rt-thread-official/components/drivers/block/partitions/efi.c

739 lines
19 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-05-05 linzhenxing first version
* 2023-02-25 GuEe-GUI make blk interface
*/
#include "efi.h"
#define DBG_TAG "blk.part.efi"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
static rt_bool_t force_gpt = 0;
static int force_gpt_setup(void)
{
#ifdef RT_USING_OFW
force_gpt = !!rt_ofw_bootargs_select("gpt", 0);
#endif
return 0;
}
INIT_CORE_EXPORT(force_gpt_setup);
/**
* @brief This function is EFI version of crc32 function.
*
* @param buf the buffer to calculate crc32 of.
* @param len the length of buf.
* @return EFI-style CRC32 value for @buf.
*/
rt_inline rt_uint32_t efi_crc32(const rt_uint8_t *buf, rt_size_t len)
{
rt_ubase_t crc = 0xffffffffUL;
for (rt_size_t i = 0; i < len; ++i)
{
crc ^= buf[i];
for (int j = 0; j < 8; ++j)
{
crc = (crc >> 1) ^ ((crc & 1) ? 0xedb88320L : 0);
}
}
return ~crc;
}
/**
* @brief This function get number of last logical block of device.
*
* @param disk the blk of disk.
* @return last LBA value on success, 0 on error.
* This is stored (by sd and ide-geometry) in
* the part[0] entry for this disk, and is the number of
* physical sectors available on the disk.
*/
static rt_size_t last_lba(struct rt_blk_disk *disk)
{
return rt_blk_disk_get_capacity(disk) - 1ULL;
}
rt_inline int pmbr_part_valid(gpt_mbr_record *part)
{
if (part->os_type != EFI_PMBR_OSTYPE_EFI_GPT)
{
return 0;
}
/* set to 0x00000001 (i.e., the LBA of the GPT Partition Header) */
if (rt_le32_to_cpu(part->starting_lba) != GPT_PRIMARY_PARTITION_TABLE_LBA)
{
return 0;
}
return GPT_MBR_PROTECTIVE;
}
/**
* @brief This function test Protective MBR for validity.
*
* @param mbr the pointer to a legacy mbr structure.
* @param total_sectors the amount of sectors in the device
* @return
* 0 -> Invalid MBR
* 1 -> GPT_MBR_PROTECTIVE
* 2 -> GPT_MBR_HYBRID
*/
static int is_pmbr_valid(legacy_mbr *mbr, rt_size_t total_sectors)
{
rt_uint32_t sz = 0;
int part = 0, ret = 0; /* invalid by default */
if (!mbr || rt_le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
{
goto _done;
}
for (int i = 0; i < 4; ++i)
{
ret = pmbr_part_valid(&mbr->partition_record[i]);
if (ret == GPT_MBR_PROTECTIVE)
{
part = i;
/*
* Ok, we at least know that there's a protective MBR,
* now check if there are other partition types for
* hybrid MBR.
*/
goto _check_hybrid;
}
}
if (ret != GPT_MBR_PROTECTIVE)
{
goto _done;
}
_check_hybrid:
for (int i = 0; i < 4; i++)
{
if (mbr->partition_record[i].os_type != EFI_PMBR_OSTYPE_EFI_GPT &&
mbr->partition_record[i].os_type != 0x00)
{
ret = GPT_MBR_HYBRID;
}
}
/*
* Protective MBRs take up the lesser of the whole disk
* or 2 TiB (32bit LBA), ignoring the rest of the disk.
* Some partitioning programs, nonetheless, choose to set
* the size to the maximum 32-bit limitation, disregarding
* the disk size.
*
* Hybrid MBRs do not necessarily comply with this.
*
* Consider a bad value here to be a warning to support dd'ing
* an image from a smaller disk to a larger disk.
*/
if (ret == GPT_MBR_PROTECTIVE)
{
sz = rt_le32_to_cpu(mbr->partition_record[part].size_in_lba);
if (sz != (rt_uint32_t)total_sectors - 1 && sz != 0xffffffff)
{
LOG_W("GPT: mbr size in lba (%u) different than whole disk (%u)",
sz, rt_min_t(rt_uint32_t, total_sectors - 1, 0xffffffff));
}
}
_done:
return ret;
}
/**
* @brief This function read bytes from disk, starting at given LBA.
