pgpt || !agpt)
{
return;
}
if ((uint64_t)(pgpt->start_lba) != (uint64_t)(agpt->alternate_lba))
{
LOG_I("GPT:Primary header LBA != Alt. header alternate_lba");
LOG_I("GPT:%lld != %lld",
(uint64_t)(pgpt->start_lba),
(uint64_t)(agpt->alternate_lba));
error_found++;
}
if ((uint64_t)(pgpt->alternate_lba) != (uint64_t)(agpt->start_lba))
{
LOG_I("GPT:Primary header alternate_lba != Alt. header start_lba");
LOG_I("GPT:%lld != %lld",
(uint64_t)(pgpt->alternate_lba),
(uint64_t)(agpt->start_lba));
error_found++;
}
if ((uint64_t)(pgpt->first_usable_lba) != (uint64_t)(agpt->first_usable_lba))
{
LOG_I("GPT:first_usable_lbas don't match.");
LOG_I("GPT:%lld != %lld",
(uint64_t)(pgpt->first_usable_lba),
(uint64_t)(agpt->first_usable_lba));
error_found++;
}
if ((uint64_t)(pgpt->last_usable_lba) != (uint64_t)(agpt->last_usable_lba))
{
LOG_I("GPT:last_usable_lbas don't match.");
LOG_I("GPT:%lld != %lld",
(uint64_t)(pgpt->last_usable_lba),
(uint64_t)(agpt->last_usable_lba));
error_found++;
}
if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid))
{
LOG_I("GPT:disk_guids don't match.");
error_found++;
}
if ((pgpt->num_partition_entries) != (agpt->num_partition_entries))
{
LOG_I("GPT:num_partition_entries don't match: "
"0x%x != 0x%x",
(pgpt->num_partition_entries),
(agpt->num_partition_entries));
error_found++;
}
if ((pgpt->sizeof_partition_entry) != (agpt->sizeof_partition_entry))
{
LOG_I("GPT:sizeof_partition_entry values don't match: "
"0x%x != 0x%x",
(pgpt->sizeof_partition_entry),
(agpt->sizeof_partition_entry));
error_found++;
}
if ((pgpt->partition_entry_array_crc32) != (agpt->partition_entry_array_crc32))
{
LOG_I("GPT:partition_entry_array_crc32 values don't match: "
"0x%x != 0x%x",
(pgpt->partition_entry_array_crc32),
(agpt->partition_entry_array_crc32));
error_found++;
}
if ((pgpt->alternate_lba) != lastlba)
{
LOG_I("GPT:Primary header thinks Alt. header is not at the end of the disk.");
LOG_I("GPT:%lld != %lld",
(uint64_t)(pgpt->alternate_lba),
(size_t)lastlba);
error_found++;
}
if ((agpt->start_lba) != lastlba)
{
LOG_I("GPT:Alternate GPT header not at the end of the disk.");
LOG_I("GPT:%lld != %lld",
(uint64_t)(agpt->start_lba),
(size_t)lastlba);
error_found++;
}
if (error_found)
{
LOG_I("GPT: Use GNU Parted to correct GPT errors.");
}
return;
}
/**
* find_valid_gpt() - Search disk for valid GPT headers and PTEs
* state: disk parsed partitions
* gpt: GPT header ptr, filled on return.
* ptes: PTEs ptr, filled on return.
*
* Description: Returns 1 if valid, 0 on error.
* If valid, returns pointers to newly allocated GPT header and PTEs.
* Validity depends on PMBR being valid (or being overridden by the
* 'gpt' kernel command line option) and finding either the Primary
* GPT header and PTEs valid, or the Alternate GPT header and PTEs
* valid. If the Primary GPT header is not valid, the Alternate GPT header
* is not checked unless the 'gpt' kernel command line option is passed.
* This protects against devices which misreport their size, and forces
* the user to decide to use the Alternate GPT.
