rt-thread-official/src/mem.c

674 lines
23 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2008-7-12 Bernard the first version
* 2010-06-09 Bernard fix the end stub of heap
* fix memory check in rt_realloc function
* 2010-07-13 Bernard fix RT_ALIGN issue found by kuronca
* 2010-10-14 Bernard fix rt_realloc issue when realloc a NULL pointer.
* 2017-07-14 armink fix rt_realloc issue when new size is 0
* 2018-10-02 Bernard Add 64bit support
*/
/*
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
* Simon Goldschmidt
*
*/
#include <rthw.h>
#include <rtthread.h>
#if defined (RT_USING_SMALL_MEM)
#define DBG_TAG "kernel.mem"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
struct rt_small_mem_item
{
rt_ubase_t pool_ptr; /**< small memory object addr */
#ifdef ARCH_CPU_64BIT
rt_uint32_t resv;
#endif /* ARCH_CPU_64BIT */
rt_size_t next; /**< next free item */
rt_size_t prev; /**< prev free item */
#ifdef RT_USING_MEMTRACE
#ifdef ARCH_CPU_64BIT
rt_uint8_t thread[8]; /**< thread name */
#else
rt_uint8_t thread[4]; /**< thread name */
#endif /* ARCH_CPU_64BIT */
#endif /* RT_USING_MEMTRACE */
};
/**
* Base structure of small memory object
*/
struct rt_small_mem
{
struct rt_memory parent; /**< inherit from rt_memory */
rt_uint8_t *heap_ptr; /**< pointer to the heap */
struct rt_small_mem_item *heap_end;
struct rt_small_mem_item *lfree;
rt_size_t mem_size_aligned; /**< aligned memory size */
};
#define HEAP_MAGIC 0x1ea0
#ifdef ARCH_CPU_64BIT
#define MIN_SIZE 24
#else
#define MIN_SIZE 12
#endif /* ARCH_CPU_64BIT */
#define MEM_MASK ((~(rt_size_t)0) - 1)
#define MEM_USED() ((((rt_base_t)(small_mem)) & MEM_MASK) | 0x1)
#define MEM_FREED() ((((rt_base_t)(small_mem)) & MEM_MASK) | 0x0)
#define MEM_ISUSED(_mem) \
(((rt_base_t)(((struct rt_small_mem_item *)(_mem))->pool_ptr)) & (~MEM_MASK))
#define MEM_POOL(_mem) \
((struct rt_small_mem *)(((rt_base_t)(((struct rt_small_mem_item *)(_mem))->pool_ptr)) & (MEM_MASK)))
#define MEM_SIZE(_heap, _mem) \
(((struct rt_small_mem_item *)(_mem))->next - ((rt_ubase_t)(_mem) - \
(rt_ubase_t)((_heap)->heap_ptr)) - RT_ALIGN(sizeof(struct rt_small_mem_item), RT_ALIGN_SIZE))
#define MIN_SIZE_ALIGNED RT_ALIGN(MIN_SIZE, RT_ALIGN_SIZE)
#define SIZEOF_STRUCT_MEM RT_ALIGN(sizeof(struct rt_small_mem_item), RT_ALIGN_SIZE)
#ifdef RT_USING_MEMTRACE
rt_inline void rt_smem_setname(struct rt_small_mem_item *mem, const char *name)
{
int index;
for (index = 0; index < sizeof(mem->thread); index ++)
{
if (name[index] == '\0') break;
mem->thread[index] = name[index];
}
for (; index < sizeof(mem->thread); index ++)
{
mem->thread[index] = ' ';
}
}
#endif /* RT_USING_MEMTRACE */
static void plug_holes(struct rt_small_mem *m, struct rt_small_mem_item *mem)
{
struct rt_small_mem_item *nmem;
struct rt_small_mem_item *pmem;
RT_ASSERT((rt_uint8_t *)mem >= m->heap_ptr);
RT_ASSERT((rt_uint8_t *)mem < (rt_uint8_t *)m->heap_end);
/* plug hole forward */
nmem = (struct rt_small_mem_item *)&m->heap_ptr[mem->next];
if (mem != nmem && !MEM_ISUSED(nmem) &&
(rt_uint8_t *)nmem != (rt_uint8_t *)m->heap_end)
{
/* if mem->next is unused and not end of m->heap_ptr,
* combine mem and mem->next
*/
if (m->lfree == nmem)
{
m->lfree = mem;
}
nmem->pool_ptr = 0;
