rt-thread-official/components/libc/compilers/common/time.c

644 lines
15 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-08-21 zhangjun copy from minilibc
* 2020-09-07 Meco Man combine gcc armcc iccarm
* 2021-02-05 Meco Man add timegm()
* 2021-02-07 Meco Man fixed gettimeofday()
* 2021-02-08 Meco Man add settimeofday() stime()
* 2021-02-10 Meco Man add ctime_r() and re-implement ctime()
* 2021-02-11 Meco Man fix bug #3183 - align days[] and months[] to 4 bytes
* 2021-02-12 Meco Man add errno
* 2012-12-08 Bernard <clock_time.c> fix the issue of _timevalue.tv_usec initialization,
* which found by Rob <rdent@iinet.net.au>
* 2021-02-12 Meco Man move all of the functions located in <clock_time.c> to this file
* 2021-03-15 Meco Man fixed a bug of leaking memory in asctime()
* 2021-05-01 Meco Man support fixed timezone
*/
#include "sys/time.h"
#include <rtthread.h>
#ifdef RT_USING_DEVICE
#include <rtdevice.h>
#endif
#define DBG_TAG "TIME"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#ifndef RT_LIBC_FIXED_TIMEZONE
#define RT_LIBC_FIXED_TIMEZONE 8 /* UTC+8 */
#endif
/* seconds per day */
#define SPD 24*60*60
/* days per month -- nonleap! */
static const short __spm[13] =
{
0,
(31),
(31 + 28),
(31 + 28 + 31),
(31 + 28 + 31 + 30),
(31 + 28 + 31 + 30 + 31),
(31 + 28 + 31 + 30 + 31 + 30),
(31 + 28 + 31 + 30 + 31 + 30 + 31),
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31),
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30),
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31),
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30),
(31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31),
};
ALIGN(4) static const char days[] = "Sun Mon Tue Wed Thu Fri Sat ";
ALIGN(4) static const char months[] = "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ";
static int __isleap(int year)
{
/* every fourth year is a leap year except for century years that are
* not divisible by 400. */
/* return (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); */
return (!(year % 4) && ((year % 100) || !(year % 400)));
}
static void num2str(char *c, int i)
{
c[0] = i / 10 + '0';
c[1] = i % 10 + '0';
}
/**
* Get time from RTC device (without timezone, UTC+0)
* @param tv: struct timeval
* @return the operation status, RT_EOK on successful
*/
static rt_err_t get_timeval(struct timeval *tv)
{
#ifdef RT_USING_RTC
static rt_device_t device = RT_NULL;
rt_err_t rst = -RT_ERROR;
if (tv == RT_NULL)
return -RT_EINVAL;
/* default is 0 */
tv->tv_sec = 0;
tv->tv_usec = 0;
/* optimization: find rtc device only first */
if (device == RT_NULL)
{
device = rt_device_find("rtc");
}
/* read timestamp from RTC device */
if (device != RT_NULL)
{
if (rt_device_open(device, 0) == RT_EOK)
{
rst = rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &tv->tv_sec);
rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME_US, &tv->tv_usec);
rt_device_close(device);
}
}
else
{
/* LOG_W will cause a recursive printing if ulog timestamp function is enabled */
rt_kprintf("Cannot find a RTC device to provide time!\r\n");
return -RT_ENOSYS;
}
return rst;
#else
/* LOG_W will cause a recursive printing if ulog timestamp function is enabled */
rt_kprintf("Cannot find a RTC device to provide time!\r\n");
return -RT_ENOSYS;
#endif /* RT_USING_RTC */
