rt-thread-official/bsp/nxp/imx/imx6ull-smart/drivers/drv_sdio.c

707 lines
24 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2017-10-10 Tanek first version
* 2021-07-07 linzhenxing add sd card drivers in mmu
* 2021-07-14 linzhenxing add emmc
*/
#include <rtthread.h>
#include <rthw.h>
#include <drivers/dev_mmcsd_core.h>
#include <ioremap.h>
#include <board.h>
#include <fsl_usdhc.h>
#include <fsl_gpio.h>
#include <fsl_iomuxc.h>
#include <ioremap.h>
#include <string.h>
#define DBG_TAG "drv_sdio"
#ifdef RT_SDIO_DEBUG
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_INFO
#endif /* RT_SDIO_DEBUG */
#include <rtdbg.h>
#define CACHE_LINESIZE (32)
#define USDHC_ADMA_TABLE_WORDS (8U) /* define the ADMA descriptor table length */
#define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
#define IMXRT_MAX_FREQ (52UL * 1000UL * 1000UL)
#define USDHC_ADMA_TABLE_WORDS (8U) /* define the ADMA descriptor table length */
#define USDHC_ADMA2_ADDR_ALIGN (4U) /* define the ADMA2 descriptor table addr align size */
#define USDHC_READ_BURST_LEN (8U) /*!< number of words USDHC read in a single burst */
#define USDHC_WRITE_BURST_LEN (8U) /*!< number of words USDHC write in a single burst */
#define USDHC_DATA_TIMEOUT (0xFU) /*!< data timeout counter value */
/* Read/write watermark level. The bigger value indicates DMA has higher read/write performance. */
#define USDHC_READ_WATERMARK_LEVEL (0x80U)
#define USDHC_WRITE_WATERMARK_LEVEL (0x80U)
/* DMA mode */
#define USDHC_DMA_MODE kUSDHC_DmaModeAdma2
/* Endian mode. */
#define USDHC_ENDIAN_MODE kUSDHC_EndianModeLittle
static uint32_t g_usdhcAdma2Table[USDHC_ADMA_TABLE_WORDS];
struct rt_mmcsd_host *host1;
struct rt_mmcsd_host *host2;
static rt_mutex_t mmcsd_mutex = RT_NULL;
void host_change(void);
struct imxrt_mmcsd
{
struct rt_mmcsd_host *host;
struct rt_mmcsd_req *req;
struct rt_mmcsd_cmd *cmd;
struct rt_timer timer;
rt_uint32_t *buf;
usdhc_host_t usdhc_host;
clock_div_t usdhc_div;
clock_ip_name_t ip_clock;
uint32_t *usdhc_adma2_table;
};
/*! @name Configuration */
/*@{*/
/*!
* @brief Sets the IOMUXC pin mux mode.
* @note The first five parameters can be filled with the pin function ID macros.
*
* This is an example to set the ENET1_RX_DATA0 Pad as FLEXCAN1_TX:
* @code
* IOMUXC_SetPinMux(IOMUXC_ENET1_RX_DATA0_FLEXCAN1_TX, 0);
* @endcode
*
* This is an example to set the GPIO1_IO02 Pad as I2C1_SCL:
* @code
* IOMUXC_SetPinMux(IOMUXC_GPIO1_IO02_I2C1_SCL, 0);
* @endcode
*
* @param muxRegister The pin mux register.
* @param muxMode The pin mux mode.
* @param inputRegister The select input register.
* @param inputDaisy The input daisy.
* @param configRegister The config register.
* @param inputOnfield Software input on field.
*/
static inline void _IOMUXC_SetPinMux(uint32_t muxRegister,
uint32_t muxMode,
uint32_t inputRegister,
uint32_t inputDaisy,
uint32_t configRegister,
uint32_t inputOnfield)
{
*((volatile uint32_t *)rt_ioremap((void*)muxRegister, 0x4)) =
IOMUXC_SW_MUX_CTL_PAD_MUX_MODE(muxMode) | IOMUXC_SW_MUX_CTL_PAD_SION(inputOnfield);
if (inputRegister)
{
*((volatile uint32_t *)rt_ioremap((void*)inputRegister, 0x4)) = IOMUXC_SELECT_INPUT_DAISY(inputDaisy);
}
}
/*!
* @brief Sets the IOMUXC pin configuration.
* @note The previous five parameters can be filled with the pin function ID macros.