*
* @param disk the blk of disk.
* @param lba the Logical Block Address of the partition table.
* @param buffer the destination buffer.
* @param count the bytes to read.
* @return number of bytes read on success, 0 on error.
*/
static rt_size_t read_lba(struct rt_blk_disk *disk,
rt_uint64_t lba, rt_uint8_t *buffer, rt_size_t count)
{
rt_size_t totalreadcount = 0;
if (!buffer || lba > last_lba(disk))
{
return 0;
}
for (rt_uint64_t n = lba; count; ++n)
{
int copied = 512;
disk->ops->read(disk, n, buffer, 1);
if (copied > count)
{
copied = count;
}
buffer += copied;
totalreadcount += copied;
count -= copied;
}
return totalreadcount;
}
/**
* @brief This function reads partition entries from disk.
*
* @param disk the blk of disk.
* @param gpt the GPT header
* @return ptes on success, null on error.
*/
static gpt_entry *alloc_read_gpt_entries(struct rt_blk_disk *disk,
gpt_header *gpt)
{
rt_size_t count;
gpt_entry *pte;
rt_uint64_t entry_lba;
if (!gpt)
{
return RT_NULL;
}
count = (rt_size_t)rt_le32_to_cpu(gpt->num_partition_entries) *
rt_le32_to_cpu(gpt->sizeof_partition_entry);
if (!count)
{
return RT_NULL;
}
pte = rt_malloc(count);
if (!pte)
{
return RT_NULL;
}
entry_lba = rt_le64_to_cpu(gpt->partition_entry_lba);
if (read_lba(disk, entry_lba, (rt_uint8_t *)pte, count) < count)
{
rt_free(pte);
pte = RT_NULL;
return RT_NULL;
}
/* Remember to free pte when done */
return pte;
}
/**
* @brief This function allocates GPT header, reads into it from disk.
*
* @param disk the blk of disk.
* @param lba the Logical Block Address of the partition table
* @return GPT header on success, null on error.
*/
static gpt_header *alloc_read_gpt_header(struct rt_blk_disk *disk, rt_uint64_t lba)
{
gpt_header *gpt;
rt_uint32_t ssz = rt_blk_disk_get_logical_block_size(disk);
gpt = rt_malloc(ssz);
if (!gpt)
{
return RT_NULL;
}
if (read_lba(disk, lba, (rt_uint8_t *)gpt, ssz) < ssz)
{
rt_free(gpt);
gpt = RT_NULL;
return RT_NULL;
}
/* Remember to free gpt when finished with it */
return gpt;
}
/**
* @brief This function tests one GPT header and PTEs for validity.
*
* @param disk the blk of disk.
* @param lba the Logical Block Address of the GPT header to test.
* @param gpt the GPT header ptr, filled on return.
* @param ptes the PTEs ptr, filled on return.
* @returns true if valid, false on error.
* If valid, returns pointers to newly allocated GPT header and PTEs.
*/
static rt_bool_t is_gpt_valid(struct rt_blk_disk *disk,
rt_uint64_t lba, gpt_header **gpt, gpt_entry **ptes)
{
rt_uint32_t crc, origcrc;
rt_uint64_t lastlba, pt_size;
rt_ssize_t logical_block_size;
if (!ptes)
{
return RT_FALSE;
}
if (!(*gpt = alloc_read_gpt_header(disk, lba)))
{
return RT_FALSE;
}
/* Check the GUID Partition Table signature */
if (rt_le64_to_cpu((*gpt)->signature) != GPT_HEADER_SIGNATURE)
{
LOG_D("%s: GUID Partition Table Header signature is wrong: %lld != %lld",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu((*gpt)->signature),
(rt_uint64_t)GPT_HEADER_SIGNATURE);
goto _fail;
}
/* Check the GUID Partition Table header size is too big */
logical_block_size = rt_blk_disk_get_logical_block_size(disk);
if (rt_le32_to_cpu((*gpt)->header_size) > logical_block_size)
{
LOG_D("%s: GUID Partition Table Header size is too large: %u > %u",
to_disk_name(disk),
rt_le32_to_cpu((*gpt)->header_size),
logical_block_size);
goto _fail;
}
