rt-thread-official/components/libc/compilers/common/ctime.c

1324 lines
34 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-08-21 zhangjun copy from minilibc
* 2020-09-07 Meco Man combine gcc armcc iccarm
* 2021-02-05 Meco Man add timegm()
* 2021-02-07 Meco Man fixed gettimeofday()
* 2021-02-08 Meco Man add settimeofday() stime()
* 2021-02-10 Meco Man add ctime_r() and re-implement ctime()
* 2021-02-11 Meco Man fix bug #3183 - align days[] and months[] to 4 bytes
* 2021-02-12 Meco Man add errno
* 2012-12-08 Bernard <clock_time.c> fix the issue of _timevalue.tv_usec initialization,
* which found by Rob <rdent@iinet.net.au>
* 2021-02-12 Meco Man move all of the functions located in <clock_time.c> to this file
* 2021-03-15 Meco Man fixed a bug of leaking memory in asctime()
* 2021-05-01 Meco Man support fixed timezone
* 2021-07-21 Meco Man implement that change/set timezone APIs
*/
#include "sys/time.h"
#include <sys/errno.h>
#include <rtthread.h>
#include <rthw.h>
#include <unistd.h>
#ifdef RT_USING_SMART
#include "lwp.h"
#endif
#ifdef RT_USING_POSIX_DELAY
#include <delay.h>
#endif
#if defined( RT_USING_RTC ) || defined( RT_USING_CPUTIME)
#include <rtdevice.h>
#endif
#define DBG_TAG "time"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#define _WARNING_NO_RTC "Cannot find a RTC device!"
/* seconds per day */
#define SPD 24*60*60
/* days per month -- nonleap! */
static const short __spm[13] =
{
0,
(31),
(31 + 28),
(31 + 28 + 31),
(31 + 28 + 31 + 30),
(31 + 28 + 31 + 30 + 31),
(31 + 28 + 31 + 30 + 31 + 30),
(31 + 28 + 31 + 30 + 31 + 30 + 31),
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31),
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30),
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31),
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30),
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31),
};
rt_align(4) static const char *days = "Sun Mon Tue Wed Thu Fri Sat ";
rt_align(4) static const char *months = "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ";
#ifndef __isleap
static int __isleap(int year)
{
/* every fourth year is a leap year except for century years that are
* not divisible by 400. */
/* return (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); */
return (!(year % 4) && ((year % 100) || !(year % 400)));
}
#endif
static void num2str(char *c, int i)
{
c[0] = i / 10 + '0';
c[1] = i % 10 + '0';
}
/**
* Get time from RTC device (without timezone, UTC+0)
* @param tv: struct timeval
* @return the operation status, RT_EOK on successful
*/
static rt_err_t get_timeval(struct timeval *tv)
{
#ifdef RT_USING_RTC
static rt_device_t device = RT_NULL;
rt_err_t rst = -RT_ERROR;
if (tv == RT_NULL)
return -RT_EINVAL;
/* default is 0 */
tv->tv_sec = 0;
tv->tv_usec = 0;
/* optimization: find rtc device only first */
if (device == RT_NULL)
{
device = rt_device_find("rtc");
}
/* read timestamp from RTC device */
if (device != RT_NULL)
{
if (rt_device_open(device, 0) == RT_EOK)
{
rst = rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &tv->tv_sec);
rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIMEVAL, tv);
rt_device_close(device);
}
}
else
{
LOG_W(_WARNING_NO_RTC);
return -RT_ENOSYS;
}
return rst;
#else
LOG_W(_WARNING_NO_RTC);
return -RT_ENOSYS;
#endif /* RT_USING_RTC */
}
/**
* Set time to RTC device (without timezone)
* @param tv: struct timeval
* @return the operation status, RT_EOK on successful
*/
static int set_timeval(struct timeval *tv)
{
#ifdef RT_USING_RTC
static rt_device_t device = RT_NULL;
rt_err_t rst = -RT_ERROR;
if (tv == RT_NULL)
return -RT_EINVAL;
/* optimization: find rtc device only first */
if (device == RT_NULL)
{
device = rt_device_find("rtc");
}
/* read timestamp from RTC device */
if (device != RT_NULL)
