rt-thread-official/bsp/stm32/libraries/HAL_Drivers/drivers/drv_spi.c

1053 lines
34 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-11-5 SummerGift first version
* 2018-12-11 greedyhao Porting for stm32f7xx
* 2019-01-03 zylx modify DMA initialization and spixfer function
* 2020-01-15 whj4674672 Porting for stm32h7xx
* 2020-06-18 thread-liu Porting for stm32mp1xx
* 2020-10-14 Dozingfiretruck Porting for stm32wbxx
*/
#include <rtthread.h>
#include <rtdevice.h>
#include "board.h"
#ifdef BSP_USING_SPI
#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6)
#include "drv_spi.h"
#include "drv_config.h"
#include <string.h>
//#define DRV_DEBUG
#define LOG_TAG "drv.spi"
#include <drv_log.h>
enum
{
#ifdef BSP_USING_SPI1
SPI1_INDEX,
#endif
#ifdef BSP_USING_SPI2
SPI2_INDEX,
#endif
#ifdef BSP_USING_SPI3
SPI3_INDEX,
#endif
#ifdef BSP_USING_SPI4
SPI4_INDEX,
#endif
#ifdef BSP_USING_SPI5
SPI5_INDEX,
#endif
#ifdef BSP_USING_SPI6
SPI6_INDEX,
#endif
};
static struct stm32_spi_config spi_config[] =
{
#ifdef BSP_USING_SPI1
SPI1_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI2
SPI2_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI3
SPI3_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI4
SPI4_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI5
SPI5_BUS_CONFIG,
#endif
#ifdef BSP_USING_SPI6
SPI6_BUS_CONFIG,
#endif
};
static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0};
static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg)
{
RT_ASSERT(spi_drv != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
if (cfg->mode & RT_SPI_SLAVE)
{
spi_handle->Init.Mode = SPI_MODE_SLAVE;
}
else
{
spi_handle->Init.Mode = SPI_MODE_MASTER;
}
if (cfg->mode & RT_SPI_3WIRE)
{
spi_handle->Init.Direction = SPI_DIRECTION_1LINE;
}
else
{
spi_handle->Init.Direction = SPI_DIRECTION_2LINES;
}
if (cfg->data_width == 8)
{
spi_handle->Init.DataSize = SPI_DATASIZE_8BIT;
}
else if (cfg->data_width == 16)
{
spi_handle->Init.DataSize = SPI_DATASIZE_16BIT;
}
else
{
return -RT_EIO;
}
if (cfg->mode & RT_SPI_CPHA)
{
spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE;
}
else
{
spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE;
}
if (cfg->mode & RT_SPI_CPOL)
{
spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH;
}
else
{
spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW;
}
spi_handle->Init.NSS = SPI_NSS_SOFT;
uint32_t SPI_CLOCK = 0UL;
/* Some series may only have APBPERIPH_BASE, but don't have HAL_RCC_GetPCLK2Freq */
#if defined(APBPERIPH_BASE)
SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
#elif defined(APB1PERIPH_BASE) || defined(APB2PERIPH_BASE)
/* The SPI clock for H7 cannot be configured with a peripheral bus clock, so it needs to be written separately */
#if defined(SOC_SERIES_STM32H7)
/* When the configuration is generated using CUBEMX, the configuration for the SPI clock is placed in the HAL_SPI_Init function.
