4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-26 23:57:23 +08:00
BruceOu e498687a58
[BSP] Add n32g4frml-stb bsp (#6773)
新增n32g4frml-stb bsp,在n32g4frml-stb 开发板上测试通过。
Add n32g4frml-stb bsp. passed the test on the n32g4frml-stb board.
2023-01-05 01:45:17 -05:00

369 lines
11 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-10-19 Nations first version
*/
#include "drv_spi.h"
#if defined(RT_USING_SPI) && defined(RT_USING_PIN)
#include <rtdevice.h>
#if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || \
defined(BSP_USING_SPI3)
/* #define DEBUG */
#ifdef DEBUG
#define DEBUG_PRINTF(...) rt_kprintf(__VA_ARGS__)
#else
#define DEBUG_PRINTF(...)
#endif
/* private rt-thread spi ops function */
static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration)
{
SPI_InitType SPI_InitStructure;
RCC_ClocksType RCC_ClockFreq;
SPI_Module* spi_periph;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(configuration != RT_NULL);
RCC_GetClocksFreqValue(&RCC_ClockFreq);
spi_periph = (SPI_Module*)device->bus->parent.user_data;
#if defined(SOC_N32G45X) || defined(SOC_N32WB452) || defined(SOC_N32G4FR)
if (spi_periph != SPI1 && spi_periph != SPI2 && spi_periph != SPI3)
{
return RT_EIO;
}
#elif defined(SOC_N32L43X) || defined(SOC_N32L40X) || defined(SOC_N32G43X)
if (spi_periph != SPI1 && spi_periph != SPI2)
{
return RT_EIO;
}
#endif
if (configuration->data_width <= 8)
{
SPI_InitStructure.DataLen = SPI_DATA_SIZE_8BITS;
}
else if (configuration->data_width <= 16)
{
SPI_InitStructure.DataLen = SPI_DATA_SIZE_16BITS;
}
else
{
return RT_EIO;
}
{
rt_uint32_t spi_apb_clock;
rt_uint32_t max_hz;
max_hz = configuration->max_hz;
DEBUG_PRINTF("sys freq: %d\n", RCC_ClockFreq.SysclkFreq);
DEBUG_PRINTF("CK_APB2 freq: %d\n", RCC_ClockFreq.Pclk2Freq);
DEBUG_PRINTF("max freq: %d\n", max_hz);
if (spi_periph == SPI1)
{
spi_apb_clock = RCC_ClockFreq.Pclk2Freq;
}
else
{
spi_apb_clock = RCC_ClockFreq.Pclk1Freq;
}
if (max_hz >= spi_apb_clock/2)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_2;
}
else if (max_hz >= spi_apb_clock/4)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_4;
}
else if (max_hz >= spi_apb_clock/8)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_8;
}
else if (max_hz >= spi_apb_clock/16)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_16;
}
else if (max_hz >= spi_apb_clock/32)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_32;
}
else if (max_hz >= spi_apb_clock/64)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_64;
}
else if (max_hz >= spi_apb_clock/128)
{
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_128;
}
else
{
/* min prescaler 256 */
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_256;
}
} /* baudrate */
switch (configuration->mode & RT_SPI_MODE_3)
{
case RT_SPI_MODE_0:
SPI_InitStructure.CLKPOL = SPI_CLKPOL_LOW;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_FIRST_EDGE;
break;
case RT_SPI_MODE_1:
SPI_InitStructure.CLKPOL = SPI_CLKPOL_LOW;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_SECOND_EDGE;
break;
case RT_SPI_MODE_2:
SPI_InitStructure.CLKPOL = SPI_CLKPOL_HIGH;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_FIRST_EDGE;
break;
case RT_SPI_MODE_3:
SPI_InitStructure.CLKPOL = SPI_CLKPOL_HIGH;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_SECOND_EDGE;
break;
}
/* MSB or LSB */
if (configuration->mode & RT_SPI_MSB)
{
SPI_InitStructure.FirstBit = SPI_FB_MSB;
}
else
{
SPI_InitStructure.FirstBit = SPI_FB_LSB;
}
/* SPI configuration */
SPI_InitStructure.DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX;
SPI_InitStructure.SpiMode = SPI_MODE_MASTER;
SPI_InitStructure.NSS = SPI_NSS_SOFT;
SPI_InitStructure.CRCPoly = 7;
SPI_Init(spi_periph, &SPI_InitStructure);
/* Enable the sFLASH_SPI */
SPI_Enable(spi_periph, ENABLE);
return RT_EOK;
}
static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message)
{
struct n32_spi_cs *cs_pin = device->parent.user_data;
SPI_Module* spi_periph = (SPI_Module*)device->bus->parent.user_data;
struct rt_spi_configuration * config = &device->config;
RT_ASSERT(device != NULL);
RT_ASSERT(message != NULL);
/* take CS */
if (message->cs_take)
{
rt_pin_write(cs_pin->GPIO_Pin, PIN_LOW);
DEBUG_PRINTF("spi take cs\n");
}
if (config->data_width <= 8)
{
const rt_uint8_t * send_ptr = message->send_buf;
rt_uint8_t * recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
DEBUG_PRINTF("spi poll transfer start: %d\n", size);
while (size--)
{
rt_uint8_t data = 0xA5;
if (send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/* Loop while DAT register in not emplty */
while (SPI_I2S_GetStatus(spi_periph, SPI_I2S_TE_FLAG) == RESET);
/* Send the byte */