{
if (rt_device_open(device, 0) == RT_EOK)
{
rst = rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &tv->tv_sec);
rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIMEVAL, tv);
rt_device_close(device);
}
}
else
{
LOG_W(_WARNING_NO_RTC);
return -RT_ENOSYS;
}
return rst;
#else
LOG_W(_WARNING_NO_RTC);
return -RT_ENOSYS;
#endif /* RT_USING_RTC */
}
struct tm *gmtime_r(const time_t *timep, struct tm *r)
{
int i;
int work;
if(timep == RT_NULL || r == RT_NULL)
{
rt_set_errno(EFAULT);
return RT_NULL;
}
rt_memset(r, RT_NULL, sizeof(struct tm));
work = *timep % (SPD);
r->tm_sec = work % 60;
work /= 60;
r->tm_min = work % 60;
r->tm_hour = work / 60;
work = (int)(*timep / (SPD));
r->tm_wday = (4 + work) % 7;
for (i = 1970;; ++i)
{
int k = __isleap(i) ? 366 : 365;
if (work >= k)
work -= k;
else
break;
}
r->tm_year = i - 1900;
r->tm_yday = work;
r->tm_mday = 1;
if (__isleap(i) && (work > 58))
{
if (work == 59)
r->tm_mday = 2; /* 29.2. */
work -= 1;
}
for (i = 11; i && (__spm[i] > work); --i);
r->tm_mon = i;
r->tm_mday += work - __spm[i];
r->tm_isdst = tz_is_dst();
return r;
}
RTM_EXPORT(gmtime_r);
struct tm* gmtime(const time_t* t)
{
static struct tm tmp;
return gmtime_r(t, &tmp);
}
RTM_EXPORT(gmtime);
struct tm* localtime_r(const time_t* t, struct tm* r)
{
time_t local_tz;
local_tz = *t + (time_t)tz_get() * 3600;
return gmtime_r(&local_tz, r);
}
RTM_EXPORT(localtime_r);
struct tm* localtime(const time_t* t)
{
static struct tm tmp;
return localtime_r(t, &tmp);
}
RTM_EXPORT(localtime);
time_t mktime(struct tm * const t)
{
time_t timestamp;
timestamp = timegm(t);
timestamp = timestamp - 3600 * (time_t)tz_get();
return timestamp;
}
RTM_EXPORT(mktime);
char* asctime_r(const struct tm *t, char *buf)
{
if(t == RT_NULL || buf == RT_NULL)
{
rt_set_errno(EFAULT);
return RT_NULL;
}
rt_memset(buf, RT_NULL, 26);
/* Checking input validity */
if ((int)rt_strlen(days) <= (t->tm_wday << 2) || (int)rt_strlen(months) <= (t->tm_mon << 2))
{
LOG_W("asctime_r: the input parameters exceeded the limit, please check it.");
*(int*) buf = *(int*) days;
*(int*) (buf + 4) = *(int*) months;
num2str(buf + 8, t->tm_mday);
if (buf[8] == '0')
buf[8] = ' ';
buf[10] = ' ';
num2str(buf + 11, t->tm_hour);
buf[13] = ':';
num2str(buf + 14, t->tm_min);
buf[16] = ':';
num2str(buf + 17, t->tm_sec);
buf[19] = ' ';
num2str(buf + 20, 2000 / 100);
num2str(buf + 22, 2000 % 100);
buf[24] = '\n';
buf[25] = '\0';
return buf;
}
/* "Wed Jun 30 21:49:08 1993\n" */
*(int*) buf = *(int*) (days + (t->tm_wday << 2));
*(int*) (buf + 4) = *(int*) (months + (t->tm_mon << 2));
num2str(buf + 8, t->tm_mday);
if (buf[8] == '0')
buf[8] = ' ';
buf[10] = ' ';
num2str(buf + 11, t->tm_hour);
buf[13] = ':';
num2str(buf + 14, t->tm_min);
buf[16] = ':';
num2str(buf + 17, t->tm_sec);
buf[19] = ' ';
num2str(buf + 20, (t->tm_year + 1900) / 100);
num2str(buf + 22, (t->tm_year + 1900) % 100);
buf[24] = '\n';
buf[25] = '\0';
return buf;
}
RTM_EXPORT(asctime_r);
char* asctime(const struct tm *timeptr)
{
static char buf[26];
return asctime_r(timeptr, buf);
}
RTM_EXPORT(asctime);
char *ctime_r(const time_t * tim_p, char * result)
{
struct tm tm;
return asctime_r(localtime_r(tim_p, &tm), result);
}
RTM_EXPORT(ctime_r);
char* ctime(const time_t *tim_p)
{
return asctime(localtime(tim_p));
}
RTM_EXPORT(ctime);
#ifndef __ICCARM__
double difftime(time_t time1, time_t time2)
{
return (double)(time1 - time2);
}
#endif /* __ICCARM__ */
RTM_EXPORT(difftime);
RTM_EXPORT(strftime); /* inherent in the toolchain */
/**
* Returns the current time.
*
* @param time_t * t the timestamp pointer, if not used, keep NULL.
*
* @return The value ((time_t)-1) is returned if the calendar time is not available.
* If timer is not a NULL pointer, the return value is also stored in timer.