Therefore, it is necessary to initialize and configure the SPI clock to automatically configure the frequency division */
HAL_SPI_Init(spi_handle);
SPI_CLOCK = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123);
#else
if ((rt_uint32_t)spi_drv->config->Instance >= APB2PERIPH_BASE)
{
SPI_CLOCK = HAL_RCC_GetPCLK2Freq();
}
else
{
SPI_CLOCK = HAL_RCC_GetPCLK1Freq();
}
#endif /* SOC_SERIES_STM32H7) */
#endif /* APBPERIPH_BASE */
if (cfg->max_hz >= SPI_CLOCK / 2)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2;
}
else if (cfg->max_hz >= SPI_CLOCK / 4)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4;
}
else if (cfg->max_hz >= SPI_CLOCK / 8)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8;
}
else if (cfg->max_hz >= SPI_CLOCK / 16)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16;
}
else if (cfg->max_hz >= SPI_CLOCK / 32)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
}
else if (cfg->max_hz >= SPI_CLOCK / 64)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64;
}
else if (cfg->max_hz >= SPI_CLOCK / 128)
{
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128;
}
else
{
/* min prescaler 256 */
spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256;
}
LOG_D("sys freq: %d, pclk freq: %d, SPI limiting freq: %d, SPI usage freq: %d",
#if defined(SOC_SERIES_STM32MP1)
HAL_RCC_GetSystemCoreClockFreq(),
#else
HAL_RCC_GetSysClockFreq(),
#endif
SPI_CLOCK,
cfg->max_hz,
SPI_CLOCK / (rt_size_t)pow(2,(spi_handle->Init.BaudRatePrescaler >> 28) + 1));
if (cfg->mode & RT_SPI_MSB)
{
spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB;
}
else
{
spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB;
}
spi_handle->Init.TIMode = SPI_TIMODE_DISABLE;
spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
spi_handle->State = HAL_SPI_STATE_RESET;
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB)
spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
#elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1)
spi_handle->Init.Mode = SPI_MODE_MASTER;
spi_handle->Init.NSS = SPI_NSS_SOFT;
spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
spi_handle->Init.CRCPolynomial = 7;
spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE;
spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE;
spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA;
#endif
if (HAL_SPI_Init(spi_handle) != HAL_OK)
{
return -RT_EIO;
}
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \
|| defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB)
SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF);
#endif
/* DMA configuration */
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
HAL_DMA_Init(&spi_drv->dma.handle_rx);
__HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0);
HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq);
}
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
HAL_DMA_Init(&spi_drv->dma.handle_tx);
__HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 1, 0);
HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq);
}
if(spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG || spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
HAL_NVIC_SetPriority(spi_drv->config->irq_type, 2, 0);
HAL_NVIC_EnableIRQ(spi_drv->config->irq_type);
}
LOG_D("%s init done", spi_drv->config->bus_name);
return RT_EOK;
}
static rt_ssize_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
#define DMA_TRANS_MIN_LEN 10 /* only buffer length >= DMA_TRANS_MIN_LEN will use DMA mode */
HAL_StatusTypeDef state = HAL_OK;
rt_size_t message_length, already_send_length;
rt_uint16_t send_length;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
{
if (device->config.mode & RT_SPI_CS_HIGH)
rt_pin_write(device->cs_pin, PIN_HIGH);
else
rt_pin_write(device->cs_pin, PIN_LOW);
}
LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
spi_drv->config->bus_name,
(uint32_t)message->send_buf,
(uint32_t)message->recv_buf, message->length);
message_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
while (message_length)
{
/* the HAL library use uint16 to save the data length */
if (message_length > 65535)
{
send_length = 65535;
message_length = message_length - 65535;
}
else
{
send_length = message_length;
message_length = 0;
}
/* calculate the start address */
already_send_length = message->length - send_length - message_length;
/* avoid null pointer problems */
if (message->send_buf)
{
send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
}
if (message->recv_buf)
{
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
}
rt_uint32_t* dma_aligned_buffer = RT_NULL;
rt_uint32_t* p_txrx_buffer = RT_NULL;
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
{
#if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
if (RT_IS_ALIGN((rt_uint32_t)send_buf, 32)) /* aligned with 32 bytes? */
{
p_txrx_buffer = (rt_uint32_t *)send_buf; /* send_buf aligns with 32 bytes, no more operations */
}
else
{
/* send_buf doesn't align with 32 bytes, so creat a cache buffer with 32 bytes aligned */
dma_aligned_buffer = (rt_uint32_t *)rt_malloc_align(send_length, 32);
rt_memcpy(dma_aligned_buffer, send_buf, send_length);
p_txrx_buffer = dma_aligned_buffer;
}
rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, dma_aligned_buffer, send_length);
#else
if (RT_IS_ALIGN((rt_uint32_t)send_buf, 4)) /* aligned with 4 bytes? */
{
p_txrx_buffer = (rt_uint32_t *)send_buf; /* send_buf aligns with 4 bytes, no more operations */
}
else
{
/* send_buf doesn't align with 4 bytes, so creat a cache buffer with 4 bytes aligned */
dma_aligned_buffer = (rt_uint32_t *)rt_malloc(send_length); /* aligned with RT_ALIGN_SIZE (8 bytes by default) */
rt_memcpy(dma_aligned_buffer, send_buf, send_length);
p_txrx_buffer = dma_aligned_buffer;
}
#endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
}
/* start once data exchange in DMA mode */
if (message->send_buf && message->recv_buf)
{
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
{
state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)p_txrx_buffer, (uint8_t *)p_txrx_buffer, send_length);
}
else if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
{
/* same as Tx ONLY. It will not receive SPI data any more. */
state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
}
else if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
{
state = HAL_ERROR;
LOG_E("It shoule be enabled both BSP_SPIx_TX_USING_DMA and BSP_SPIx_TX_USING_DMA flag, if wants to use SPI DMA Rx singly.");
break;
}
else
{
state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
}
}
else if (message->send_buf)
{
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
{
state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
}
else
{
state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
}
if (message->cs_release && (device->config.mode & RT_SPI_3WIRE))
{
/* release the CS by disable SPI when using 3 wires SPI */
__HAL_SPI_DISABLE(spi_handle);
}
}
else if(message->recv_buf)
{
rt_memset((uint8_t *)recv_buf, 0xff, send_length);
if ((spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) && (send_length >= DMA_TRANS_MIN_LEN))
{
state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)p_txrx_buffer, send_length);
}
else
{
/* clear the old error flag */
__HAL_SPI_CLEAR_OVRFLAG(spi_handle);
state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
}
}
else
{
state = HAL_ERROR;
LOG_E("message->send_buf and message->recv_buf are both NULL!");
}
if (state != HAL_OK)
{
LOG_E("SPI transfer error: %d", state);
message->length = 0;
spi_handle->State = HAL_SPI_STATE_READY;
break;
}
else
{
LOG_D("%s transfer done", spi_drv->config->bus_name);
}
/* For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
if ((spi_drv->spi_dma_flag & (SPI_USING_TX_DMA_FLAG | SPI_USING_RX_DMA_FLAG)) && (send_length >= DMA_TRANS_MIN_LEN))
{
/* blocking the thread,and the other tasks can run */
if (rt_completion_wait(&spi_drv->cpt, 1000) != RT_EOK)
{
state = HAL_ERROR;
LOG_E("wait for DMA interrupt overtime!");
break;
}
}
else
{
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
}
if(dma_aligned_buffer != RT_NULL) /* re-aligned, so need to copy the data to recv_buf */
{
if(recv_buf != RT_NULL)
{
#if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, p_txrx_buffer, send_length);
#endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
rt_memcpy(recv_buf, p_txrx_buffer, send_length);
}
#if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7)
rt_free_align(dma_aligned_buffer);
#else
rt_free(dma_aligned_buffer);
#endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */
}
}
if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS) && (device->cs_pin != PIN_NONE))
{
if (device->config.mode & RT_SPI_CS_HIGH)
rt_pin_write(device->cs_pin, PIN_LOW);
else
rt_pin_write(device->cs_pin, PIN_HIGH);
}
if(state != HAL_OK)
{
return -RT_ERROR;
}
return message->length;
}
static rt_err_t spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
spi_drv->cfg = configuration;
return stm32_spi_init(spi_drv, configuration);
}
static const struct rt_spi_ops stm_spi_ops =
{
.configure = spi_configure,
.xfer = spixfer,
};
static int rt_hw_spi_bus_init(void)
{
rt_err_t result;
for (rt_size_t i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++)
{
spi_bus_obj[i].config = &spi_config[i];
spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i];
spi_bus_obj[i].handle.Instance = spi_config[i].Instance;
if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
/* Configure the DMA handler for Transmission process */
spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request;
#endif
#ifndef SOC_SERIES_STM32U5
spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE;
spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH;
#endif
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4;
spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4;
#endif
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc);
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc);
#elif defined(SOC_SERIES_STM32MP1)
__HAL_RCC_DMAMUX_CLK_ENABLE();
SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
}
if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
/* Configure the DMA handler for Transmission process */
spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance;
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel;
#elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request;
#endif
#ifndef SOC_SERIES_STM32U5
spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE;
spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL;
spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW;
#endif
#if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7)
spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4;
spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4;
#endif
{
rt_uint32_t tmpreg = 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc);
#elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7)
SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
/* Delay after an RCC peripheral clock enabling */
tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc);
#elif defined(SOC_SERIES_STM32MP1)
__HAL_RCC_DMAMUX_CLK_ENABLE();
SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
}
/* initialize completion object */
rt_completion_init(&spi_bus_obj[i].cpt);
result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops);
RT_ASSERT(result == RT_EOK);
LOG_D("%s bus init done", spi_config[i].bus_name);
}
return result;
}
/**
* Attach the spi device to SPI bus, this function must be used after initialization.