*
* This is an example to set pin configuration for IOMUXC_GPIO1_IO02_I2C1_SCL:
* @code
* IOMUXC_SetPinConfig(IOMUXC_GPIO1_IO02_I2C1_SCL, IOMUXC_SW_PAD_CTL_PAD_PUE_MASK | IOMUXC_SW_PAD_CTL_PAD_PUS(2U));
* @endcode
*
* @param muxRegister The pin mux register.
* @param muxMode The pin mux mode.
* @param inputRegister The select input register.
* @param inputDaisy The input daisy.
* @param configRegister The config register.
* @param configValue The pin config value.
*/
static inline void _IOMUXC_SetPinConfig(uint32_t muxRegister,
uint32_t muxMode,
uint32_t inputRegister,
uint32_t inputDaisy,
uint32_t configRegister,
uint32_t configValue)
{
if (configRegister)
{
*((volatile uint32_t *)rt_ioremap((void*)configRegister, 0x4)) = configValue;
}
}
static void _mmcsd_gpio_init(struct imxrt_mmcsd *mmcsd)
{
CLOCK_EnableClock(kCLOCK_Iomuxc); /* iomuxc clock (iomuxc_clk_enable): 0x03u */
#ifdef RT_USING_SDIO1
/* uSDHC1 pins start*/
_IOMUXC_SetPinMux(IOMUXC_UART1_RTS_B_USDHC1_CD_B, 0U);
_IOMUXC_SetPinConfig(IOMUXC_UART1_RTS_B_USDHC1_CD_B,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_SD1_CLK_USDHC1_CLK, 0U);
_IOMUXC_SetPinConfig(IOMUXC_SD1_CLK_USDHC1_CLK,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(1U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(1U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_SD1_CMD_USDHC1_CMD, 0U);
_IOMUXC_SetPinConfig(IOMUXC_SD1_CMD_USDHC1_CMD,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(1U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_SD1_DATA0_USDHC1_DATA0, 0U);
_IOMUXC_SetPinConfig(IOMUXC_SD1_DATA0_USDHC1_DATA0,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(1U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_SD1_DATA1_USDHC1_DATA1, 0U);
_IOMUXC_SetPinConfig(IOMUXC_SD1_DATA1_USDHC1_DATA1,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(1U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_SD1_DATA2_USDHC1_DATA2, 0U);
_IOMUXC_SetPinConfig(IOMUXC_SD1_DATA2_USDHC1_DATA2,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(1U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_SD1_DATA3_USDHC1_DATA3, 0U);
_IOMUXC_SetPinConfig(IOMUXC_SD1_DATA3_USDHC1_DATA3,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(1U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
/* uSDHC1 pins end*/
#endif
#ifdef RT_USING_SDIO2
/* uSDHC2 pins start*/
_IOMUXC_SetPinMux(IOMUXC_NAND_WE_B_USDHC2_CMD, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_WE_B_USDHC2_CMD,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(7U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_NAND_RE_B_USDHC2_CLK, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_RE_B_USDHC2_CLK,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(1U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_NAND_ALE_USDHC2_RESET_B, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_ALE_USDHC2_RESET_B,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(1U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_NAND_DATA00_USDHC2_DATA0, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_DATA00_USDHC2_DATA0,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(7U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_NAND_DATA01_USDHC2_DATA1, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_DATA01_USDHC2_DATA1,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(7U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_NAND_DATA02_USDHC2_DATA2, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_DATA02_USDHC2_DATA2,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(7U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_NAND_DATA03_USDHC2_DATA3, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_DATA03_USDHC2_DATA3,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(7U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_NAND_DATA04_USDHC2_DATA4, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_DATA04_USDHC2_DATA4,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(7U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_NAND_DATA05_USDHC2_DATA5, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_DATA05_USDHC2_DATA5,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(7U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_NAND_DATA06_USDHC2_DATA6, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_DATA06_USDHC2_DATA6,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(7U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(7U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
_IOMUXC_SetPinMux(IOMUXC_NAND_DATA07_USDHC2_DATA7, 0U);
_IOMUXC_SetPinConfig(IOMUXC_NAND_DATA07_USDHC2_DATA7,
IOMUXC_SW_PAD_CTL_PAD_SRE_MASK |
IOMUXC_SW_PAD_CTL_PAD_DSE(7U) |
IOMUXC_SW_PAD_CTL_PAD_SPEED(2U) |
IOMUXC_SW_PAD_CTL_PAD_PKE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUE_MASK |
IOMUXC_SW_PAD_CTL_PAD_PUS(1U) |
IOMUXC_SW_PAD_CTL_PAD_HYS_MASK);
/* uSDHC2 pins end*/
#endif
}
static void SDMMCHOST_ErrorRecovery(USDHC_Type *base)
{
uint32_t status = 0U;
/* get host present status */
status = USDHC_GetPresentStatusFlags(base);
/* check command inhibit status flag */
if ((status & kUSDHC_CommandInhibitFlag) != 0U)
{
/* reset command line */
USDHC_Reset(base, kUSDHC_ResetCommand, 1000U);
}
/* check data inhibit status flag */
if ((status & kUSDHC_DataInhibitFlag) != 0U)
{
/* reset data line */
USDHC_Reset(base, kUSDHC_ResetData, 1000U);
}
}
static void _mmcsd_host_init(struct imxrt_mmcsd *mmcsd)
{
usdhc_host_t *usdhc_host = &mmcsd->usdhc_host;
/* Initializes SDHC. */
usdhc_host->config.dataTimeout = USDHC_DATA_TIMEOUT;
usdhc_host->config.endianMode = USDHC_ENDIAN_MODE;
usdhc_host->config.readWatermarkLevel = USDHC_READ_WATERMARK_LEVEL;
usdhc_host->config.writeWatermarkLevel = USDHC_WRITE_WATERMARK_LEVEL;
usdhc_host->config.readBurstLen = USDHC_READ_BURST_LEN;
usdhc_host->config.writeBurstLen = USDHC_WRITE_BURST_LEN;
USDHC_Init(usdhc_host->base, &(usdhc_host->config));
}
static void _mmcsd_clk_init(struct imxrt_mmcsd *mmcsd)
{
CLOCK_EnableClock(mmcsd->ip_clock);
CLOCK_SetDiv(mmcsd->usdhc_div, 5U);
}
static void _mmc_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
struct imxrt_mmcsd *mmcsd;
struct rt_mmcsd_cmd *cmd;
struct rt_mmcsd_data *data;
status_t error;
usdhc_adma_config_t dmaConfig;
usdhc_transfer_t fsl_content = {0};
usdhc_command_t fsl_command = {0};
usdhc_data_t fsl_data = {0};
rt_uint32_t *buf = NULL;
rt_mutex_take(mmcsd_mutex, RT_WAITING_FOREVER);
RT_ASSERT(host != RT_NULL);
RT_ASSERT(req != RT_NULL);
mmcsd = (struct imxrt_mmcsd *)host->private_data;
RT_ASSERT(mmcsd != RT_NULL);
cmd = req->cmd;
RT_ASSERT(cmd != RT_NULL);
LOG_D("\tcmd->cmd_code: %02d, cmd->arg: %08x, cmd->flags: %08x --> ", cmd->cmd_code, cmd->arg, cmd->flags);
data = cmd->data;
memset(&dmaConfig, 0, sizeof(usdhc_adma_config_t));
/* config adma */
dmaConfig.dmaMode = USDHC_DMA_MODE;