mem->next = nmem->next;
((struct rt_small_mem_item *)&m->heap_ptr[nmem->next])->prev = (rt_uint8_t *)mem - m->heap_ptr;
}
/* plug hole backward */
pmem = (struct rt_small_mem_item *)&m->heap_ptr[mem->prev];
if (pmem != mem && !MEM_ISUSED(pmem))
{
/* if mem->prev is unused, combine mem and mem->prev */
if (m->lfree == mem)
{
m->lfree = pmem;
}
mem->pool_ptr = 0;
pmem->next = mem->next;
((struct rt_small_mem_item *)&m->heap_ptr[mem->next])->prev = (rt_uint8_t *)pmem - m->heap_ptr;
}
}
/**
* @brief This function will initialize small memory management algorithm.
*
* @param name is the name of the small memory management object.
*
* @param begin_addr the beginning address of memory.
*
* @param size is the size of the memory.
*
* @return Return a pointer to the memory object. When the return value is RT_NULL, it means the init failed.
*/
rt_smem_t rt_smem_init(const char *name,
void *begin_addr,
rt_size_t size)
{
struct rt_small_mem_item *mem;
struct rt_small_mem *small_mem;
rt_ubase_t start_addr, begin_align, end_align, mem_size;
small_mem = (struct rt_small_mem *)RT_ALIGN((rt_ubase_t)begin_addr, RT_ALIGN_SIZE);
start_addr = (rt_ubase_t)small_mem + sizeof(*small_mem);
begin_align = RT_ALIGN((rt_ubase_t)start_addr, RT_ALIGN_SIZE);
end_align = RT_ALIGN_DOWN((rt_ubase_t)begin_addr + size, RT_ALIGN_SIZE);
/* alignment addr */
if ((end_align > (2 * SIZEOF_STRUCT_MEM)) &&
((end_align - 2 * SIZEOF_STRUCT_MEM) >= start_addr))
{
/* calculate the aligned memory size */
mem_size = end_align - begin_align - 2 * SIZEOF_STRUCT_MEM;
}
else
{
rt_kprintf("mem init, error begin address 0x%x, and end address 0x%x\n",
(rt_ubase_t)begin_addr, (rt_ubase_t)begin_addr + size);
return RT_NULL;
}
rt_memset(small_mem, 0, sizeof(*small_mem));
/* initialize small memory object */
rt_object_init(&(small_mem->parent.parent), RT_Object_Class_Memory, name);
small_mem->parent.algorithm = "small";
small_mem->parent.address = begin_align;
small_mem->parent.total = mem_size;
small_mem->mem_size_aligned = mem_size;
/* point to begin address of heap */
small_mem->heap_ptr = (rt_uint8_t *)begin_align;
LOG_D("mem init, heap begin address 0x%x, size %d",
(rt_ubase_t)small_mem->heap_ptr, small_mem->mem_size_aligned);
/* initialize the start of the heap */
mem = (struct rt_small_mem_item *)small_mem->heap_ptr;
mem->pool_ptr = MEM_FREED();
mem->next = small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM;
mem->prev = 0;
#ifdef RT_USING_MEMTRACE
rt_smem_setname(mem, "INIT");
#endif /* RT_USING_MEMTRACE */
/* initialize the end of the heap */
small_mem->heap_end = (struct rt_small_mem_item *)&small_mem->heap_ptr[mem->next];
small_mem->heap_end->pool_ptr = MEM_USED();
small_mem->heap_end->next = small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM;
small_mem->heap_end->prev = small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM;
#ifdef RT_USING_MEMTRACE
rt_smem_setname(small_mem->heap_end, "INIT");
#endif /* RT_USING_MEMTRACE */
/* initialize the lowest-free pointer to the start of the heap */
small_mem->lfree = (struct rt_small_mem_item *)small_mem->heap_ptr;
return &small_mem->parent;
}
RTM_EXPORT(rt_smem_init);
/**
* @brief This function will remove a small mem from the system.