*
*/
rt_weak time_t time(time_t *t)
{
struct timeval now;
if(get_timeval(&now) == RT_EOK)
{
if (t)
{
*t = now.tv_sec;
}
return now.tv_sec;
}
else
{
rt_set_errno(EFAULT);
return ((time_t)-1);
}
}
RTM_EXPORT(time);
rt_weak clock_t clock(void)
{
return rt_tick_get();
}
RTM_EXPORT(clock);
int stime(const time_t *t)
{
struct timeval tv;
if (t == RT_NULL)
{
rt_set_errno(EFAULT);
return -1;
}
tv.tv_sec = *t;
tv.tv_usec = 0;
if (set_timeval(&tv) == RT_EOK)
{
return 0;
}
else
{
rt_set_errno(EFAULT);
return -1;
}
}
RTM_EXPORT(stime);
time_t timegm(struct tm * const t)
{
time_t day;
time_t i;
time_t years;
if(t == RT_NULL)
{
rt_set_errno(EFAULT);
return (time_t)-1;
}
years = (time_t)t->tm_year - 70;
if (t->tm_sec > 60) /* seconds after the minute - [0, 60] including leap second */
{
t->tm_min += t->tm_sec / 60;
t->tm_sec %= 60;
}
if (t->tm_min >= 60) /* minutes after the hour - [0, 59] */
{
t->tm_hour += t->tm_min / 60;
t->tm_min %= 60;
}
if (t->tm_hour >= 24) /* hours since midnight - [0, 23] */
{
t->tm_mday += t->tm_hour / 24;
t->tm_hour %= 24;
}
if (t->tm_mon >= 12) /* months since January - [0, 11] */
{
t->tm_year += t->tm_mon / 12;
t->tm_mon %= 12;
}
while (t->tm_mday > __spm[1 + t->tm_mon])
{
if (t->tm_mon == 1 && __isleap(t->tm_year + 1900))
{
--t->tm_mday;
}
t->tm_mday -= __spm[t->tm_mon];
++t->tm_mon;
if (t->tm_mon > 11)
{
t->tm_mon = 0;
++t->tm_year;
}
}
if (t->tm_year < 70)
{
rt_set_errno(EINVAL);
return (time_t) -1;
}
/* Days since 1970 is 365 * number of years + number of leap years since 1970 */
day = years * 365 + (years + 1) / 4;
/* After 2100 we have to substract 3 leap years for every 400 years
This is not intuitive. Most mktime implementations do not support
dates after 2059, anyway, so we might leave this out for it's
bloat. */
if (years >= 131)
{
years -= 131;
years /= 100;
day -= (years >> 2) * 3 + 1;
if ((years &= 3) == 3)
years--;
day -= years;
}
day += t->tm_yday = __spm[t->tm_mon] + t->tm_mday - 1 +
(__isleap(t->tm_year + 1900) & (t->tm_mon > 1));
/* day is now the number of days since 'Jan 1 1970' */
i = 7;
t->tm_wday = (int)((day + 4) % i); /* Sunday=0, Monday=1, ..., Saturday=6 */
i = 24;
day *= i;
i = 60;
return ((day + t->tm_hour) * i + t->tm_min) * i + t->tm_sec;
}
RTM_EXPORT(timegm);
int gettimeofday(struct timeval *tv, struct timezone *tz)
{
/* The use of the timezone structure is obsolete;
* the tz argument should normally be specified as NULL.
* The tz_dsttime field has never been used under Linux.
* Thus, the following is purely of historic interest.
*/
if(tz != RT_NULL)
{
tz->tz_dsttime = DST_NONE;
tz->tz_minuteswest = -(tz_get() * 60);
}
if (tv != RT_NULL && get_timeval(tv) == RT_EOK)
{
return 0;
}
else
{
rt_set_errno(EINVAL);
return -1;
}
}
RTM_EXPORT(gettimeofday);
int settimeofday(const struct timeval *tv, const struct timezone *tz)
{
/* The use of the timezone structure is obsolete;
* the tz argument should normally be specified as NULL.
* The tz_dsttime field has never been used under Linux.
* Thus, the following is purely of historic interest.