*/
static int find_valid_gpt(struct rt_mmcsd_card *card, gpt_header **gpt,
gpt_entry **ptes)
{
int good_pgpt = 0, good_agpt = 0, good_pmbr = 0;
gpt_header *pgpt = RT_NULL, *agpt = RT_NULL;
gpt_entry *pptes = RT_NULL, *aptes = RT_NULL;
legacy_mbr *legacymbr;
size_t total_sectors = last_lba(card) + 1;
size_t lastlba;
int status = 0;
if (!ptes)
{
return 0;
}
lastlba = last_lba(card);
if (!force_gpt)
{
/* This will be added to the EFI Spec. per Intel after v1.02. */
legacymbr = rt_malloc(512);
if (!legacymbr)
{
goto fail;
}
status = read_lba(card, 0, (uint8_t *)legacymbr, 1);
if (status)
{
LOG_I("status:%d", status);
goto fail;
}
good_pmbr = is_pmbr_valid(legacymbr, total_sectors);
rt_free(legacymbr);
if (!good_pmbr)
{
goto fail;
}
rt_kprintf("Device has a %s MBR\n",
good_pmbr == GPT_MBR_PROTECTIVE ?
"protective" : "hybrid");
}
good_pgpt = is_gpt_valid(card, GPT_PRIMARY_PARTITION_TABLE_LBA,
&pgpt, &pptes);
if (good_pgpt)
{
good_agpt = is_gpt_valid(card, (pgpt->alternate_lba), &agpt, &aptes);
if (!good_agpt && force_gpt)
{
good_agpt = is_gpt_valid(card, lastlba, &agpt, &aptes);
}
/* The obviously unsuccessful case */
if (!good_pgpt && !good_agpt)
{
goto fail;
}
compare_gpts(pgpt, agpt, lastlba);
/* The good cases */
if (good_pgpt)
{
*gpt = pgpt;
*ptes = pptes;
rt_free(agpt);
rt_free(aptes);
if (!good_agpt)
{
LOG_D("Alternate GPT is invalid, using primary GPT.");
}
return 1;
}
else if (good_agpt)
{
*gpt = agpt;
*ptes = aptes;
rt_free(pgpt);
rt_free(pptes);
LOG_D("Primary GPT is invalid, using alternate GPT.");
return 1;
}
}
fail:
rt_free(pgpt);
rt_free(agpt);
rt_free(pptes);
rt_free(aptes);
*gpt = RT_NULL;
*ptes = RT_NULL;
return 0;
}
int check_gpt(struct rt_mmcsd_card *card)
{
if (!find_valid_gpt(card, &_gpt, &_ptes) || !_gpt || !_ptes)
{
rt_free(_gpt);
rt_free(_ptes);
return MBR_TYPE;
}
return GPT_TYPE;
}
int gpt_get_partition_param(struct rt_mmcsd_card *card, struct dfs_partition *part, uint32_t pindex)
{
if (!is_pte_valid(&_ptes[pindex], last_lba(card)))
{
return -1;
}
part->offset = (off_t)(_ptes[pindex].starting_lba);
part->size = (_ptes[pindex].ending_lba) - (_ptes[pindex].starting_lba) + 1ULL;
rt_kprintf("found part[%d], begin(sector): %d, end(sector):%d size: ",
pindex, _ptes[pindex].starting_lba, _ptes[pindex].ending_lba);
if ((part->size >> 11) == 0)
{
rt_kprintf("%d%s", part->size >> 1, "KB\n"); /* KB */
}
else
{
unsigned int part_size;
part_size = part->size >> 11; /* MB */
if ((part_size >> 10) == 0)
rt_kprintf("%d.%d%s", part_size, (part->size >> 1) & 0x3FF, "MB\n");
else
rt_kprintf("%d.%d%s", part_size >> 10, part_size & 0x3FF, "GB\n");
}
return 0;
}
void gpt_free(void)
{
rt_free(_ptes);
rt_free(_gpt);
}