*
* @param m the small memory management object.
*
* @return RT_EOK
*/
rt_err_t rt_smem_detach(rt_smem_t m)
{
RT_ASSERT(m != RT_NULL);
RT_ASSERT(rt_object_get_type(&m->parent) == RT_Object_Class_Memory);
RT_ASSERT(rt_object_is_systemobject(&m->parent));
rt_object_detach(&(m->parent));
return RT_EOK;
}
RTM_EXPORT(rt_smem_detach);
/**
* @addtogroup MM
*/
/**@{*/
/**
* @brief Allocate a block of memory with a minimum of 'size' bytes.
*
* @param m the small memory management object.
*
* @param size is the minimum size of the requested block in bytes.
*
* @return the pointer to allocated memory or NULL if no free memory was found.
*/
void *rt_smem_alloc(rt_smem_t m, rt_size_t size)
{
rt_size_t ptr, ptr2;
struct rt_small_mem_item *mem, *mem2;
struct rt_small_mem *small_mem;
if (size == 0)
return RT_NULL;
RT_ASSERT(m != RT_NULL);
RT_ASSERT(rt_object_get_type(&m->parent) == RT_Object_Class_Memory);
RT_ASSERT(rt_object_is_systemobject(&m->parent));
if (size != RT_ALIGN(size, RT_ALIGN_SIZE))
{
LOG_D("malloc size %d, but align to %d",
size, RT_ALIGN(size, RT_ALIGN_SIZE));
}
else
{
LOG_D("malloc size %d", size);
}
small_mem = (struct rt_small_mem *)m;
/* alignment size */
size = RT_ALIGN(size, RT_ALIGN_SIZE);
/* every data block must be at least MIN_SIZE_ALIGNED long */
if (size < MIN_SIZE_ALIGNED)
size = MIN_SIZE_ALIGNED;
if (size > small_mem->mem_size_aligned)
{
LOG_D("no memory");
return RT_NULL;
}
for (ptr = (rt_uint8_t *)small_mem->lfree - small_mem->heap_ptr;
ptr <= small_mem->mem_size_aligned - size;
ptr = ((struct rt_small_mem_item *)&small_mem->heap_ptr[ptr])->next)
{
mem = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr];
if ((!MEM_ISUSED(mem)) && (mem->next - (ptr + SIZEOF_STRUCT_MEM)) >= size)
{
/* mem is not used and at least perfect fit is possible:
* mem->next - (ptr + SIZEOF_STRUCT_MEM) gives us the 'user data size' of mem */
if (mem->next - (ptr + SIZEOF_STRUCT_MEM) >=
(size + SIZEOF_STRUCT_MEM + MIN_SIZE_ALIGNED))
{
/* (in addition to the above, we test if another struct rt_small_mem_item (SIZEOF_STRUCT_MEM) containing
* at least MIN_SIZE_ALIGNED of data also fits in the 'user data space' of 'mem')
* -> split large block, create empty remainder,
* remainder must be large enough to contain MIN_SIZE_ALIGNED data: if
* mem->next - (ptr + (2*SIZEOF_STRUCT_MEM)) == size,
* struct rt_small_mem_item would fit in but no data between mem2 and mem2->next
* @todo we could leave out MIN_SIZE_ALIGNED. We would create an empty
* region that couldn't hold data, but when mem->next gets freed,
* the 2 regions would be combined, resulting in more free memory
*/
ptr2 = ptr + SIZEOF_STRUCT_MEM + size;
/* create mem2 struct */
mem2 = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr2];
mem2->pool_ptr = MEM_FREED();
mem2->next = mem->next;
mem2->prev = ptr;
#ifdef RT_USING_MEMTRACE
rt_smem_setname(mem2, " ");
#endif /* RT_USING_MEMTRACE */
/* and insert it between mem and mem->next */
mem->next = ptr2;
if (mem2->next != small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM)
{
((struct rt_small_mem_item *)&small_mem->heap_ptr[mem2->next])->prev = ptr2;
}
small_mem->parent.used += (size + SIZEOF_STRUCT_MEM);
if (small_mem->parent.max < small_mem->parent.used)
small_mem->parent.max = small_mem->parent.used;
}
else
{
/* (a mem2 struct does no fit into the user data space of mem and mem->next will always
* be used at this point: if not we have 2 unused structs in a row, plug_holes should have
* take care of this).