*/
if (tv != RT_NULL
&& tv->tv_usec >= 0
&& set_timeval((struct timeval *)tv) == RT_EOK)
{
return 0;
}
else
{
rt_set_errno(EINVAL);
return -1;
}
}
RTM_EXPORT(settimeofday);
#ifdef RT_USING_POSIX_DELAY
int nanosleep(const struct timespec *rqtp, struct timespec *rmtp)
{
if (rqtp->tv_sec < 0 || rqtp->tv_nsec < 0 || rqtp->tv_nsec >= NANOSECOND_PER_SECOND)
{
rt_set_errno(EINVAL);
return -1;
}
#ifdef RT_USING_CPUTIME
rt_uint64_t unit = clock_cpu_getres();
rt_uint64_t ns = rqtp->tv_sec * NANOSECOND_PER_SECOND + rqtp->tv_nsec;
rt_uint64_t tick = (ns * (1000UL * 1000)) / unit;
rt_cputime_sleep(tick);
if (rt_get_errno() == -RT_EINTR)
{
if (rmtp)
{
uint64_t rmtp_cpu_tick = tick - clock_cpu_gettime();
rmtp->tv_sec = ((time_t)((rmtp_cpu_tick * unit) / (1000UL * 1000))) / NANOSECOND_PER_SECOND;
rmtp->tv_nsec = ((long)((rmtp_cpu_tick * unit) / (1000UL * 1000))) % NANOSECOND_PER_SECOND;
}
rt_set_errno(EINTR);
return -1;
}
#else
rt_tick_t tick, tick_old = rt_tick_get();
tick = rqtp->tv_sec * RT_TICK_PER_SECOND + ((uint64_t)rqtp->tv_nsec * RT_TICK_PER_SECOND) / NANOSECOND_PER_SECOND;
rt_thread_delay(tick);
if (rt_get_errno() == -RT_EINTR)
{
if (rmtp)
{
tick = tick_old + tick - rt_tick_get();
/* get the passed time */
rmtp->tv_sec = tick / RT_TICK_PER_SECOND;
rmtp->tv_nsec = (tick % RT_TICK_PER_SECOND) * (NANOSECOND_PER_SECOND / RT_TICK_PER_SECOND);
}
rt_set_errno(EINTR);
return -1;
}
#endif
return 0;
}
RTM_EXPORT(nanosleep);
#endif /* RT_USING_POSIX_DELAY */
#ifdef RT_USING_POSIX_CLOCK
#ifdef RT_USING_RTC
static volatile struct timeval _timevalue;
static int _rt_clock_time_system_init(void)
{
rt_base_t level;
time_t time = 0;
rt_tick_t tick;
rt_device_t device;
device = rt_device_find("rtc");
if (device != RT_NULL)
{
/* get realtime seconds */
if(rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &time) == RT_EOK)
{
level = rt_hw_interrupt_disable();
tick = rt_tick_get(); /* get tick */
_timevalue.tv_usec = (tick%RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK;
_timevalue.tv_sec = time - tick/RT_TICK_PER_SECOND - 1;
rt_hw_interrupt_enable(level);
return 0;
}
}
level = rt_hw_interrupt_disable();
_timevalue.tv_usec = 0;
_timevalue.tv_sec = 0;
rt_hw_interrupt_enable(level);
return -1;
}
INIT_COMPONENT_EXPORT(_rt_clock_time_system_init);
#endif /* RT_USING_RTC */
int clock_getres(clockid_t clockid, struct timespec *res)
{
#ifndef RT_USING_RTC
LOG_W(_WARNING_NO_RTC);
return -1;
#else
int ret = 0;
if (res == RT_NULL)
{
rt_set_errno(EFAULT);
return -1;
}
switch (clockid)
{
case CLOCK_REALTIME:
#ifndef RT_USING_CPUTIME
res->tv_sec = 0;
res->tv_nsec = NANOSECOND_PER_SECOND/RT_TICK_PER_SECOND;
break;
#endif
#ifdef RT_USING_CPUTIME
case CLOCK_CPUTIME_ID:
res->tv_sec = 0;
res->tv_nsec = (clock_cpu_getres() / (1000UL * 1000));
break;
#endif
default:
res->tv_sec = 0;
res->tv_nsec = 0;
ret = -1;
rt_set_errno(EINVAL);
break;
}
return ret;
#endif /* RT_USING_RTC */
}
RTM_EXPORT(clock_getres);
int clock_gettime(clockid_t clockid, struct timespec *tp)
{
#ifndef RT_USING_RTC
LOG_W(_WARNING_NO_RTC);
return -1;
#else
int ret = 0;
if (tp == RT_NULL)
{
rt_set_errno(EFAULT);
return -1;
}
switch (clockid)
{
case CLOCK_REALTIME:
#ifndef RT_USING_CPUTIME
{
rt_tick_t tick;
rt_base_t level;
level = rt_hw_interrupt_disable();
tick = rt_tick_get(); /* get tick */
tp->tv_sec = _timevalue.tv_sec + tick / RT_TICK_PER_SECOND;
tp->tv_nsec = (_timevalue.tv_usec + (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK) * 1000U;
rt_hw_interrupt_enable(level);
if (tp->tv_nsec > 1000000000ULL)
{
tp->tv_nsec %= 1000000000ULL;
tp->tv_sec += 1;
}
}
break;
#endif
#ifdef RT_USING_CPUTIME
case CLOCK_MONOTONIC:
case CLOCK_CPUTIME_ID:
{
uint64_t unit = 0;
uint64_t cpu_tick;
unit = clock_cpu_getres();
cpu_tick = clock_cpu_gettime();
tp->tv_sec = ((uint64_t)((cpu_tick * unit) / (1000UL * 1000))) / NANOSECOND_PER_SECOND;
tp->tv_nsec = ((uint64_t)((cpu_tick * unit) / (1000UL * 1000))) % NANOSECOND_PER_SECOND;
}
break;
#endif
default:
tp->tv_sec = 0;
tp->tv_nsec = 0;
rt_set_errno(EINVAL);
ret = -1;
}
return ret;
#endif /* RT_USING_RTC */
}
RTM_EXPORT(clock_gettime);
int clock_nanosleep(clockid_t clockid, int flags, const struct timespec *rqtp, struct timespec *rmtp)
{
#ifndef RT_USING_RTC
LOG_W(_WARNING_NO_RTC);
return -1;
#else
if (rqtp->tv_sec < 0 || rqtp->tv_nsec < 0 || rqtp->tv_nsec >= NANOSECOND_PER_SECOND)
{
rt_set_errno(EINVAL);
return -1;
}
switch (clockid)
{
case CLOCK_REALTIME:
{
rt_tick_t tick, tick_old = rt_tick_get();
if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME)
{
rt_int64_t ts = ((rqtp->tv_sec - _timevalue.tv_sec) * RT_TICK_PER_SECOND);
rt_int64_t tns = (rqtp->tv_nsec - _timevalue.tv_usec * 1000) * (RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND);
tick = ts + tns;
rt_tick_t rt_tick = rt_tick_get();
tick = tick < rt_tick ? 0 : tick - rt_tick;
}
else
{
tick = rqtp->tv_sec * RT_TICK_PER_SECOND + ((uint64_t)(rqtp->tv_nsec) * RT_TICK_PER_SECOND) / NANOSECOND_PER_SECOND;
}
rt_thread_delay(tick);
if (rt_get_errno() == -RT_EINTR)
{
if (rmtp)
{
tick = tick_old + tick - rt_tick_get();
/* get the passed time */
rmtp->tv_sec = tick / RT_TICK_PER_SECOND;
rmtp->tv_nsec = (tick % RT_TICK_PER_SECOND) * (NANOSECOND_PER_SECOND / RT_TICK_PER_SECOND);
}
rt_set_errno(EINTR);
return -1;
}
}
break;
#ifdef RT_USING_CPUTIME
case CLOCK_MONOTONIC:
case CLOCK_CPUTIME_ID:
{
rt_uint64_t cpu_tick_old = clock_cpu_gettime();
uint64_t unit = clock_cpu_getres();
rt_uint64_t ns = rqtp->tv_sec * NANOSECOND_PER_SECOND + rqtp->tv_nsec;
rt_uint64_t tick = (ns * (1000UL * 1000)) / unit;
if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME)
tick -= cpu_tick_old;
rt_cputime_sleep(tick);
if (rt_get_errno() == -RT_EINTR)
{
if (rmtp)
{
uint64_t rmtp_cpu_tick = tick - clock_cpu_gettime();
rmtp->tv_sec = ((time_t)((rmtp_cpu_tick * unit) / (1000UL * 1000))) / NANOSECOND_PER_SECOND;
rmtp->tv_nsec = ((long)((rmtp_cpu_tick * unit) / (1000UL * 1000))) % NANOSECOND_PER_SECOND;
}
rt_set_errno(EINTR);
return -1;
}
}
break;
#endif
default:
rt_set_errno(EINVAL);
return -1;
}
return 0;
#endif
}
RTM_EXPORT(clock_nanosleep);
int clock_settime(clockid_t clockid, const struct timespec *tp)
{
#ifndef RT_USING_RTC
LOG_W(_WARNING_NO_RTC);
return -1;
#else
rt_base_t level;
int second;
rt_tick_t tick;
rt_device_t device;
if ((clockid != CLOCK_REALTIME) || (tp == RT_NULL))
{
rt_set_errno(EFAULT);
return -1;
}
/* get second */
second = tp->tv_sec;
level = rt_hw_interrupt_disable();
tick = rt_tick_get(); /* get tick */
/* update timevalue */
_timevalue.tv_usec = MICROSECOND_PER_SECOND - (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK;
_timevalue.tv_sec = second - tick / RT_TICK_PER_SECOND - 1;
rt_hw_interrupt_enable(level);
/* update for RTC device */
device = rt_device_find("rtc");
if (device != RT_NULL)
{
/* set realtime seconds */
if(rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &second) == RT_EOK)
{
return 0;
}
}
return -1;
#endif /* RT_USING_RTC */
}
RTM_EXPORT(clock_settime);
int rt_timespec_to_tick(const struct timespec *time)
{
int tick;
int nsecond, second;
struct timespec tp = {0};
RT_ASSERT(time != RT_NULL);
tick = RT_WAITING_FOREVER;
if (time != NULL)
{
/* get current tp */
clock_gettime(CLOCK_REALTIME, &tp);
if ((time->tv_nsec - tp.tv_nsec) < 0)
{
nsecond = NANOSECOND_PER_SECOND - (tp.tv_nsec - time->tv_nsec);
