4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-16 03:39:22 +08:00
bernard 5e3b3b19a6 [BSP] change the type of cmd.
1. Change the type of cmd to 'int';
2. Remove RT_LWIP_USING_RT_MEM macro;
2017-10-16 13:23:03 +08:00

1387 lines
42 KiB
C

/*
* This file is part of FH8620 BSP for RT-Thread distribution.
*
* Copyright (c) 2016 Shanghai Fullhan Microelectronics Co., Ltd.
* All rights reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Visit http://www.fullhan.com to get contact with Fullhan.
*
* Change Logs:
* Date Author Notes
*/
#include "acw.h"
#include "fh_def.h"
#include "fh_dma.h"
#include "dma.h"
#ifdef RT_USING_FH_ACW
#if 1
typedef struct
{
unsigned int base;
void *vbase;
unsigned int size;
unsigned int align;
}MEM_DESC;
#define ACW_SELFTEST 0
int buffer_malloc_withname(MEM_DESC *mem, int size, int align, char* name);
#endif
#define NR_DESCS_PER_CHANNEL 64
#define FIX_SAMPLE_BIT 32
#define ACW_HW_NUM_RX 0
#define ACW_HW_NUM_TX 1
#define ACW_DMA_CAP_CHANNEL 3
#define ACW_DMA_PAY_CHANNEL 2
#define ACW_CTRL 0x0
#define ACW_TXFIFO_CTRL 0x4
#define ACW_RXFIFO_CTRL 0x8
#define ACW_STATUS 0x0c
#define ACW_DIG_IF_CTRL 0x10
#define ACW_ADC_PATH_CTRL 0x14
#define ACW_ADC_ALC_CTRL 0x18
#define ACW_DAC_PATH_CTRL 0x1c
#define ACW_MISC_CTRL 0x20
#define ACW_TXFIFO 0xf0a00100
#define ACW_RXFIFO 0xf0a00200
typedef char bool;
#define AUDIO_DMA_PREALLOC_SIZE 128*1024
#define ACW_INTR_RX_UNDERFLOW 0x10000
#define ACW_INTR_RX_OVERFLOW 0x20000
#define ACW_INTR_TX_UNDERFLOW 0x40000
#define ACW_INTR_TX_OVERFLOW 0x80000
#define PAGE_SIZE 0x1000
enum audio_type
{
capture = 0,
playback,
};
enum audio_state
{
normal = 0,
xrun,
stopping,
running,
};
struct infor_record_t
{
int record_pid;
int play_pid;
}; // infor_record;
struct audio_config_t {
int rate;
int volume;
enum io_select io_type;
int frame_bit;
int channels;
int buffer_size;
int period_size;
int buffer_bytes;
int period_bytes;
int start_threshold;
int stop_threshold;
};
struct audio_ptr_t
{
struct audio_config_t cfg;
enum audio_state state;
long size;
int hw_ptr;
int appl_ptr;
struct rt_mutex lock;
struct device_acw dev;
void *area; /*virtual pointer*/
dma_addr_t addr; /*physical address*/
unsigned char * mmap_addr;
};
struct fh_audio_cfg
{
struct rt_dma_device *capture_dma;
struct rt_dma_device *playback_dma;
struct dma_transfer *capture_trans;
struct dma_transfer *plauback_trans;
struct audio_ptr_t capture;
struct audio_ptr_t playback;
wait_queue_head_t readqueue;
wait_queue_head_t writequeue;
struct rt_semaphore sem_capture;
struct rt_semaphore sem_playback;
};
typedef int s32;
typedef s32 dma_cookie_t;
struct fh_dma_chan
{
struct dma_chan *chan;
void *ch_regs;
unsigned char mask;
unsigned char priority;
bool paused;
bool initialized;
struct rt_mutex lock;
/* these other elements are all protected by lock */
unsigned long flags;
dma_cookie_t completed;
struct list_head active_list;
struct list_head queue;
struct list_head free_list;
struct fh_cyclic_desc *cdesc;
unsigned int descs_allocated;
};
struct fh_acw_dma_transfer
{
struct dma_chan *chan;
struct dma_transfer cfg;
struct scatterlist sgl;
struct dma_async_tx_descriptor *desc;
};
struct channel_assign
{
int capture_channel;
int playback_channel;
};
struct audio_dev_mod
{
int reg_base;
struct channel_assign channel_assign;