}
/**
* Set time to RTC device (without timezone)
* @param tv: struct timeval
* @return the operation status, RT_EOK on successful
*/
static int set_timeval(struct timeval *tv)
{
#ifdef RT_USING_RTC
static rt_device_t device = RT_NULL;
rt_err_t rst = -RT_ERROR;
if (tv == RT_NULL)
return -RT_EINVAL;
/* optimization: find rtc device only first */
if (device == RT_NULL)
{
device = rt_device_find("rtc");
}
/* read timestamp from RTC device */
if (device != RT_NULL)
{
if (rt_device_open(device, 0) == RT_EOK)
{
rst = rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &tv->tv_sec);
rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME_US, &tv->tv_usec);
rt_device_close(device);
}
}
else
{
LOG_W("Cannot find a RTC device to provide time!");
return -RT_ENOSYS;
}
return rst;
#else
LOG_W("Cannot find a RTC device to provide time!");
return -RT_ENOSYS;
#endif /* RT_USING_RTC */
}
struct tm *gmtime_r(const time_t *timep, struct tm *r)
{
time_t i;
register time_t work = *timep % (SPD);
r->tm_sec = work % 60;
work /= 60;
r->tm_min = work % 60;
r->tm_hour = work / 60;
work = *timep / (SPD);
r->tm_wday = (4 + work) % 7;
for (i = 1970;; ++i)
{
register time_t k = __isleap(i) ? 366 : 365;
if (work >= k)
work -= k;
else
break;
}
r->tm_year = i - 1900;
r->tm_yday = work;
r->tm_mday = 1;
if (__isleap(i) && (work > 58))
{
if (work == 59)
r->tm_mday = 2; /* 29.2. */
work -= 1;
}
for (i = 11; i && (__spm[i] > work); --i)
;
r->tm_mon = i;
r->tm_mday += work - __spm[i];
r->tm_isdst = 0;
return r;
}
RTM_EXPORT(gmtime_r);
struct tm* gmtime(const time_t* t)
{
static struct tm tmp;
return gmtime_r(t, &tmp);
}
RTM_EXPORT(gmtime);
struct tm* localtime_r(const time_t* t, struct tm* r)
{
time_t local_tz;
local_tz = *t + RT_LIBC_FIXED_TIMEZONE * 3600;
return gmtime_r(&local_tz, r);
}
RTM_EXPORT(localtime_r);
struct tm* localtime(const time_t* t)
{
static struct tm tmp;
return localtime_r(t, &tmp);
}
RTM_EXPORT(localtime);
time_t mktime(struct tm * const t)
{
time_t timestamp;
timestamp = timegm(t);
timestamp = timestamp - 3600 * RT_LIBC_FIXED_TIMEZONE;
return timestamp;
}
RTM_EXPORT(mktime);
char* asctime_r(const struct tm *t, char *buf)
{
/* "Wed Jun 30 21:49:08 1993\n" */
*(int*) buf = *(int*) (days + (t->tm_wday << 2));
*(int*) (buf + 4) = *(int*) (months + (t->tm_mon << 2));
num2str(buf + 8, t->tm_mday);
if (buf[8] == '0')
buf[8] = ' ';
buf[10] = ' ';
num2str(buf + 11, t->tm_hour);
buf[13] = ':';
num2str(buf + 14, t->tm_min);
buf[16] = ':';
num2str(buf + 17, t->tm_sec);
buf[19] = ' ';
num2str(buf + 20, (t->tm_year + 1900) / 100);
num2str(buf + 22, (t->tm_year + 1900) % 100);
buf[24] = '\n';
buf[25] = '\0';
return buf;
}
RTM_EXPORT(asctime_r);
char* asctime(const struct tm *timeptr)
{
static char buf[26];
return asctime_r(timeptr, buf);
}
RTM_EXPORT(asctime);
char *ctime_r(const time_t * tim_p, char * result)
{
struct tm tm;
return asctime_r(localtime_r(tim_p, &tm), result);
}
RTM_EXPORT(ctime_r);
char* ctime(const time_t *tim_p)
{
return asctime(localtime(tim_p));
}
RTM_EXPORT(ctime);
/**
* Returns the current time.
*
* @param time_t * t the timestamp pointer, if not used, keep NULL.
*
* @return The value ((time_t)-1) is returned if the calendar time is not available.
* If timer is not a NULL pointer, the return value is also stored in timer.