second = time->tv_sec - tp.tv_sec - 1;
}
else
{
nsecond = time->tv_nsec - tp.tv_nsec;
second = time->tv_sec - tp.tv_sec;
}
tick = second * RT_TICK_PER_SECOND + nsecond * RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND;
if (tick < 0) tick = 0;
}
return tick;
}
RTM_EXPORT(rt_timespec_to_tick);
#endif /* RT_USING_POSIX_CLOCK */
#ifdef RT_USING_POSIX_TIMER
#include <resource_id.h>
#define ACTIVE 1
#define NOT_ACTIVE 0
struct timer_obj
{
union
{
struct rt_timer timer;
#ifdef RT_USING_CPUTIME
struct rt_cputimer cputimer;
#endif
};
void (*sigev_notify_function)(union sigval val);
union sigval val;
struct timespec interval; /* Reload value */
struct timespec value; /* Reload value */
rt_uint64_t reload; /* Reload value in ms */
rt_uint32_t status;
int sigev_signo;
clockid_t clockid;
#ifdef RT_USING_SMART
pid_t pid;
#endif
};
static void rtthread_timer_wrapper(void *timerobj)
{
struct timer_obj *timer;
timer = (struct timer_obj *)timerobj;
if (timer->reload == 0U)
{
timer->status = NOT_ACTIVE;
}
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
timer->reload = ((timer->interval.tv_sec * NANOSECOND_PER_SECOND + timer->interval.tv_nsec) * (1000UL * 1000)) / clock_cpu_getres();
if (timer->reload)
rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_TIME, &(timer->reload));
}
else
#endif /* RT_USING_CPUTIME */
{
timer->reload = (timer->interval.tv_sec * RT_TICK_PER_SECOND) + (timer->interval.tv_nsec * RT_TICK_PER_SECOND) / NANOSECOND_PER_SECOND;
if (timer->reload)
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_TIME, &(timer->reload));
}
#ifdef RT_USING_SMART
sys_kill(timer->pid, timer->sigev_signo);
#else
if(timer->sigev_notify_function != RT_NULL)
{
(timer->sigev_notify_function)(timer->val);
}
#endif
}
#define TIMER_ID_MAX 50
static struct timer_obj *_g_timerid[TIMER_ID_MAX];
static void *timer_id[TIMER_ID_MAX];
static resource_id_t id_timer = RESOURCE_ID_INIT(TIMER_ID_MAX, timer_id);
/**
* @brief Create a per-process timer.
*
* This API does not accept SIGEV_THREAD as valid signal event notification
* type.
*
* See IEEE 1003.1
*/
int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid)
{
static int num = 0;
int _timerid = 0;
struct timer_obj *timer;
char timername[RT_NAME_MAX] = {0};
if (clockid > CLOCK_ID_MAX ||
(evp->sigev_notify != SIGEV_NONE &&
evp->sigev_notify != SIGEV_SIGNAL))
{
rt_set_errno(EINVAL);
return -1;
}
timer = rt_malloc(sizeof(struct timer_obj));
if(timer == RT_NULL)
{
rt_set_errno(ENOMEM);
return -1;
}
rt_snprintf(timername, RT_NAME_MAX, "psx_tm%02d", num++);
num %= 100;
timer->sigev_signo = evp->sigev_signo;
#ifdef RT_USING_SMART
timer->pid = lwp_self()->pid;
#endif
timer->sigev_notify_function = evp->sigev_notify_function;
timer->val = evp->sigev_value;
timer->interval.tv_sec = 0;
timer->interval.tv_nsec = 0;
timer->reload = 0U;
timer->status = NOT_ACTIVE;
timer->clockid = clockid;
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
rt_cputimer_init(&timer->cputimer, timername, rtthread_timer_wrapper, timer, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
}
else
#endif /* RT_USING_CPUTIME */
{
if (evp->sigev_notify == SIGEV_NONE)
rt_timer_init(&timer->timer, timername, RT_NULL, RT_NULL, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
else
rt_timer_init(&timer->timer, timername, rtthread_timer_wrapper, timer, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER);
}
_timerid = resource_id_get(&id_timer);
if (_timerid < 0)
{
LOG_E("_timerid overflow!");
return -1; /* todo:memory leak */
}
_g_timerid[_timerid] = timer;
*timerid = (timer_t)(rt_ubase_t)_timerid;
return 0;
}
RTM_EXPORT(timer_create);
/**
* @brief Delete a per-process timer.