* -> near fit or excact fit: do not split, no mem2 creation
* also can't move mem->next directly behind mem, since mem->next
* will always be used at this point!
*/
small_mem->parent.used += mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr);
if (small_mem->parent.max < small_mem->parent.used)
small_mem->parent.max = small_mem->parent.used;
}
/* set small memory object */
mem->pool_ptr = MEM_USED();
#ifdef RT_USING_MEMTRACE
if (rt_thread_self())
rt_smem_setname(mem, rt_thread_self()->parent.name);
else
rt_smem_setname(mem, "NONE");
#endif /* RT_USING_MEMTRACE */
if (mem == small_mem->lfree)
{
/* Find next free block after mem and update lowest free pointer */
while (MEM_ISUSED(small_mem->lfree) && small_mem->lfree != small_mem->heap_end)
small_mem->lfree = (struct rt_small_mem_item *)&small_mem->heap_ptr[small_mem->lfree->next];
RT_ASSERT(((small_mem->lfree == small_mem->heap_end) || (!MEM_ISUSED(small_mem->lfree))));
}
RT_ASSERT((rt_ubase_t)mem + SIZEOF_STRUCT_MEM + size <= (rt_ubase_t)small_mem->heap_end);
RT_ASSERT((rt_ubase_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM) % RT_ALIGN_SIZE == 0);
RT_ASSERT((((rt_ubase_t)mem) & (RT_ALIGN_SIZE - 1)) == 0);
LOG_D("allocate memory at 0x%x, size: %d",
(rt_ubase_t)((rt_uint8_t *)mem + SIZEOF_STRUCT_MEM),
(rt_ubase_t)(mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr)));
/* return the memory data except mem struct */
return (rt_uint8_t *)mem + SIZEOF_STRUCT_MEM;
}
}
return RT_NULL;
}
RTM_EXPORT(rt_smem_alloc);
/**
* @brief This function will change the size of previously allocated memory block.
*
* @param m the small memory management object.
*
* @param rmem is the pointer to memory allocated by rt_mem_alloc.
*
* @param newsize is the required new size.
*
* @return the changed memory block address.