struct fh_audio_cfg *audio_config;
}audio_dev;
static struct work_struct playback_wq;
#define WORK_QUEUE_STACK_SIZE 512
#if ACW_SELFTEST
#define WORK_QUEUE_PRIORITY (12)
#else
#define WORK_QUEUE_PRIORITY (128+12)
#endif
static struct rt_workqueue* playback_queue;
void audio_prealloc_dma_buffer(int aiaotype,struct fh_audio_cfg *audio_config);
#if ACW_SELFTEST
#define BUFF_SIZE 1024*8
#define TEST_PER_NO 1024
#endif
static void audio_callback(){
rt_kprintf("# \n");
}
static void audio_callback_capture(){
rt_kprintf("$ \n");
}
static struct audio_param_store_t
{
int input_volume;
enum io_select input_io_type;
} audio_param_store;
void reset_dma_buff(enum audio_type type, struct fh_audio_cfg *audio_config);
static void fh_acw_tx_dma_done(void *arg);
static void fh_acw_rx_dma_done(struct fh_audio_cfg *arg);
static bool fh_acw_dma_chan_filter(struct dma_chan *chan, void *filter_param);
#define writel(v,a) SET_REG(a,v)
void fh_acw_stop_playback(struct fh_audio_cfg *audio_config)
{
if(audio_config->playback.state == stopping)
{
return;
}
unsigned int rx_status;
rx_status = readl( audio_dev.reg_base + ACW_TXFIFO_CTRL);//clear rx fifo
rx_status = rx_status|(1<<4);
writel(rx_status,audio_dev.reg_base + ACW_TXFIFO_CTRL);
audio_config->playback.state = stopping;
writel(0, audio_dev.reg_base + ACW_TXFIFO_CTRL);//tx fifo disable
if(audio_config->plauback_trans->channel_number != ACW_PLY_DMA_CHAN)
goto free_mem;
if(!audio_config->plauback_trans->first_lli)
goto free_channel;
audio_config->playback_dma->ops->control(audio_config->playback_dma,RT_DEVICE_CTRL_DMA_CYCLIC_STOP,audio_config->plauback_trans);
audio_config->playback_dma->ops->control(audio_config->playback_dma,RT_DEVICE_CTRL_DMA_CYCLIC_FREE,audio_config->plauback_trans);
free_channel:
audio_config->playback_dma->ops->control(audio_config->playback_dma,RT_DEVICE_CTRL_DMA_RELEASE_CHANNEL,audio_config->plauback_trans);
if(&audio_config->sem_playback)
rt_sem_release(&audio_config->sem_playback);
if(&audio_config->playback.lock)
rt_mutex_release(&audio_config->playback.lock);
if(&playback_wq)
rt_workqueue_cancel_work(playback_queue,&playback_wq);
if(playback_queue)
rt_workqueue_destroy(playback_queue);
free_mem:
if(audio_config->playback.area)
fh_dma_mem_free(audio_config->playback.area);
}
void fh_acw_stop_capture(struct fh_audio_cfg *audio_config)
{
unsigned int rx_status;
if(audio_config->capture.state == stopping)
{
rt_kprintf(" capture is stopped \n");
return;
}
rx_status = readl( audio_dev.reg_base + ACW_RXFIFO_CTRL);//clear rx fifo
rx_status = rx_status|(1<<4);
writel(rx_status,audio_dev.reg_base + ACW_RXFIFO_CTRL);
audio_config->capture.state = stopping;
writel(0, audio_dev.reg_base + 8);//rx fifo disable
if(audio_config->capture_trans->channel_number != ACW_CAP_DMA_CHAN)
goto free_mem;
if(!audio_config->capture_trans->first_lli)
goto free_channel;
audio_config->capture_dma->ops->control(audio_config->capture_dma,RT_DEVICE_CTRL_DMA_CYCLIC_STOP,audio_config->capture_trans);
audio_config->capture_dma->ops->control(audio_config->capture_dma,RT_DEVICE_CTRL_DMA_CYCLIC_FREE,audio_config->capture_trans);
free_channel:
audio_config->capture_dma->ops->control(audio_config->capture_dma,RT_DEVICE_CTRL_DMA_RELEASE_CHANNEL,audio_config->capture_trans);
if(&audio_config->sem_capture)
