rt-thread-official/bsp/nuvoton/libraries/m2354/rtt_port/drv_crypto.c

783 lines
21 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-7-3 YCHuang12 First version
* 2022-4-17 Wayne Fix TRNG and PRNG selection
*
******************************************************************************/
#include <rtconfig.h>
#if ((defined(BSP_USING_CRYPTO) || defined(BSP_USING_TRNG) || defined(BSP_USING_CRC)) && defined(RT_USING_HWCRYPTO))
#include <rtdevice.h>
#include <board.h>
#include "NuMicro.h"
#include <nu_bitutil.h>
#if defined(BSP_USING_TRNG)
#include "drv_trng.h"
#endif
#if defined(BSP_USING_CRC)
#include "drv_crc.h"
#endif
/* Private typedef --------------------------------------------------------------*/
#define LOG_TAG "CRYPTO"
#define DBG_ENABLE
#define DBG_SECTION_NAME "CRYPTO"
#define DBG_LEVEL DBG_INFO
#define DBG_COLOR
#include <rtdbg.h>
typedef struct
{
uint8_t *pu8SHATempBuf;
uint32_t u32SHATempBufLen;
uint32_t u32DMAMode;
uint32_t u32BlockSize;
} S_SHA_CONTEXT;
/* Private functions ------------------------------------------------------------*/
static rt_err_t nu_hwcrypto_create(struct rt_hwcrypto_ctx *ctx);
static void nu_hwcrypto_destroy(struct rt_hwcrypto_ctx *ctx);
static rt_err_t nu_hwcrypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src);
static void nu_hwcrypto_reset(struct rt_hwcrypto_ctx *ctx);
/* Private variables ------------------------------------------------------------*/
static const struct rt_hwcrypto_ops nu_hwcrypto_ops =
{
.create = nu_hwcrypto_create,
.destroy = nu_hwcrypto_destroy,
.copy = nu_hwcrypto_clone,
.reset = nu_hwcrypto_reset,
};
/* Crypto engine operation ------------------------------------------------------------*/
#if defined(BSP_USING_CRYPTO)
#define NU_HWCRYPTO_AES_NAME "nu_AES"
#define NU_HWCRYPTO_SHA_NAME "nu_SHA"
#define NU_HWCRYPTO_PRNG_NAME "nu_PRNG"
static struct rt_mutex s_AES_mutex;
static struct rt_mutex s_SHA_mutex;
static rt_err_t nu_crypto_init(void)
{
rt_err_t result = RT_EOK;
/* init cipher mutex */
#if defined(RT_HWCRYPTO_USING_AES)
result = rt_mutex_init(&s_AES_mutex, NU_HWCRYPTO_AES_NAME, RT_IPC_FLAG_PRIO);
RT_ASSERT(result == RT_EOK);
AES_ENABLE_INT(CRPT);
#endif
#if defined(RT_HWCRYPTO_USING_SHA1) || defined(RT_HWCRYPTO_USING_SHA2)
result = rt_mutex_init(&s_SHA_mutex, NU_HWCRYPTO_SHA_NAME, RT_IPC_FLAG_PRIO);
RT_ASSERT(result == RT_EOK);
SHA_ENABLE_INT(CRPT);
#endif
return result;
}
static rt_err_t nu_aes_crypt_run(
rt_bool_t bEncrypt,
uint32_t u32OpMode,
uint8_t *pu8Key,
uint32_t u32KeySize,
uint8_t *pu8IV,
uint8_t *pu8InData,
uint8_t *pu8OutData,
uint32_t u32DataLen
)
{
uint32_t au32SwapKey[8];
uint32_t au32SwapIV[4];
rt_err_t result;
au32SwapKey[0] = nu_get32_be(&pu8Key[0]);
au32SwapKey[1] = nu_get32_be(&pu8Key[4]);
au32SwapKey[2] = nu_get32_be(&pu8Key[8]);
au32SwapKey[3] = nu_get32_be(&pu8Key[12]);
if ((u32KeySize == AES_KEY_SIZE_192) || (u32KeySize == AES_KEY_SIZE_256))
{
au32SwapKey[4] = nu_get32_be(&pu8Key[16]);
au32SwapKey[5] = nu_get32_be(&pu8Key[20]);