*
* See IEEE 1003.1
*/
int timer_delete(timer_t timerid)
{
struct timer_obj *timer;
rt_ubase_t ktimerid;
ktimerid = (rt_ubase_t)timerid;
if (ktimerid < 0 || ktimerid >= TIMER_ID_MAX)
{
rt_set_errno(EINVAL);
return -1;
}
if (_g_timerid[ktimerid] == NULL)
{
rt_set_errno(EINVAL);
LOG_E("can not find timer!");
return -1;
}
timer = _g_timerid[ktimerid];
resource_id_put(&id_timer, ktimerid);
if (timer == RT_NULL)
{
rt_set_errno(EINVAL);
return -1;
}
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
if (timer->status == ACTIVE)
{
timer->status = NOT_ACTIVE;
rt_cputimer_stop(&timer->cputimer);
}
rt_cputimer_detach(&timer->cputimer);
}
else
#endif /* RT_USING_CPUTIME */
{
if (timer->status == ACTIVE)
{
timer->status = NOT_ACTIVE;
rt_timer_stop(&timer->timer);
}
rt_timer_detach(&timer->timer);
}
rt_free(timer);
return 0;
}
RTM_EXPORT(timer_delete);
/**
*
* Return the overrun count for the last timer expiration.
* It is subefficient to create a new structure to get overrun count.
**/
int timer_getoverrun(timer_t timerid)
{
rt_set_errno(ENOSYS);
return -1;
}
/**
* @brief Get amount of time left for expiration on a per-process timer.
*
* See IEEE 1003.1
*/
int timer_gettime(timer_t timerid, struct itimerspec *its)
{
struct timer_obj *timer;
rt_uint32_t seconds, nanoseconds;
timer = _g_timerid[(rt_ubase_t)timerid];
if (timer == NULL)
{
rt_set_errno(EINVAL);
return -1;
}
if (its == NULL)
{
rt_set_errno(EFAULT);
return -1;
}
if (timer->status == ACTIVE)
{
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
rt_uint64_t remain_tick;
rt_uint64_t remaining;
rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_GET_REMAIN_TIME, &remain_tick);
remaining = ((remain_tick - clock_cpu_gettime()) * (1000UL * 1000)) / clock_cpu_getres();
seconds = remaining / NANOSECOND_PER_SECOND;
nanoseconds = remaining % NANOSECOND_PER_SECOND;
}
else
#endif /* RT_USING_CPUTIME */
{
rt_tick_t remain_tick;
rt_tick_t remaining;
rt_timer_control(&timer->timer, RT_TIMER_CTRL_GET_REMAIN_TIME, &remain_tick);
/* 'remain_tick' is minimum-unit in the RT-Thread' timer,
* so the seconds, nanoseconds will be calculated by 'remain_tick'.
*/
remaining = remain_tick - rt_tick_get();
/* calculate 'second' */
seconds = remaining / RT_TICK_PER_SECOND;
/* calculate 'nanosecond'; To avoid lost of accuracy, because "RT_TICK_PER_SECOND" maybe 100, 1000, 1024 and so on.
*
* remain_tick millisecond remain_tick * MILLISECOND_PER_SECOND
* ------------------------- = -------------------------- ---> millisecond = -------------------------------------------
* RT_TICK_PER_SECOND MILLISECOND_PER_SECOND RT_TICK_PER_SECOND
*
* remain_tick * MILLISECOND_PER_SECOND remain_tick * MILLISECOND_PER_SECOND * MICROSECOND_PER_SECOND
* millisecond = ---------------------------------------- ---> nanosecond = -------------------------------------------------------------------
* RT_TICK_PER_SECOND RT_TICK_PER_SECOND
*
*/
nanoseconds = (((remaining % RT_TICK_PER_SECOND) * MILLISECOND_PER_SECOND) * MICROSECOND_PER_SECOND) / RT_TICK_PER_SECOND;
}
its->it_value.tv_sec = (rt_int32_t)seconds;
its->it_value.tv_nsec = (rt_int32_t)nanoseconds;
}
else
{
/* Timer is disarmed */
its->it_value.tv_sec = 0;
its->it_value.tv_nsec = 0;
}
/* The interval last set by timer_settime() */
its->it_interval = timer->interval;
return 0;
}
RTM_EXPORT(timer_gettime);
/**
* @brief Sets expiration time of per-process timer.