*
*/
RT_WEAK time_t time(time_t *t)
{
struct timeval now;
if(get_timeval(&now) == RT_EOK)
{
if (t)
{
*t = now.tv_sec;
}
return now.tv_sec;
}
else
{
rt_set_errno(EFAULT);
return ((time_t)-1);
}
}
RTM_EXPORT(time);
RT_WEAK clock_t clock(void)
{
return rt_tick_get();
}
RTM_EXPORT(clock);
int stime(const time_t *t)
{
struct timeval tv;
if (!t)
{
rt_set_errno(EFAULT);
return -1;
}
tv.tv_sec = *t;
if (set_timeval(&tv) == RT_EOK)
{
return 0;
}
else
{
rt_set_errno(EFAULT);
return -1;
}
}
RTM_EXPORT(stime);
time_t timegm(struct tm * const t)
{
register time_t day;
register time_t i;
register time_t years = t->tm_year - 70;
if (t->tm_sec > 60)
{
t->tm_min += t->tm_sec / 60;
t->tm_sec %= 60;
}
if (t->tm_min > 60)
{
t->tm_hour += t->tm_min / 60;
t->tm_min %= 60;
}
if (t->tm_hour > 24)
{
t->tm_mday += t->tm_hour / 24;
t->tm_hour %= 24;
}
if (t->tm_mon > 12)
{
t->tm_year += t->tm_mon / 12;
t->tm_mon %= 12;
}
while (t->tm_mday > __spm[1 + t->tm_mon])
{
if (t->tm_mon == 1 && __isleap(t->tm_year + 1900))
{
--t->tm_mday;
}
t->tm_mday -= __spm[t->tm_mon];
++t->tm_mon;
if (t->tm_mon > 11)
{
t->tm_mon = 0;
++t->tm_year;
}
}
if (t->tm_year < 70)
return (time_t) - 1;
/* Days since 1970 is 365 * number of years + number of leap years since 1970 */
day = years * 365 + (years + 1) / 4;
/* After 2100 we have to substract 3 leap years for every 400 years
This is not intuitive. Most mktime implementations do not support
dates after 2059, anyway, so we might leave this out for it's
bloat. */
if (years >= 131)
{
years -= 131;
years /= 100;
day -= (years >> 2) * 3 + 1;
if ((years &= 3) == 3)
years--;
day -= years;
}
day += t->tm_yday = __spm[t->tm_mon] + t->tm_mday - 1 +
(__isleap(t->tm_year + 1900) & (t->tm_mon > 1));
/* day is now the number of days since 'Jan 1 1970' */
i = 7;
t->tm_wday = (day + 4) % i; /* Sunday=0, Monday=1, ..., Saturday=6 */
i = 24;
day *= i;
i = 60;
return ((day + t->tm_hour) * i + t->tm_min) * i + t->tm_sec;
}
RTM_EXPORT(timegm);
int gettimeofday(struct timeval *tv, struct timezone *tz)
{
/* The use of the timezone structure is obsolete;
* the tz argument should normally be specified as NULL.
* The tz_dsttime field has never been used under Linux.
* Thus, the following is purely of historic interest.
*/
if(tz != RT_NULL)
{
tz->tz_dsttime = DST_NONE;
tz->tz_minuteswest = -(RT_LIBC_FIXED_TIMEZONE * 60);
}
if (tv != RT_NULL && get_timeval(tv) == RT_EOK)
{
return 0;
}
else
{
rt_set_errno(EFAULT);
return -1;
}
}
RTM_EXPORT(gettimeofday);
int settimeofday(const struct timeval *tv, const struct timezone *tz)
{
/* The use of the timezone structure is obsolete;
* the tz argument should normally be specified as NULL.
* The tz_dsttime field has never been used under Linux.
* Thus, the following is purely of historic interest.