SPI_I2S_TransmitData(spi_periph, data);
/* Wait until a data is received */
while (SPI_I2S_GetStatus(spi_periph, SPI_I2S_RNE_FLAG) == RESET);
/* Get the received data */
data = SPI_I2S_ReceiveData(spi_periph);
if (recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
DEBUG_PRINTF("spi poll transfer finsh\n");
}
else if (config->data_width <= 16)
{
const rt_uint16_t * send_ptr = message->send_buf;
rt_uint16_t * recv_ptr = message->recv_buf;
rt_uint32_t size = message->length;
while (size--)
{
rt_uint16_t data = 0xFF;
if (send_ptr != RT_NULL)
{
data = *send_ptr++;
}
/* Loop while DAT register in not emplty */
while (SPI_I2S_GetStatus(spi_periph, SPI_I2S_TE_FLAG) == RESET);
/* Send the byte */
SPI_I2S_TransmitData(spi_periph, data);
/* Wait until a data is received */
while (RESET == SPI_I2S_GetStatus(spi_periph, SPI_I2S_RNE_FLAG));
/* Get the received data */
data = SPI_I2S_ReceiveData(spi_periph);
if (recv_ptr != RT_NULL)
{
*recv_ptr++ = data;
}
}
}
/* release CS */
if (message->cs_release)
{
rt_pin_write(cs_pin->GPIO_Pin, PIN_HIGH);
DEBUG_PRINTF("spi release cs\n");
}
return message->length;
}
static struct rt_spi_ops spi_ops =
{
configure,
xfer
};
int rt_hw_spi_init(void)
{
int result = 0;
GPIO_InitType GPIO_InitStructure;
#ifdef BSP_USING_SPI1
static struct rt_spi_bus spi_bus1;
spi_bus1.parent.user_data = (void *)SPI1;
result = rt_spi_bus_register(&spi_bus1, "spi1", &spi_ops);
#if defined(SOC_N32G45X) || defined(SOC_N32WB452) || defined(SOC_N32G4FR)
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA | RCC_APB2_PERIPH_SPI1, ENABLE);
GPIO_InitStruct(&GPIO_InitStructure);
/* Confige SPI1_SCLK(PA5) and SPI1_MOSI(PA7) */
GPIO_InitStructure.Pin = GPIO_PIN_5 | GPIO_PIN_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitPeripheral(GPIOA, &GPIO_InitStructure);
/* Confige SPI1_MISO(PA6) */
GPIO_InitStructure.Pin = GPIO_PIN_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitPeripheral(GPIOA, &GPIO_InitStructure);
#elif defined(SOC_N32L43X) || defined(SOC_N32L40X) || defined(SOC_N32G43X)
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_SPI1 | RCC_APB2_PERIPH_AFIO, ENABLE);
GPIO_InitStruct(&GPIO_InitStructure);
/* Confige SPI1_SCLK(PA5) and SPI1_MISO(PA6) and SPI1_MOSI(PA7) */
GPIO_InitStructure.Pin = GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Alternate = GPIO_AF0_SPI1;
GPIO_InitPeripheral(GPIOA, &GPIO_InitStructure);
#endif
#endif
#ifdef BSP_USING_SPI2
static struct rt_spi_bus spi_bus2;
spi_bus2.parent.user_data = (void *)SPI2;
result = rt_spi_bus_register(&spi_bus2, "spi2", &spi_ops);
#if defined(SOC_N32G45X) || defined(SOC_N32WB452) || defined(SOC_N32G4FR)
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOB, ENABLE);
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_SPI2, ENABLE);
GPIO_InitStruct(&GPIO_InitStructure);
/* Confige SPI2_SCLK(PB13) and SPI2_MOSI(PB15) */
GPIO_InitStructure.Pin = GPIO_PIN_13 | GPIO_PIN_15;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitPeripheral(GPIOB, &GPIO_InitStructure);
/* Confige SPI2_MISO(PB14) */
GPIO_InitStructure.Pin = GPIO_PIN_14;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitPeripheral(GPIOB, &GPIO_InitStructure);
#elif defined(SOC_N32L43X) || defined(SOC_N32L40X) || defined(SOC_N32G43X)
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOB, ENABLE);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_SPI2 | RCC_APB2_PERIPH_AFIO, ENABLE);
GPIO_InitStruct(&GPIO_InitStructure);
/* Confige SPI2_SCLK(PB13) and SPI2_MISO(PB14) and SPI2_MOSI(PB15) */
GPIO_InitStructure.Pin = GPIO_PIN_13 | GPIO_PIN_14 | GPIO_PIN_15;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Alternate = GPIO_AF0_SPI2;
GPIO_InitPeripheral(GPIOB, &GPIO_InitStructure);
#endif
#endif
#ifdef BSP_USING_SPI3
static struct rt_spi_bus spi_bus3;
spi_bus3.parent.user_data = (void *)SPI3;
result = rt_spi_bus_register(&spi_bus3, "spi3", &spi_ops);
RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOB | RCC_APB2_PERIPH_AFIO, ENABLE);
RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_SPI3, ENABLE);
GPIO_ConfigPinRemap(GPIO_RMP_SW_JTAG_SW_ENABLE, ENABLE);
GPIO_InitStruct(&GPIO_InitStructure);
/* Confige SPI3_SCLK(PB3) and SPI3_MOSI(PB5) */
GPIO_InitStructure.Pin = GPIO_PIN_3 | GPIO_PIN_5;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitPeripheral(GPIOB, &GPIO_InitStructure);
/* Confige SPI3_MISO(PB4) */
GPIO_InitStructure.Pin = GPIO_PIN_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitPeripheral(GPIOB, &GPIO_InitStructure);
#endif
return result;
}
INIT_BOARD_EXPORT(rt_hw_spi_init);
#endif /* defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) */
#endif