}
if (u32KeySize == AES_KEY_SIZE_256)
{
au32SwapKey[6] = nu_get32_be(&pu8Key[24]);
au32SwapKey[7] = nu_get32_be(&pu8Key[28]);
}
au32SwapIV[0] = nu_get32_be(&pu8IV[0]);
au32SwapIV[1] = nu_get32_be(&pu8IV[4]);
au32SwapIV[2] = nu_get32_be(&pu8IV[8]);
au32SwapIV[3] = nu_get32_be(&pu8IV[12]);
result = rt_mutex_take(&s_AES_mutex, RT_WAITING_FOREVER);
RT_ASSERT(result == RT_EOK);
//Using Channel 0
AES_Open(CRPT, 0, bEncrypt, u32OpMode, u32KeySize, AES_IN_OUT_SWAP);
AES_SetKey(CRPT, 0, (uint32_t *)&au32SwapKey[0], u32KeySize);
AES_SetInitVect(CRPT, 0, (uint32_t *)au32SwapIV);
//Setup AES DMA
AES_SetDMATransfer(CRPT, 0, (uint32_t)pu8InData, (uint32_t)pu8OutData, u32DataLen);
AES_CLR_INT_FLAG(CRPT);
/* Start AES encryption/decryption */
AES_Start(CRPT, 0, CRYPTO_DMA_ONE_SHOT);
/* Wait done */
while (!(CRPT->INTSTS & CRPT_INTEN_AESIEN_Msk)) {};
if ((u32DataLen % 16) && (CRPT->AES_STS & (CRPT_AES_STS_OUTBUFEMPTY_Msk | CRPT_AES_STS_INBUFEMPTY_Msk)))
rt_kprintf("AES WARNING - AES Data length(%d) is not enough. -> %d \n", u32DataLen, RT_ALIGN(u32DataLen, 16));
else if (CRPT->INTSTS & (CRPT_INTSTS_AESEIF_Msk) || (CRPT->AES_STS & (CRPT_AES_STS_BUSERR_Msk | CRPT_AES_STS_CNTERR_Msk)))
rt_kprintf("AES ERROR - CRPT->INTSTS-%08x, CRPT->AES_STS-%08x\n", CRPT->INTSTS, CRPT->AES_STS);
/* Clear AES interrupt status */
AES_CLR_INT_FLAG(CRPT);
result = rt_mutex_release(&s_AES_mutex);
RT_ASSERT(result == RT_EOK);
return RT_EOK;
}
static rt_err_t nu_prng_init(void)
{
uint32_t u32Seed;
#if defined(NU_PRNG_USE_SEED)
u32Seed = NU_PRNG_SEED_VALUE;
#else
u32Seed = (uint32_t)rt_tick_get();
#endif
//Open PRNG 128 bits.
PRNG_Open(CRPT, PRNG_KEY_SIZE_128, PRNG_SEED_RELOAD, u32Seed);
return RT_EOK;
}
static rt_uint32_t nu_prng_rand(struct hwcrypto_rng *ctx)
{
uint32_t au32RNGValue[4];
PRNG_Start(CRPT);
PRNG_Read(CRPT, &au32RNGValue[0]);
return au32RNGValue[0] ^ au32RNGValue[1] ^ au32RNGValue[2] ^ au32RNGValue[3];
}
static rt_err_t nu_aes_crypt(struct hwcrypto_symmetric *symmetric_ctx, struct hwcrypto_symmetric_info *symmetric_info)
{
uint32_t u32AESOpMode;
uint32_t u32AESKeySize;
unsigned char *in, *out;
unsigned char in_align_flag = 0;
unsigned char out_align_flag = 0;
unsigned char iv_temp[16];
RT_ASSERT(symmetric_ctx != RT_NULL);
RT_ASSERT(symmetric_info != RT_NULL);
if ((symmetric_info->length % 4) != 0)
{
return -RT_EINVAL;
}
//Checking key length
if (symmetric_ctx->key_bitlen == 128)
{
u32AESKeySize = AES_KEY_SIZE_128;
}
else if (symmetric_ctx->key_bitlen == 192)
{
u32AESKeySize = AES_KEY_SIZE_192;
}
else if (symmetric_ctx->key_bitlen == 256)
{
u32AESKeySize = AES_KEY_SIZE_256;
}
else
{
return -RT_EINVAL;
}
//Select AES operation mode
switch (symmetric_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
{
case HWCRYPTO_TYPE_AES_ECB:
u32AESOpMode = AES_MODE_ECB;
break;
case HWCRYPTO_TYPE_AES_CBC:
u32AESOpMode = AES_MODE_CBC;
break;
case HWCRYPTO_TYPE_AES_CFB:
u32AESOpMode = AES_MODE_CFB;
break;
case HWCRYPTO_TYPE_AES_OFB:
u32AESOpMode = AES_MODE_OFB;
break;
case HWCRYPTO_TYPE_AES_CTR:
u32AESOpMode = AES_MODE_CTR;
break;
default :
return -RT_ERROR;
}
in = (unsigned char *)symmetric_info->in;
out = (unsigned char *)symmetric_info->out;
//Checking in/out data buffer address not alignment or out of SRAM
if (((rt_uint32_t)in % 4) != 0 || ((rt_uint32_t)in < SRAM_BASE) || ((rt_uint32_t)in > SRAM_END))
{
in = rt_malloc(symmetric_info->length);
if (in == RT_NULL)
{
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
return -RT_ENOMEM;
}
rt_memcpy(in, symmetric_info->in, symmetric_info->length);
in_align_flag = 1;
}
if (((rt_uint32_t)out % 4) != 0 || ((rt_uint32_t)out < SRAM_BASE) || ((rt_uint32_t)out > SRAM_END))
{
out = rt_malloc(symmetric_info->length);
if (out == RT_NULL)
{
if (in_align_flag)
rt_free(in);
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
return -RT_ENOMEM;
}
out_align_flag = 1;
}
if ((u32AESOpMode == AES_MODE_CBC) && (symmetric_info->mode == HWCRYPTO_MODE_DECRYPT))
{
uint32_t loop;
loop = (symmetric_info->length - 1) / 16;
rt_memcpy(iv_temp, in + (loop * 16), 16);
}
nu_aes_crypt_run(symmetric_info->mode == HWCRYPTO_MODE_ENCRYPT ? TRUE : FALSE, u32AESOpMode, symmetric_ctx->key, u32AESKeySize, symmetric_ctx->iv, in, out, symmetric_info->length);
if (u32AESOpMode == AES_MODE_CBC)
{
if (symmetric_info->mode == HWCRYPTO_MODE_DECRYPT)
{
rt_memcpy(symmetric_ctx->iv, iv_temp, 16);
}
else
{
uint32_t loop;
loop = (symmetric_info->length - 1) / 16;
rt_memcpy(symmetric_ctx->iv, out + (loop * 16), 16);
}
}
if (out_align_flag)
{
rt_memcpy(symmetric_info->out, out, symmetric_info->length);
rt_free(out);
}
if (in_align_flag)
{
rt_free(in);
}
return RT_EOK;
}
static void SHABlockUpdate(uint32_t u32OpMode, uint32_t u32SrcAddr, uint32_t u32Len, uint32_t u32Mode)
{
SHA_Open(CRPT, u32OpMode, SHA_IN_OUT_SWAP, 0);
//Setup SHA DMA
SHA_SetDMATransfer(CRPT, u32SrcAddr, u32Len);
if (u32Mode == CRYPTO_DMA_FIRST)
CRPT->HMAC_CTL |= CRPT_HMAC_CTL_DMAFIRST_Msk;
else
CRPT->HMAC_CTL &= ~CRPT_HMAC_CTL_DMAFIRST_Msk;
//Start SHA
SHA_CLR_INT_FLAG(CRPT);
SHA_Start(CRPT, u32Mode);
/* Wait done */
while (!(CRPT->INTSTS & CRPT_INTSTS_HMACIF_Msk)) {};
if (CRPT->INTSTS & (CRPT_INTSTS_HMACEIF_Msk) || (CRPT->HMAC_STS & (CRPT_HMAC_STS_DMAERR_Msk)))
rt_kprintf("SHA ERROR - CRPT->INTSTS-%08x, CRPT->HMAC_STS-%08x\n", CRPT->INTSTS, CRPT->HMAC_STS);
/* Clear SHA interrupt status */
SHA_CLR_INT_FLAG(CRPT);
}
static rt_err_t nu_sha_hash_run(
S_SHA_CONTEXT *psSHACtx,
uint32_t u32OpMode,
uint8_t *pu8InData,
uint32_t u32DataLen
)
{
rt_err_t result;
RT_ASSERT(psSHACtx != RT_NULL);
RT_ASSERT(pu8InData != RT_NULL);
result = rt_mutex_take(&s_SHA_mutex, RT_WAITING_FOREVER);
RT_ASSERT(result == RT_EOK);
uint8_t *pu8SrcAddr = (uint8_t *)pu8InData;
uint32_t u32CopyLen = 0;
while ((psSHACtx->u32SHATempBufLen + u32DataLen) > psSHACtx->u32BlockSize)
{
if (psSHACtx->pu8SHATempBuf)
{
if (psSHACtx->u32SHATempBufLen == psSHACtx->u32BlockSize)
{
//Trigger SHA block update