rt_sem_release(&audio_config->sem_capture);
if(&audio_config->capture.lock)
rt_mutex_release(&audio_config->capture.lock);
free_mem:
if(audio_config->capture.area)
fh_dma_mem_free( audio_config->capture.area);
}
void switch_io_type(enum audio_type type, enum io_select io_type)
{
int reg;
if (capture == type)
{
reg = readl(audio_dev.reg_base + ACW_ADC_PATH_CTRL);
if (mic_in == io_type)
{
rt_kprintf("audio input changed to mic_in\n");
writel( reg & (~(1<<1)),audio_dev.reg_base + ACW_ADC_PATH_CTRL);
reg = readl(audio_dev.reg_base + ACW_ADC_PATH_CTRL);
reg = reg & (~(1<<3));
reg |=(0x1<<3);
writel(reg, audio_dev.reg_base + ACW_ADC_PATH_CTRL);
}
else if (line_in == io_type)
{
rt_kprintf("audio input changed to line_in\n");
writel(reg | (1<<1), audio_dev.reg_base + ACW_ADC_PATH_CTRL);
}
}
else
{
reg = readl(audio_dev.reg_base + ACW_DAC_PATH_CTRL);
if (speaker_out == io_type)
{
rt_kprintf("audio output changed to speaker_out\n");
reg = reg & (~(3<<21));
reg = reg & (~(3<<30));
writel(reg, audio_dev.reg_base + ACW_DAC_PATH_CTRL);
reg = reg | (1<<21);
writel(reg,audio_dev.reg_base + ACW_DAC_PATH_CTRL);
reg = reg | (1<<18);
writel(reg, audio_dev.reg_base + ACW_DAC_PATH_CTRL);/*unmute speaker*/
reg = reg | (3<<30);
writel(reg,audio_dev.reg_base + ACW_DAC_PATH_CTRL);/*mute line out*/
}
else if (line_out == io_type)
{
rt_kprintf("audio output changed to line_out\n");
reg = reg & (~(3<<21));
writel(reg, audio_dev.reg_base + ACW_DAC_PATH_CTRL);/*mute speaker*/
reg = reg & (~(3<<30));
writel(reg, audio_dev.reg_base + ACW_DAC_PATH_CTRL);/*unmute line out*/
}
}
}
int get_factor_from_table(int rate)
{
int factor;
switch(rate)
{
case 8000:
factor = 4;
break;
case 16000:
factor = 1;
break;
case 32000:
factor = 0;
break;
case 44100:
factor = 13;
break;
case 48000:
factor = 6;
break;
default:
factor = -EFAULT;
break;
}
return factor;
}
void switch_rate(enum audio_type type, int rate)
{
int reg, factor;
factor = get_factor_from_table(rate);
if (factor < 0)
{
rt_kprintf( "unsupported sample rate\n");
return;
}
reg = readl(audio_dev.reg_base + ACW_DIG_IF_CTRL);
if (capture == type)
{
rt_kprintf("capture rate set to %d\n", rate);
reg = reg & (~(0xf<<0));
writel(reg, audio_dev.reg_base + ACW_DIG_IF_CTRL);/*adc and dac sample rate*/
reg = reg | (factor<<0);
writel(reg,audio_dev.reg_base + ACW_DIG_IF_CTRL);
}
else
{
rt_kprintf("playback rate set to %d\n", rate);
reg = reg & (~(0xf<<8));
writel(reg, audio_dev.reg_base + ACW_DIG_IF_CTRL);/*adc and dac sample rate*/
reg = reg | (factor<<8);
writel(reg, audio_dev.reg_base + ACW_DIG_IF_CTRL);
}
}
int get_param_from_volume(int volume)
{
if(volume < 0)
volume = 0;
else if(volume > 100)
volume = 100;
volume = volume * 63 / 100;
return volume;
}
void switch_input_volume(int volume)
{
int reg, param;
param = get_param_from_volume(volume);
if (param < 0)
{
rt_kprintf("capture volume error\n");
return;
}
reg = readl(audio_dev.reg_base + ACW_ADC_PATH_CTRL);
reg = reg & (~(0x3f<<8));
writel(reg, audio_dev.reg_base + ACW_ADC_PATH_CTRL);
reg = reg | (param<<8);
writel(reg,audio_dev.reg_base + ACW_ADC_PATH_CTRL);
}
void init_audio(enum audio_type type,struct fh_audio_cfg *audio_config)
{
int reg;
reg = readl(audio_dev.reg_base + ACW_CTRL);
if ((reg & 0x80000000) == 0)
{
writel(0x80000000, audio_dev.reg_base + ACW_CTRL);/*enable audio*/
}