*/
if (tv != RT_NULL
&& tv->tv_sec >= 0
&& tv->tv_usec >= 0
&& set_timeval((struct timeval *)tv) == RT_EOK)
{
return 0;
}
else
{
rt_set_errno(EINVAL);
return -1;
}
}
RTM_EXPORT(settimeofday);
/* inherent in the toolchain */
RTM_EXPORT(difftime);
RTM_EXPORT(strftime);
#ifdef RT_USING_POSIX
static struct timeval _timevalue;
static int clock_time_system_init()
{
time_t time;
rt_tick_t tick;
rt_device_t device;
time = 0;
device = rt_device_find("rtc");
if (device != RT_NULL)
{
/* get realtime seconds */
rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &time);
}
/* get tick */
tick = rt_tick_get();
_timevalue.tv_usec = (tick%RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK;
_timevalue.tv_sec = time - tick/RT_TICK_PER_SECOND - 1;
return 0;
}
INIT_COMPONENT_EXPORT(clock_time_system_init);
int clock_getres(clockid_t clockid, struct timespec *res)
{
int ret = 0;
if (res == RT_NULL)
{
rt_set_errno(EINVAL);
return -1;
}
switch (clockid)
{
case CLOCK_REALTIME:
res->tv_sec = 0;
res->tv_nsec = NANOSECOND_PER_SECOND/RT_TICK_PER_SECOND;
break;
#ifdef RT_USING_CPUTIME
case CLOCK_CPUTIME_ID:
res->tv_sec = 0;
res->tv_nsec = clock_cpu_getres();
break;
#endif
default:
ret = -1;
rt_set_errno(EINVAL);
break;
}
return ret;
}
RTM_EXPORT(clock_getres);
int clock_gettime(clockid_t clockid, struct timespec *tp)
{
int ret = 0;
if (tp == RT_NULL)
{
rt_set_errno(EINVAL);
return -1;
}
switch (clockid)
{
case CLOCK_REALTIME:
{
/* get tick */
int tick = rt_tick_get();
tp->tv_sec = _timevalue.tv_sec + tick / RT_TICK_PER_SECOND;
tp->tv_nsec = (_timevalue.tv_usec + (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK) * 1000;
}
break;
#ifdef RT_USING_CPUTIME
case CLOCK_CPUTIME_ID:
{
float unit = 0;
long long cpu_tick;
unit = clock_cpu_getres();
cpu_tick = clock_cpu_gettime();
tp->tv_sec = ((int)(cpu_tick * unit)) / NANOSECOND_PER_SECOND;
tp->tv_nsec = ((int)(cpu_tick * unit)) % NANOSECOND_PER_SECOND;
}
break;
#endif
default:
rt_set_errno(EINVAL);
ret = -1;
}
return ret;
}
RTM_EXPORT(clock_gettime);
int clock_settime(clockid_t clockid, const struct timespec *tp)
{
int second;
rt_tick_t tick;
rt_device_t device;
if ((clockid != CLOCK_REALTIME) || (tp == RT_NULL))
{
rt_set_errno(EINVAL);
return -1;
}
/* get second */
second = tp->tv_sec;
/* get tick */
tick = rt_tick_get();
/* update timevalue */
_timevalue.tv_usec = MICROSECOND_PER_SECOND - (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK;
_timevalue.tv_sec = second - tick/RT_TICK_PER_SECOND - 1;
/* update for RTC device */
device = rt_device_find("rtc");
if (device != RT_NULL)
{
/* set realtime seconds */
rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &second);
}
else
return -1;
return 0;
}
RTM_EXPORT(clock_settime);
int clock_time_to_tick(const struct timespec *time)
{
int tick;
int nsecond, second;
struct timespec tp;
RT_ASSERT(time != RT_NULL);
tick = RT_WAITING_FOREVER;
if (time != NULL)
{
/* get current tp */
clock_gettime(CLOCK_REALTIME, &tp);
if ((time->tv_nsec - tp.tv_nsec) < 0)
{
nsecond = NANOSECOND_PER_SECOND - (tp.tv_nsec - time->tv_nsec);
second = time->tv_sec - tp.tv_sec - 1;
}
else
{
nsecond = time->tv_nsec - tp.tv_nsec;
second = time->tv_sec - tp.tv_sec;
}
tick = second * RT_TICK_PER_SECOND + nsecond * RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND;
if (tick < 0) tick = 0;
}
return tick;
}
RTM_EXPORT(clock_time_to_tick);
#endif /* RT_USING_POSIX */