*/
rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, rt_base_t cs_pin)
{
RT_ASSERT(bus_name != RT_NULL);
RT_ASSERT(device_name != RT_NULL);
rt_err_t result;
struct rt_spi_device *spi_device;
/* attach the device to spi bus*/
spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device));
RT_ASSERT(spi_device != RT_NULL);
result = rt_spi_bus_attach_device_cspin(spi_device, device_name, bus_name, cs_pin, RT_NULL);
if (result != RT_EOK)
{
LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result);
}
RT_ASSERT(result == RT_EOK);
LOG_D("%s attach to %s done", device_name, bus_name);
return result;
}
#if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA)
void SPI1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI1_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI1_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA)
void SPI2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI2_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI2_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA)
void SPI3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI3_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI3_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA)
void SPI4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI4_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI4_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA)
void SPI5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI5_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI5_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */
#if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA)
/**
* @brief This function handles DMA Rx interrupt request.
* @param None
* @retval None
*/
void SPI6_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA)
/**
* @brief This function handles DMA Tx interrupt request.
* @param None
* @retval None
*/
void SPI6_DMA_TX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */
static void stm32_get_dma_info(void)
{
#ifdef BSP_SPI1_RX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx;
#endif
#ifdef BSP_SPI1_TX_USING_DMA
spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG;
spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx;
#endif
#ifdef BSP_SPI2_RX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx;
#endif
#ifdef BSP_SPI2_TX_USING_DMA
spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG;
spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx;
#endif
#ifdef BSP_SPI3_RX_USING_DMA
spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx;
#endif
#ifdef BSP_SPI3_TX_USING_DMA
spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG;
spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx;
#endif
#ifdef BSP_SPI4_RX_USING_DMA
spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx;
#endif
#ifdef BSP_SPI4_TX_USING_DMA
spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG;
spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx;
#endif
#ifdef BSP_SPI5_RX_USING_DMA
spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG;
spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx;
#endif
#ifdef BSP_SPI5_TX_USING_DMA
spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG;
spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx;
#endif
#ifdef BSP_SPI6_RX_USING_DMA
spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG;
static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG;
spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx;
#endif
#ifdef BSP_SPI6_TX_USING_DMA
spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG;
static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG;
spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx;
#endif
}
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
rt_completion_done(&spi_drv->cpt);
}
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
rt_completion_done(&spi_drv->cpt);
}
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
{
struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle);
rt_completion_done(&spi_drv->cpt);
}
#if defined(SOC_SERIES_STM32F0)
void SPI1_DMA_RX_TX_IRQHandler(void)
{
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA)
SPI1_DMA_TX_IRQHandler();
#endif
#if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA)
SPI1_DMA_RX_IRQHandler();
#endif
}
void SPI2_DMA_RX_TX_IRQHandler(void)
{
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA)
SPI2_DMA_TX_IRQHandler();
#endif
#if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA)
SPI2_DMA_RX_IRQHandler();
#endif
}
#endif /* SOC_SERIES_STM32F0 */
int rt_hw_spi_init(void)
{
stm32_get_dma_info();
return rt_hw_spi_bus_init();
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */
#endif /* BSP_USING_SPI */