*/
void *rt_smem_realloc(rt_smem_t m, void *rmem, rt_size_t newsize)
{
rt_size_t size;
rt_size_t ptr, ptr2;
struct rt_small_mem_item *mem, *mem2;
struct rt_small_mem *small_mem;
void *nmem;
RT_ASSERT(m != RT_NULL);
RT_ASSERT(rt_object_get_type(&m->parent) == RT_Object_Class_Memory);
RT_ASSERT(rt_object_is_systemobject(&m->parent));
small_mem = (struct rt_small_mem *)m;
/* alignment size */
newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE);
if (newsize > small_mem->mem_size_aligned)
{
LOG_D("realloc: out of memory");
return RT_NULL;
}
else if (newsize == 0)
{
rt_smem_free(rmem);
return RT_NULL;
}
/* allocate a new memory block */
if (rmem == RT_NULL)
return rt_smem_alloc(&small_mem->parent, newsize);
RT_ASSERT((((rt_ubase_t)rmem) & (RT_ALIGN_SIZE - 1)) == 0);
RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)small_mem->heap_ptr);
RT_ASSERT((rt_uint8_t *)rmem < (rt_uint8_t *)small_mem->heap_end);
mem = (struct rt_small_mem_item *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
/* current memory block size */
ptr = (rt_uint8_t *)mem - small_mem->heap_ptr;
size = mem->next - ptr - SIZEOF_STRUCT_MEM;
if (size == newsize)
{
/* the size is the same as */
return rmem;
}
if (newsize + SIZEOF_STRUCT_MEM + MIN_SIZE < size)
{
/* split memory block */
small_mem->parent.used -= (size - newsize);
ptr2 = ptr + SIZEOF_STRUCT_MEM + newsize;
mem2 = (struct rt_small_mem_item *)&small_mem->heap_ptr[ptr2];
mem2->pool_ptr = MEM_FREED();
mem2->next = mem->next;
mem2->prev = ptr;
#ifdef RT_USING_MEMTRACE
rt_smem_setname(mem2, " ");
#endif /* RT_USING_MEMTRACE */
mem->next = ptr2;
if (mem2->next != small_mem->mem_size_aligned + SIZEOF_STRUCT_MEM)
{
((struct rt_small_mem_item *)&small_mem->heap_ptr[mem2->next])->prev = ptr2;
}
if (mem2 < small_mem->lfree)
{
/* the splited struct is now the lowest */
small_mem->lfree = mem2;
}
plug_holes(small_mem, mem2);
return rmem;
}
/* expand memory */
nmem = rt_smem_alloc(&small_mem->parent, newsize);
if (nmem != RT_NULL) /* check memory */
{
rt_memcpy(nmem, rmem, size < newsize ? size : newsize);
rt_smem_free(rmem);
}
return nmem;
}
RTM_EXPORT(rt_smem_realloc);
/**
* @brief This function will release the previously allocated memory block by
* rt_mem_alloc. The released memory block is taken back to system heap.
*
* @param rmem the address of memory which will be released.
*/
void rt_smem_free(void *rmem)
{
struct rt_small_mem_item *mem;
struct rt_small_mem *small_mem;
if (rmem == RT_NULL)
return;
RT_ASSERT((((rt_ubase_t)rmem) & (RT_ALIGN_SIZE - 1)) == 0);
/* Get the corresponding struct rt_small_mem_item ... */
mem = (struct rt_small_mem_item *)((rt_uint8_t *)rmem - SIZEOF_STRUCT_MEM);
/* ... which has to be in a used state ... */
small_mem = MEM_POOL(mem);
RT_ASSERT(small_mem != RT_NULL);
RT_ASSERT(MEM_ISUSED(mem));
RT_ASSERT(rt_object_get_type(&small_mem->parent.parent) == RT_Object_Class_Memory);
RT_ASSERT(rt_object_is_systemobject(&small_mem->parent.parent));
RT_ASSERT((rt_uint8_t *)rmem >= (rt_uint8_t *)small_mem->heap_ptr &&
(rt_uint8_t *)rmem < (rt_uint8_t *)small_mem->heap_end);
RT_ASSERT(MEM_POOL(&small_mem->heap_ptr[mem->next]) == small_mem);
LOG_D("release memory 0x%x, size: %d",
(rt_ubase_t)rmem,
(rt_ubase_t)(mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr)));
/* ... and is now unused. */
mem->pool_ptr = MEM_FREED();
#ifdef RT_USING_MEMTRACE
rt_smem_setname(mem, " ");
#endif /* RT_USING_MEMTRACE */
if (mem < small_mem->lfree)
{
/* the newly freed struct is now the lowest */