/* Check the GUID Partition Table header size is too small */
if (rt_le32_to_cpu((*gpt)->header_size) < sizeof(gpt_header))
{
LOG_D("%s: GUID Partition Table Header size is too small: %u < %u",
to_disk_name(disk),
rt_le32_to_cpu((*gpt)->header_size),
sizeof(gpt_header));
goto _fail;
}
/* Check the GUID Partition Table CRC */
origcrc = rt_le32_to_cpu((*gpt)->header_crc32);
(*gpt)->header_crc32 = 0;
crc = efi_crc32((const rt_uint8_t *)(*gpt), rt_le32_to_cpu((*gpt)->header_size));
if (crc != origcrc)
{
LOG_D("%s: GUID Partition Table Header CRC is wrong: %x != %x",
to_disk_name(disk), crc, origcrc);
goto _fail;
}
(*gpt)->header_crc32 = rt_cpu_to_le32(origcrc);
/*
* Check that the start_lba entry points to the LBA that contains
* the GUID Partition Table
*/
if (rt_le64_to_cpu((*gpt)->start_lba) != lba)
{
LOG_D("%s: GPT start_lba incorrect: %lld != %lld",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu((*gpt)->start_lba),
(rt_uint64_t)lba);
goto _fail;
}
/* Check the first_usable_lba and last_usable_lba are within the disk */
lastlba = last_lba(disk);
if (rt_le64_to_cpu((*gpt)->first_usable_lba) > lastlba)
{
LOG_D("%s: GPT: first_usable_lba incorrect: %lld > %lld",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu((*gpt)->first_usable_lba),
(rt_uint64_t)lastlba);
goto _fail;
}
if (rt_le64_to_cpu((*gpt)->last_usable_lba) > lastlba)
{
LOG_D("%s: GPT: last_usable_lba incorrect: %lld > %lld",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu((*gpt)->last_usable_lba),
(rt_uint64_t)lastlba);
goto _fail;
}
if (rt_le64_to_cpu((*gpt)->last_usable_lba) < rt_le64_to_cpu((*gpt)->first_usable_lba))
{
LOG_D("%s: GPT: last_usable_lba incorrect: %lld > %lld",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu((*gpt)->last_usable_lba),
(rt_uint64_t)rt_le64_to_cpu((*gpt)->first_usable_lba));
goto _fail;
}
/* Check that sizeof_partition_entry has the correct value */
if (rt_le32_to_cpu((*gpt)->sizeof_partition_entry) != sizeof(gpt_entry))
{
LOG_D("%s: GUID Partition Entry Size check failed", to_disk_name(disk));
goto _fail;
}
/* Sanity check partition table size */
pt_size = (rt_uint64_t)rt_le32_to_cpu((*gpt)->num_partition_entries) *
rt_le32_to_cpu((*gpt)->sizeof_partition_entry);
if (!(*ptes = alloc_read_gpt_entries(disk, *gpt)))
{
goto _fail;
}
/* Check the GUID Partition Entry Array CRC */
crc = efi_crc32((const rt_uint8_t *)(*ptes), pt_size);
if (crc != rt_le32_to_cpu((*gpt)->partition_entry_array_crc32))
{
LOG_D("%s: GUID Partition Entry Array CRC check failed", to_disk_name(disk));
goto _fail_ptes;
}
/* We're done, all's well */
return RT_TRUE;
_fail_ptes:
rt_free(*ptes);
*ptes = RT_NULL;
_fail:
rt_free(*gpt);
*gpt = RT_NULL;
return RT_FALSE;
}
/**
* @brief This function tests one PTE for validity.
*
* @param pte the pte to check.
* @param lastlba the last lba of the disk.
* @return valid boolean of pte.
*/
rt_inline rt_bool_t is_pte_valid(const gpt_entry *pte, const rt_size_t lastlba)
{
if ((!efi_guidcmp(pte->partition_type_guid, NULL_GUID)) ||
rt_le64_to_cpu(pte->starting_lba) > lastlba ||
rt_le64_to_cpu(pte->ending_lba) > lastlba)
{
return RT_FALSE;
}
return RT_TRUE;
}
/**
* @brief This function search disk for valid GPT headers and PTEs.
*
* @param disk the blk of disk.
* @param pgpt the primary GPT header.
* @param agpt the alternate GPT header.
* @param lastlba the last LBA number.