*
* See IEEE 1003.1
*/
int timer_settime(timer_t timerid, int flags, const struct itimerspec *value,
struct itimerspec *ovalue)
{
struct timer_obj *timer;
timer = _g_timerid[(rt_ubase_t)timerid];
if (timer == NULL ||
value->it_interval.tv_nsec < 0 ||
value->it_interval.tv_nsec >= NANOSECOND_PER_SECOND ||
value->it_interval.tv_sec < 0 ||
value->it_value.tv_nsec < 0 ||
value->it_value.tv_nsec >= NANOSECOND_PER_SECOND ||
value->it_value.tv_sec < 0)
{
rt_set_errno(EINVAL);
return -1;
}
/* Save time to expire and old reload value. */
if (ovalue != NULL)
{
timer_gettime(timerid, ovalue);
}
/* Stop the timer if the value is 0 */
if ((value->it_value.tv_sec == 0) && (value->it_value.tv_nsec == 0))
{
if (timer->status == ACTIVE)
{
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
rt_cputimer_stop(&timer->cputimer);
else
#endif /* RT_USING_CPUTIME */
rt_timer_stop(&timer->timer);
}
timer->status = NOT_ACTIVE;
return 0;
}
/* calculate timer period(tick); To avoid lost of accuracy, because "RT_TICK_PER_SECOND" maybe 100, 1000, 1024 and so on.
*
* tick nanosecond nanosecond * RT_TICK_PER_SECOND
* ------------------------- = -------------------------- ---> tick = -------------------------------------
* RT_TICK_PER_SECOND NANOSECOND_PER_SECOND NANOSECOND_PER_SECOND
*
*/
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
rt_uint64_t tick;
uint64_t unit = clock_cpu_getres();
tick = ((value->it_value.tv_sec * NANOSECOND_PER_SECOND + value->it_value.tv_nsec) * (1000UL * 1000)) / unit;
if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME)
{
tick -= clock_cpu_gettime();
}
timer->reload = tick;
}
else
#endif /* RT_USING_CPUTIME */
{
if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME)
{
#ifndef RT_USING_RTC
LOG_W(_WARNING_NO_RTC);
return -1;
#else
rt_int64_t ts = ((value->it_value.tv_sec - _timevalue.tv_sec) * RT_TICK_PER_SECOND);
rt_int64_t tns = (value->it_value.tv_nsec - _timevalue.tv_usec * 1000) * (RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND);
rt_int64_t reload = ts + tns;
rt_tick_t rt_tick = rt_tick_get();
timer->reload = reload < rt_tick ? 0 : reload - rt_tick;
#endif
}
else
timer->reload = (value->it_value.tv_sec * RT_TICK_PER_SECOND) + value->it_value.tv_nsec * (RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND);
}
timer->interval.tv_sec = value->it_interval.tv_sec;
timer->interval.tv_nsec = value->it_interval.tv_nsec;
timer->value.tv_sec = value->it_value.tv_sec;
timer->value.tv_nsec = value->it_value.tv_nsec;
if (timer->status == ACTIVE)
{
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
rt_cputimer_stop(&timer->cputimer);
else
#endif /* RT_USING_CPUTIME */
rt_timer_stop(&timer->timer);
}
timer->status = ACTIVE;
#ifdef RT_USING_CPUTIME
if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout())
{
if ((value->it_interval.tv_sec == 0) && (value->it_interval.tv_nsec == 0))
rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_ONESHOT, RT_NULL);
else
rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_PERIODIC, RT_NULL);
rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_TIME, &(timer->reload));
rt_cputimer_start(&timer->cputimer);
}
else
#endif /* RT_USING_CPUTIME */
{
if ((value->it_interval.tv_sec == 0) && (value->it_interval.tv_nsec == 0))
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_ONESHOT, RT_NULL);
else
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_PERIODIC, RT_NULL);
rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_TIME, &(timer->reload));
rt_timer_start(&timer->timer);
}
return 0;
}
RTM_EXPORT(timer_settime);
#endif /* RT_USING_POSIX_TIMER */
/* timezone */
#ifndef RT_LIBC_DEFAULT_TIMEZONE
#define RT_LIBC_DEFAULT_TIMEZONE 8
#endif
static volatile int8_t _current_timezone = RT_LIBC_DEFAULT_TIMEZONE;
void tz_set(int8_t tz)
{
rt_base_t level;
level = rt_hw_interrupt_disable();
_current_timezone = tz;
rt_hw_interrupt_enable(level);
}
int8_t tz_get(void)
{
return _current_timezone;
}
int8_t tz_is_dst(void)
{
return 0;
}