small_mem->lfree = mem;
}
small_mem->parent.used -= (mem->next - ((rt_uint8_t *)mem - small_mem->heap_ptr));
/* finally, see if prev or next are free also */
plug_holes(small_mem, mem);
}
RTM_EXPORT(rt_smem_free);
#ifdef RT_USING_FINSH
#include <finsh.h>
#ifdef RT_USING_MEMTRACE
int memcheck(int argc, char *argv[])
{
int position;
rt_base_t level;
struct rt_small_mem_item *mem;
struct rt_small_mem *m;
struct rt_object_information *information;
struct rt_list_node *node;
struct rt_object *object;
char *name;
name = argc > 1 ? argv[1] : RT_NULL;
level = rt_hw_interrupt_disable();
/* get mem object */
information = rt_object_get_information(RT_Object_Class_Memory);
for (node = information->object_list.next;
node != &(information->object_list);
node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
/* find the specified object */
if (name != RT_NULL && rt_strncmp(name, object->name, RT_NAME_MAX) != 0)
continue;
/* mem object */
m = (struct rt_small_mem *)object;
/* check mem */
for (mem = (struct rt_small_mem_item *)m->heap_ptr; mem != m->heap_end; mem = (struct rt_small_mem_item *)&m->heap_ptr[mem->next])
{
position = (rt_ubase_t)mem - (rt_ubase_t)m->heap_ptr;
if (position < 0) goto __exit;
if (position > (int)m->mem_size_aligned) goto __exit;
if (MEM_POOL(mem) != m) goto __exit;
}
}
rt_hw_interrupt_enable(level);
return 0;
__exit:
rt_kprintf("Memory block wrong:\n");
rt_kprintf(" name: %s\n", m->parent.parent.name);
rt_kprintf("address: 0x%08x\n", mem);
rt_kprintf(" pool: 0x%04x\n", mem->pool_ptr);
rt_kprintf(" size: %d\n", mem->next - position - SIZEOF_STRUCT_MEM);
rt_hw_interrupt_enable(level);
return 0;
}
MSH_CMD_EXPORT(memcheck, check memory data);
int memtrace(int argc, char **argv)
{
struct rt_small_mem_item *mem;
struct rt_small_mem *m;
struct rt_object_information *information;
struct rt_list_node *node;
struct rt_object *object;
char *name;
name = argc > 1 ? argv[1] : RT_NULL;
/* get mem object */
information = rt_object_get_information(RT_Object_Class_Memory);
for (node = information->object_list.next;
node != &(information->object_list);
node = node->next)
{
object = rt_list_entry(node, struct rt_object, list);
/* find the specified object */
if (name != RT_NULL && rt_strncmp(name, object->name, RT_NAME_MAX) != 0)
continue;
/* mem object */
m = (struct rt_small_mem *)object;
/* show memory information */
rt_kprintf("\nmemory heap address:\n");
rt_kprintf("name : %s\n", m->parent.parent.name);
rt_kprintf("total : 0x%d\n", m->parent.total);
rt_kprintf("used : 0x%d\n", m->parent.used);
rt_kprintf("max_used: 0x%d\n", m->parent.max);
rt_kprintf("heap_ptr: 0x%08x\n", m->heap_ptr);
rt_kprintf("lfree : 0x%08x\n", m->lfree);
rt_kprintf("heap_end: 0x%08x\n", m->heap_end);
rt_kprintf("\n--memory item information --\n");
for (mem = (struct rt_small_mem_item *)m->heap_ptr; mem != m->heap_end; mem = (struct rt_small_mem_item *)&m->heap_ptr[mem->next])
{
int size = MEM_SIZE(m, mem);
rt_kprintf("[0x%08x - ", mem);
if (size < 1024)
rt_kprintf("%5d", size);
else if (size < 1024 * 1024)
rt_kprintf("%4dK", size / 1024);
else
rt_kprintf("%4dM", size / (1024 * 1024));
rt_kprintf("] %c%c%c%c", mem->thread[0], mem->thread[1], mem->thread[2], mem->thread[3]);
if (MEM_POOL(mem) != m)
rt_kprintf(": ***\n");
else
rt_kprintf("\n");
}
}
return 0;
}
MSH_CMD_EXPORT(memtrace, dump memory trace information);
#endif /* RT_USING_MEMTRACE */
#endif /* RT_USING_FINSH */
#endif /* defined (RT_USING_SMALL_MEM) */
/**@}*/