SHABlockUpdate(u32OpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32BlockSize, psSHACtx->u32DMAMode);
psSHACtx->u32DMAMode = CRYPTO_DMA_CONTINUE;
//free SHATempBuff
rt_free(psSHACtx->pu8SHATempBuf);
psSHACtx->pu8SHATempBuf = NULL;
psSHACtx->u32SHATempBufLen = 0;
continue;
}
else
{
u32CopyLen = psSHACtx->u32BlockSize - psSHACtx->u32SHATempBufLen;
if (u32DataLen < u32CopyLen)
u32CopyLen = u32DataLen;
rt_memcpy(psSHACtx->pu8SHATempBuf + psSHACtx->u32SHATempBufLen, pu8SrcAddr, u32CopyLen);
psSHACtx->u32SHATempBufLen += u32CopyLen;
pu8SrcAddr += u32CopyLen;
u32DataLen -= u32CopyLen;
continue;
}
}
if ((uint32_t) pu8SrcAddr & 3) //address not aligned 4
{
psSHACtx->pu8SHATempBuf = rt_malloc(psSHACtx->u32BlockSize);
if (psSHACtx->pu8SHATempBuf == RT_NULL)
{
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, psSHACtx->u32BlockSize);
result = rt_mutex_release(&s_SHA_mutex);
RT_ASSERT(result == RT_EOK);
return -RT_ENOMEM;
}
rt_memcpy(psSHACtx->pu8SHATempBuf, pu8SrcAddr, psSHACtx->u32BlockSize);
psSHACtx->u32SHATempBufLen = psSHACtx->u32BlockSize;
pu8SrcAddr += psSHACtx->u32BlockSize;
u32DataLen -= psSHACtx->u32BlockSize;
continue;
}
//Trigger SHA block update
SHABlockUpdate(u32OpMode, (uint32_t)pu8SrcAddr, psSHACtx->u32BlockSize, psSHACtx->u32DMAMode);
psSHACtx->u32DMAMode = CRYPTO_DMA_CONTINUE;
pu8SrcAddr += psSHACtx->u32BlockSize;
u32DataLen -= psSHACtx->u32BlockSize;
}
if (u32DataLen)
{
if (psSHACtx->pu8SHATempBuf == NULL)
{
psSHACtx->pu8SHATempBuf = rt_malloc(psSHACtx->u32BlockSize);
if (psSHACtx->pu8SHATempBuf == RT_NULL)
{
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, psSHACtx->u32BlockSize);
result = rt_mutex_release(&s_SHA_mutex);
RT_ASSERT(result == RT_EOK);
return -RT_ENOMEM;
}
psSHACtx->u32SHATempBufLen = 0;
}
rt_memcpy(psSHACtx->pu8SHATempBuf, pu8SrcAddr, u32DataLen);
psSHACtx->u32SHATempBufLen += u32DataLen;
}
result = rt_mutex_release(&s_SHA_mutex);
RT_ASSERT(result == RT_EOK);
return RT_EOK;
}
static rt_err_t nu_sha_update(struct hwcrypto_hash *hash_ctx, const rt_uint8_t *in, rt_size_t length)
{
uint32_t u32SHAOpMode;
unsigned char *nu_in;
unsigned char in_align_flag = 0;
RT_ASSERT(hash_ctx != RT_NULL);
RT_ASSERT(in != RT_NULL);
//Select SHA operation mode
switch (hash_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
{
case HWCRYPTO_TYPE_SHA1:
u32SHAOpMode = SHA_MODE_SHA1;
break;
case HWCRYPTO_TYPE_SHA224:
u32SHAOpMode = SHA_MODE_SHA224;
break;
case HWCRYPTO_TYPE_SHA256:
u32SHAOpMode = SHA_MODE_SHA256;
break;
case HWCRYPTO_TYPE_SHA384:
u32SHAOpMode = SHA_MODE_SHA384;
break;
case HWCRYPTO_TYPE_SHA512:
u32SHAOpMode = SHA_MODE_SHA512;
break;
default :
return -RT_ERROR;
}
nu_in = (unsigned char *)in;
//Checking in data buffer address not alignment or out of SRAM
if (((rt_uint32_t)nu_in % 4) != 0 || ((rt_uint32_t)nu_in < SRAM_BASE) || ((rt_uint32_t)nu_in > SRAM_END))
{
nu_in = rt_malloc(length);
if (nu_in == RT_NULL)
{
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, length);
return -RT_ENOMEM;
}
rt_memcpy(nu_in, in, length);