dmaConfig.burstLen = kUSDHC_EnBurstLenForINCR;
dmaConfig.admaTable = mmcsd->usdhc_adma2_table;
dmaConfig.admaTableWords = USDHC_ADMA_TABLE_WORDS;
fsl_command.index = cmd->cmd_code;
fsl_command.argument = cmd->arg;
if (cmd->cmd_code == STOP_TRANSMISSION)
fsl_command.type = kCARD_CommandTypeAbort;
else
fsl_command.type = kCARD_CommandTypeNormal;
switch (cmd->flags & RESP_MASK)
{
case RESP_NONE:
fsl_command.responseType = kCARD_ResponseTypeNone;
break;
case RESP_R1:
fsl_command.responseType = kCARD_ResponseTypeR1;
break;
case RESP_R1B:
fsl_command.responseType = kCARD_ResponseTypeR1b;
break;
case RESP_R2:
fsl_command.responseType = kCARD_ResponseTypeR2;
break;
case RESP_R3:
fsl_command.responseType = kCARD_ResponseTypeR3;
break;
case RESP_R4:
fsl_command.responseType = kCARD_ResponseTypeR4;
break;
case RESP_R6:
fsl_command.responseType = kCARD_ResponseTypeR6;
break;
case RESP_R7:
fsl_command.responseType = kCARD_ResponseTypeR7;
break;
case RESP_R5:
fsl_command.responseType = kCARD_ResponseTypeR5;
break;
default:
RT_ASSERT(NULL);
}
fsl_command.flags = 0;
fsl_content.command = &fsl_command;
if (data)
{
if (req->stop != NULL)
fsl_data.enableAutoCommand12 = true;
else
fsl_data.enableAutoCommand12 = false;
fsl_data.enableAutoCommand23 = false;
fsl_data.enableIgnoreError = false;
fsl_data.blockSize = data->blksize;
fsl_data.blockCount = data->blks;
LOG_D(" blksize:%d, blks:%d ", fsl_data.blockSize, fsl_data.blockCount);
if (((rt_uint32_t)data->buf & (CACHE_LINESIZE - 1)) || // align cache(32byte)
((rt_uint32_t)data->buf > 0x00000000 && (rt_uint32_t)data->buf < 0x00080000) /*|| // ITCM
((rt_uint32_t)data->buf >= 0x20000000 && (rt_uint32_t)data->buf < 0x20080000)*/) // DTCM
{
buf = rt_malloc_align(fsl_data.blockSize * fsl_data.blockCount, CACHE_LINESIZE);
RT_ASSERT(buf != RT_NULL);
LOG_D(" malloc buf: %p, data->buf:%p, %d ", buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
}
if ((cmd->cmd_code == WRITE_BLOCK) || (cmd->cmd_code == WRITE_MULTIPLE_BLOCK))
{
if (buf)
{
LOG_D(" write(data->buf to buf) ");
rt_memcpy(buf, data->buf, fsl_data.blockSize * fsl_data.blockCount);
fsl_data.txData = (uint32_t const *)buf;
}
else
{
fsl_data.txData = (uint32_t const *)data->buf;
}
fsl_data.rxData = NULL;
}
else
{
if (buf)
{
fsl_data.rxData = (uint32_t *)buf;
}
else
{
fsl_data.rxData = (uint32_t *)data->buf;
}
fsl_data.txData = NULL;
}
fsl_content.data = &fsl_data;
}
else
{
fsl_content.data = NULL;
}
error = USDHC_TransferBlocking(mmcsd->usdhc_host.base, &dmaConfig, &fsl_content);
if (error == kStatus_Fail)
{
SDMMCHOST_ErrorRecovery(mmcsd->usdhc_host.base);
LOG_D(" ***USDHC_TransferBlocking error: %d*** --> \n", error);
cmd->err = -RT_ERROR;
}
if (buf)
{
if (fsl_data.rxData)
{
LOG_D("read copy buf to data->buf ");
rt_memcpy(data->buf, buf, fsl_data.blockSize * fsl_data.blockCount);
}
rt_free_align(buf);
}
if ((cmd->flags & RESP_MASK) == RESP_R2)
{
cmd->resp[3] = fsl_command.response[0];
cmd->resp[2] = fsl_command.response[1];
cmd->resp[1] = fsl_command.response[2];
cmd->resp[0] = fsl_command.response[3];
LOG_D(" resp 0x%08X 0x%08X 0x%08X 0x%08X\n",
cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
else
{
cmd->resp[0] = fsl_command.response[0];
LOG_D(" resp 0x%08X\n", cmd->resp[0]);
}
mmcsd_req_complete(host);
rt_mutex_release(mmcsd_mutex);
return;
}
static void _mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
struct imxrt_mmcsd *mmcsd;
unsigned int usdhc_clk;
unsigned int bus_width;