*/
static void compare_gpts(struct rt_blk_disk *disk,
gpt_header *pgpt, gpt_header *agpt, rt_uint64_t lastlba)
{
int error_found = 0;
if (!pgpt || !agpt)
{
return;
}
if (rt_le64_to_cpu(pgpt->start_lba) != rt_le64_to_cpu(agpt->alternate_lba))
{
LOG_W("%s: GPT:Primary header LBA(%lld) != Alt(%lld), header alternate_lba",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu(pgpt->start_lba),
(rt_uint64_t)rt_le64_to_cpu(agpt->alternate_lba));
++error_found;
}
if (rt_le64_to_cpu(pgpt->alternate_lba) != rt_le64_to_cpu(agpt->start_lba))
{
LOG_W("%s: GPT:Primary header alternate_lba(%lld) != Alt(%lld), header start_lba",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu(pgpt->alternate_lba),
(rt_uint64_t)rt_le64_to_cpu(agpt->start_lba));
++error_found;
}
if (rt_le64_to_cpu(pgpt->first_usable_lba) != rt_le64_to_cpu(agpt->first_usable_lba))
{
LOG_W("%s: GPT:first_usable_lbas don't match %lld != %lld",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu(pgpt->first_usable_lba),
(rt_uint64_t)rt_le64_to_cpu(agpt->first_usable_lba));
++error_found;
}
if (rt_le64_to_cpu(pgpt->last_usable_lba) != rt_le64_to_cpu(agpt->last_usable_lba))
{
LOG_W("%s: GPT:last_usable_lbas don't match %lld != %lld",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu(pgpt->last_usable_lba),
(rt_uint64_t)rt_le64_to_cpu(agpt->last_usable_lba));
++error_found;
}
if (efi_guidcmp(pgpt->disk_guid, agpt->disk_guid))
{
LOG_W("%s: GPT:disk_guids don't match", to_disk_name(disk));
++error_found;
}
if (rt_le32_to_cpu(pgpt->num_partition_entries) !=
rt_le32_to_cpu(agpt->num_partition_entries))
{
LOG_W("%s: GPT:num_partition_entries don't match: 0x%x != 0x%x",
to_disk_name(disk),
rt_le32_to_cpu(pgpt->num_partition_entries),
rt_le32_to_cpu(agpt->num_partition_entries));
++error_found;
}
if (rt_le32_to_cpu(pgpt->sizeof_partition_entry) !=
rt_le32_to_cpu(agpt->sizeof_partition_entry))
{
LOG_W("%s: GPT:sizeof_partition_entry values don't match: 0x%x != 0x%x",
to_disk_name(disk),
rt_le32_to_cpu(pgpt->sizeof_partition_entry),
rt_le32_to_cpu(agpt->sizeof_partition_entry));
++error_found;
}
if (rt_le32_to_cpu(pgpt->partition_entry_array_crc32) !=
rt_le32_to_cpu(agpt->partition_entry_array_crc32))
{
LOG_W("%s: GPT:partition_entry_array_crc32 values don't match: 0x%x != 0x%x",
to_disk_name(disk),
rt_le32_to_cpu(pgpt->partition_entry_array_crc32),
rt_le32_to_cpu(agpt->partition_entry_array_crc32));
++error_found;
}
if (rt_le64_to_cpu(pgpt->alternate_lba) != lastlba)
{
LOG_W("%s: GPT:Primary header thinks Alt. header is not at the end of the disk: %lld != %lld",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu(pgpt->alternate_lba),
(rt_uint64_t)lastlba);
++error_found;
}
if (rt_le64_to_cpu(agpt->start_lba) != lastlba)
{
LOG_W("%s: GPT:Alternate GPT header not at the end of the disk: %lld != %lld",
to_disk_name(disk),
(rt_uint64_t)rt_le64_to_cpu(agpt->start_lba),
(rt_uint64_t)lastlba);
++error_found;
}
if (error_found)
{
LOG_W("GPT: Use GNU Parted to correct GPT errors");
}
}
/**
* @brief This function search disk for valid GPT headers and PTEs.
*
* @param disk the disk parsed partitions.
* @param gpt the GPT header ptr, filled on return.
* @param ptes the PTEs ptr, filled on return.
* @return 1 if valid, 0 on error.