in_align_flag = 1;
}
nu_sha_hash_run(hash_ctx->parent.contex, u32SHAOpMode, nu_in, length);
if (in_align_flag)
{
rt_free(nu_in);
}
return RT_EOK;
}
static rt_err_t nu_sha_finish(struct hwcrypto_hash *hash_ctx, rt_uint8_t *out, rt_size_t length)
{
unsigned char *nu_out;
unsigned char out_align_flag = 0;
uint32_t u32SHAOpMode;
S_SHA_CONTEXT *psSHACtx = RT_NULL;
RT_ASSERT(hash_ctx != RT_NULL);
RT_ASSERT(out != RT_NULL);
psSHACtx = hash_ctx->parent.contex;
//Check SHA Hash value buffer length
switch (hash_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
{
case HWCRYPTO_TYPE_SHA1:
u32SHAOpMode = SHA_MODE_SHA1;
if (length < 5UL)
{
return -RT_EINVAL;
}
break;
case HWCRYPTO_TYPE_SHA224:
u32SHAOpMode = SHA_MODE_SHA224;
if (length < 7UL)
{
return -RT_EINVAL;
}
break;
case HWCRYPTO_TYPE_SHA256:
u32SHAOpMode = SHA_MODE_SHA256;
if (length < 8UL)
{
return -RT_EINVAL;
}
break;
case HWCRYPTO_TYPE_SHA384:
u32SHAOpMode = SHA_MODE_SHA384;
if (length < 12UL)
{
return -RT_EINVAL;
}
break;
case HWCRYPTO_TYPE_SHA512:
u32SHAOpMode = SHA_MODE_SHA512;
if (length < 16UL)
{
return -RT_EINVAL;
}
break;
default :
return -RT_ERROR;
}
nu_out = (unsigned char *)out;
//Checking out data buffer address alignment or not
if (((rt_uint32_t)nu_out % 4) != 0)
{
nu_out = rt_malloc(length);
if (nu_out == RT_NULL)
{
LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, length);
return -RT_ENOMEM;
}
out_align_flag = 1;
}
if (psSHACtx->pu8SHATempBuf)
{
if (psSHACtx->u32DMAMode == CRYPTO_DMA_FIRST)
SHABlockUpdate(u32SHAOpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32SHATempBufLen, CRYPTO_DMA_ONE_SHOT);
else
SHABlockUpdate(u32SHAOpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32SHATempBufLen, CRYPTO_DMA_LAST);
//free SHATempBuf
rt_free(psSHACtx->pu8SHATempBuf);
psSHACtx->pu8SHATempBuf = RT_NULL;
psSHACtx->u32SHATempBufLen = 0;
}
else
{
SHABlockUpdate(u32SHAOpMode, (uint32_t)NULL, 0, CRYPTO_DMA_LAST);
}
SHA_Read(CRPT, (uint32_t *)nu_out);
if (out_align_flag)
{
rt_memcpy(out, nu_out, length);
rt_free(nu_out);
}
return RT_EOK;
}
static const struct hwcrypto_symmetric_ops nu_aes_ops =
{
.crypt = nu_aes_crypt,
};
static const struct hwcrypto_hash_ops nu_sha_ops =
{
.update = nu_sha_update,
.finish = nu_sha_finish,
};
#endif
/* CRC operation ------------------------------------------------------------*/
#if defined(BSP_USING_CRC)
static const struct hwcrypto_crc_ops nu_crc_ops =
{
.update = nu_crc_update,
};
#endif
#if defined(RT_HWCRYPTO_USING_RNG)
/* RNG operation ------------------------------------------------------------*/
static struct hwcrypto_rng_ops nu_rng_ops;
#endif
/* Register crypto interface ----------------------------------------------------------*/
static rt_err_t nu_hwcrypto_create(struct rt_hwcrypto_ctx *ctx)
{
rt_err_t res = RT_EOK;
RT_ASSERT(ctx != RT_NULL);
switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
{
#if defined(RT_HWCRYPTO_USING_RNG)
case HWCRYPTO_TYPE_RNG:
{
ctx->contex = RT_NULL;