uint32_t src_clk;
RT_ASSERT(host != RT_NULL);
RT_ASSERT(host->private_data != RT_NULL);
RT_ASSERT(io_cfg != RT_NULL);
mmcsd = (struct imxrt_mmcsd *)host->private_data;
usdhc_clk = io_cfg->clock;
bus_width = io_cfg->bus_width;
if (usdhc_clk > IMXRT_MAX_FREQ)
usdhc_clk = IMXRT_MAX_FREQ;
src_clk = (CLOCK_GetSysPfdFreq(kCLOCK_Pfd2) / (CLOCK_GetDiv(mmcsd->usdhc_div) + 1U));
LOG_D("\tsrc_clk: %d, usdhc_clk: %d, bus_width: %d\n", src_clk, usdhc_clk, bus_width);
if (usdhc_clk)
{
USDHC_SetSdClock(mmcsd->usdhc_host.base, src_clk, usdhc_clk);
/* Change bus width */
if (bus_width == MMCSD_BUS_WIDTH_8)
USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth8Bit);
else if (bus_width == MMCSD_BUS_WIDTH_4)
USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth4Bit);
else if (bus_width == MMCSD_BUS_WIDTH_1)
USDHC_SetDataBusWidth(mmcsd->usdhc_host.base, kUSDHC_DataBusWidth1Bit);
else
RT_ASSERT(RT_NULL);
}
}
static const struct rt_mmcsd_host_ops ops =
{
_mmc_request,
_mmc_set_iocfg,
RT_NULL,//_mmc_get_card_status,
RT_NULL,//_mmc_enable_sdio_irq,
};
rt_int32_t imxrt_mci_init(void)
{
#ifdef RT_USING_SDIO1
struct imxrt_mmcsd *mmcsd1;
host1 = mmcsd_alloc_host();
if (!host1)
{
return -RT_ERROR;
}
mmcsd1 = rt_malloc(sizeof(struct imxrt_mmcsd));
if (!mmcsd1)
{
LOG_E("alloc mci failed\n");
goto err;
}
rt_memset(mmcsd1, 0, sizeof(struct imxrt_mmcsd));
mmcsd1->usdhc_host.base = (USDHC_Type *)rt_ioremap((void*)USDHC1_BASE, 0x1000);
mmcsd1->usdhc_div = kCLOCK_Usdhc1Div;
mmcsd1->usdhc_adma2_table = g_usdhcAdma2Table;
strncpy(host1->name, "sd", sizeof(host1->name)-1);
host1->ops = &ops;
host1->freq_min = 375000;
host1->freq_max = 25000000;
host1->valid_ocr = VDD_32_33 | VDD_33_34;
host1->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | \
MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ;
host1->max_seg_size = 65535;
host1->max_dma_segs = 2;
host1->max_blk_size = 512;
host1->max_blk_count = 4096;
mmcsd1->host = host1;
_mmcsd_clk_init(mmcsd1);
_mmcsd_gpio_init(mmcsd1);
_mmcsd_host_init(mmcsd1);
host1->private_data = mmcsd1;
mmcsd_change(host1);
#endif
#ifdef RT_USING_SDIO2
struct imxrt_mmcsd *mmcsd2;
host2 = mmcsd_alloc_host();
if (!host2)
{
return -RT_ERROR;
}
mmcsd2 = rt_malloc(sizeof(struct imxrt_mmcsd));
if (!mmcsd2)
{
LOG_E("alloc mci failed\n");
goto err;
}
rt_memset(mmcsd2, 0, sizeof(struct imxrt_mmcsd));
mmcsd2->usdhc_host.base = (USDHC_Type *)rt_ioremap((void*)USDHC2_BASE, 0x1000);
mmcsd2->usdhc_div = kCLOCK_Usdhc1Div;
mmcsd2->usdhc_adma2_table = g_usdhcAdma2Table;
strncpy(host2->name, "emmc", sizeof(host2->name)-1);
host2->ops = &ops;
host2->freq_min = 375000;
host2->freq_max = 52000000;
host2->valid_ocr = VDD_35_36;
host2->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | \
MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ;
host2->max_seg_size = 65535;
host2->max_dma_segs = 2;
host2->max_blk_size = 512;
host2->max_blk_count = 4096;
mmcsd2->host = host2;
_mmcsd_clk_init(mmcsd2);
_mmcsd_gpio_init(mmcsd2);
_mmcsd_host_init(mmcsd2);
host2->private_data = mmcsd2;
mmcsd_change(host2);
#endif
mmcsd_mutex = rt_mutex_create("mmutex", RT_IPC_FLAG_FIFO);
if (mmcsd_mutex == RT_NULL)
{
LOG_E("create mmcsd mutex failed.\n");
return -1;
}
return 0;
err:
#ifdef RT_USING_SDIO1
mmcsd_free_host(host1);
#endif
#ifdef RT_USING_SDIO2
mmcsd_free_host(host2);
#endif
return -RT_ENOMEM;
}
INIT_DEVICE_EXPORT(imxrt_mci_init);
void host_change(void)
{
mmcsd_change(host1);
}