* If valid, returns pointers to newly allocated GPT header and PTEs.
* Validity depends on PMBR being valid (or being overridden by the
* 'gpt' kernel command line option) and finding either the Primary
* GPT header and PTEs valid, or the Alternate GPT header and PTEs
* valid. If the Primary GPT header is not valid, the Alternate GPT header
* is not checked unless the 'gpt' kernel command line option is passed.
* This protects against devices which misreport their size, and forces
* the user to decide to use the Alternate GPT.
*/
static rt_bool_t find_valid_gpt(struct rt_blk_disk *disk,
gpt_header **gpt, gpt_entry **ptes)
{
int good_pgpt = 0, good_agpt = 0, good_pmbr = 0;
gpt_header *pgpt = RT_NULL, *agpt = RT_NULL;
gpt_entry *pptes = RT_NULL, *aptes = RT_NULL;
legacy_mbr *legacymbr;
rt_size_t total_sectors = rt_blk_disk_get_capacity(disk);
rt_size_t lastlba;
if (!ptes)
{
return RT_FALSE;
}
lastlba = last_lba(disk);
if (!force_gpt)
{
/* This will be added to the EFI Spec. per Intel after v1.02. */
legacymbr = rt_malloc(sizeof(*legacymbr));
if (!legacymbr)
{
return RT_FALSE;
}
read_lba(disk, 0, (rt_uint8_t *)legacymbr, sizeof(*legacymbr));
good_pmbr = is_pmbr_valid(legacymbr, total_sectors);
rt_free(legacymbr);
if (!good_pmbr)
{
return RT_FALSE;
}
LOG_D("%s: Device has a %s MBR", to_disk_name(disk),
good_pmbr == GPT_MBR_PROTECTIVE ? "protective" : "hybrid");
}
good_pgpt = is_gpt_valid(disk, GPT_PRIMARY_PARTITION_TABLE_LBA, &pgpt, &pptes);
if (good_pgpt)
{
good_agpt = is_gpt_valid(disk, rt_le64_to_cpu(pgpt->alternate_lba), &agpt, &aptes);
}
if (!good_agpt && force_gpt)
{
good_agpt = is_gpt_valid(disk, lastlba, &agpt, &aptes);
}
/* The obviously unsuccessful case */
if (!good_pgpt && !good_agpt)
{
goto _fail;
}
compare_gpts(disk, pgpt, agpt, lastlba);
/* The good cases */
if (good_pgpt)
{
*gpt = pgpt;
*ptes = pptes;
rt_free(agpt);
rt_free(aptes);
if (!good_agpt)
{
LOG_D("%s: Alternate GPT is invalid, using primary GPT", to_disk_name(disk));
}
return RT_TRUE;
}
else if (good_agpt)
{
*gpt = agpt;
*ptes = aptes;
rt_free(pgpt);
rt_free(pptes);
LOG_D("%s: Primary GPT is invalid, using alternate GPT", to_disk_name(disk));
return RT_TRUE;
}
_fail:
rt_free(pgpt);
rt_free(agpt);
rt_free(pptes);
rt_free(aptes);
*gpt = RT_NULL;
*ptes = RT_NULL;
return RT_FALSE;
}
rt_err_t efi_partition(struct rt_blk_disk *disk)
{
rt_uint32_t entries_nr;
gpt_header *gpt = RT_NULL;
gpt_entry *ptes = RT_NULL;
if (!find_valid_gpt(disk, &gpt, &ptes) || !gpt || !ptes)
{
rt_free(gpt);
rt_free(ptes);
return -RT_EINVAL;
}
entries_nr = rt_le32_to_cpu(gpt->num_partition_entries);
for (int i = 0; i < entries_nr && i < disk->max_partitions; ++i)
{
rt_uint64_t start = rt_le64_to_cpu(ptes[i].starting_lba);
rt_uint64_t size = rt_le64_to_cpu(ptes[i].ending_lba) -
rt_le64_to_cpu(ptes[i].starting_lba) + 1ULL;
if (!is_pte_valid(&ptes[i], last_lba(disk)))
{
continue;
}
if (blk_put_partition(disk, "gpt", start, size, i) == -RT_ENOMEM)
{
break;
}
}
rt_free(gpt);
rt_free(ptes);
return RT_EOK;
}