//Setup RNG operation
((struct hwcrypto_rng *)ctx)->ops = &nu_rng_ops;
break;
}
#endif /* RT_HWCRYPTO_USING_RNG */
#if defined(BSP_USING_CRC) && defined(RT_HWCRYPTO_USING_CRC)
case HWCRYPTO_TYPE_CRC:
{
ctx->contex = RT_NULL;
//Setup CRC operation
((struct hwcrypto_crc *)ctx)->ops = &nu_crc_ops;
break;
}
#endif /* BSP_USING_CRC && defined(RT_HWCRYPTO_USING_CRC) */
#if defined(BSP_USING_CRYPTO)
case HWCRYPTO_TYPE_AES:
{
ctx->contex = RT_NULL;
//Setup AES operation
((struct hwcrypto_symmetric *)ctx)->ops = &nu_aes_ops;
break;
}
case HWCRYPTO_TYPE_SHA1:
case HWCRYPTO_TYPE_SHA2:
{
ctx->contex = rt_malloc(sizeof(S_SHA_CONTEXT));
if (ctx->contex == RT_NULL)
return -RT_ERROR;
rt_memset(ctx->contex, 0, sizeof(S_SHA_CONTEXT));
//Setup operation
((struct hwcrypto_hash *)ctx)->ops = &nu_sha_ops;
break;
}
#endif /* BSP_USING_CRYPTO */
default:
res = -RT_ERROR;
break;
}
nu_hwcrypto_reset(ctx);
return res;
}
static void nu_hwcrypto_destroy(struct rt_hwcrypto_ctx *ctx)
{
RT_ASSERT(ctx != RT_NULL);
if (ctx->contex)
rt_free(ctx->contex);
}
static rt_err_t nu_hwcrypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src)
{
rt_err_t res = RT_EOK;
RT_ASSERT(des != RT_NULL);
RT_ASSERT(src != RT_NULL);
if (des->contex && src->contex)
{
rt_memcpy(des->contex, src->contex, sizeof(struct rt_hwcrypto_ctx));
}
else
return -RT_EINVAL;
return res;
}
static void nu_hwcrypto_reset(struct rt_hwcrypto_ctx *ctx)
{
switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
{
#if defined(BSP_USING_CRYPTO)
case HWCRYPTO_TYPE_SHA1:
case HWCRYPTO_TYPE_SHA2:
{
S_SHA_CONTEXT *psSHACtx = (S_SHA_CONTEXT *)ctx->contex;
if (psSHACtx->pu8SHATempBuf)
{
rt_free(psSHACtx->pu8SHATempBuf);
}
psSHACtx->pu8SHATempBuf = RT_NULL;
psSHACtx->u32SHATempBufLen = 0;
psSHACtx->u32DMAMode = CRYPTO_DMA_FIRST;
if ((ctx->type == HWCRYPTO_TYPE_SHA384) || (ctx->type == HWCRYPTO_TYPE_SHA512))
{
psSHACtx->u32BlockSize = 128;
}
else
{
psSHACtx->u32BlockSize = 64;
}
break;
}
#endif
default:
break;
}
}
/* Init and register nu_hwcrypto_dev */
int nu_hwcrypto_device_init(void)
{
rt_err_t result;
static struct rt_hwcrypto_device nu_hwcrypto_dev;
nu_hwcrypto_dev.ops = &nu_hwcrypto_ops;
nu_hwcrypto_dev.id = 0;
nu_hwcrypto_dev.user_data = &nu_hwcrypto_dev;
#if defined(BSP_USING_CRYPTO)
nu_crypto_init();
#endif
#if defined(BSP_USING_CRC)
nu_crc_init();
#endif
#if defined(RT_HWCRYPTO_USING_RNG)
#if defined(BSP_USING_TRNG)
result = nu_trng_init();
if (result == RT_EOK)
{
LOG_I("TRNG is used as default RNG.");
nu_rng_ops.update = nu_trng_rand;
}
else
#endif
{
result = nu_prng_init();
RT_ASSERT(result == RT_EOK);
LOG_I("PRNG is used as default RNG.");
nu_rng_ops.update = nu_prng_rand;
}
#endif
/* register hwcrypto operation */
result = rt_hwcrypto_register(&nu_hwcrypto_dev, RT_HWCRYPTO_DEFAULT_NAME);
RT_ASSERT(result == RT_EOK);
return 0;
}
INIT_DEVICE_EXPORT(nu_hwcrypto_device_init);
#endif //#if ((defined(BSP_USING_CRYPTO) || defined(BSP_USING_TRNG) || defined(BSP_USING_CRC)) && defined(RT_USING_HWCRYPTO))