reg = readl(audio_dev.reg_base + ACW_MISC_CTRL);
if (0x40400 != reg)
{
writel(0x40400,audio_dev.reg_base + ACW_MISC_CTRL);/*misc ctl*/
}
if (capture == type)
{
writel(0x61141b06,audio_dev.reg_base + ACW_ADC_PATH_CTRL);/*adc cfg*/
writel(0x167f2307, audio_dev.reg_base + ACW_ADC_ALC_CTRL);/*adc alc*/
writel(0, audio_dev.reg_base + ACW_RXFIFO_CTRL);/*rx fifo disable*/
switch_input_volume(audio_config->capture.cfg.volume);
switch_rate(capture, audio_config->capture.cfg.rate);
switch_io_type(capture, audio_config->capture.cfg.io_type);
}
else
{
writel(0x3b403f09, audio_dev.reg_base + ACW_DAC_PATH_CTRL);/*dac cfg*/
writel(0, audio_dev.reg_base + ACW_TXFIFO_CTRL);/*tx fifo disable*/
switch_rate(playback, audio_config->playback.cfg.rate);
switch_io_type(playback, audio_config->playback.cfg.io_type);
}
}
static inline long bytes_to_frames(int frame_bit, int bytes)
{
return bytes * 8 /frame_bit;
}
static inline long frames_to_bytes(int frame_bit, int frames)
{
return frames * frame_bit / 8;
}
int avail_data_len(enum audio_type type,struct fh_audio_cfg *stream)
{
int delta;
if (capture == type)
{
delta = stream->capture.hw_ptr - stream->capture.appl_ptr;
if (delta < 0)
{
delta += stream->capture.size;
}
return delta;
}
else
{
delta = stream->playback.appl_ptr - stream->playback.hw_ptr;
if (delta < 0)
{
delta += stream->playback.size;
}
return stream->playback.size - delta;
}
}
static rt_err_t fh_audio_close(rt_device_t dev)
{
struct fh_audio_cfg *audio_config = dev->user_data;
unsigned int reg;
//disable interrupts
reg = readl(audio_dev.reg_base + ACW_CTRL);
reg &= ~(0x3ff);
writel(reg, audio_dev.reg_base + ACW_CTRL);
fh_acw_stop_playback(audio_config);
fh_acw_stop_capture(audio_config);
}
int register_tx_dma(struct fh_audio_cfg *audio_config)
{
int ret;
struct dma_transfer *playback_trans;
playback_trans = audio_config->plauback_trans;
struct rt_dma_device *rt_dma_dev;
rt_dma_dev = audio_config->playback_dma;
if ((audio_config->playback.cfg.buffer_bytes < audio_config->playback.cfg.period_bytes) ||
(audio_config->playback.cfg.buffer_bytes <= 0) || (audio_config->playback.cfg.period_bytes <= 0))
{
rt_kprintf( "buffer_size and period_size are invalid\n");
return RT_ERROR;
}
if(playback_trans->channel_number == ACW_PLY_DMA_CHAN){
ret = rt_dma_dev->ops->control(rt_dma_dev,RT_DEVICE_CTRL_DMA_CYCLIC_PREPARE,playback_trans);
if(ret){
rt_kprintf("can't playback cyclic prepare \n");
return RT_ERROR;
}
ret = rt_dma_dev->ops->control(rt_dma_dev,RT_DEVICE_CTRL_DMA_CYCLIC_START,playback_trans);
if(ret){
rt_kprintf("can't playback cyclic start \n");
return RT_ERROR;
}
}
else
return RT_ERROR;
return 0;
}
int register_rx_dma( struct fh_audio_cfg *audio_config)
{
int ret;
struct dma_transfer *capture_slave;
capture_slave = audio_config->capture_trans;
struct rt_dma_device *rt_dma_dev;
rt_dma_dev = audio_config->capture_dma;
if (!capture_slave)
{
return -ENOMEM;
}
if ((audio_config->capture.cfg.buffer_bytes < audio_config->capture.cfg.period_bytes) ||
(audio_config->capture.cfg.buffer_bytes <= 0) ||(audio_config->capture.cfg.period_bytes <= 0) )
{
rt_kprintf( "buffer_size and period_size are invalid\n");
return RT_ERROR;
}
if(capture_slave->channel_number==ACW_CAP_DMA_CHAN){
ret = rt_dma_dev->ops->control(rt_dma_dev,RT_DEVICE_CTRL_DMA_CYCLIC_PREPARE,capture_slave);
if(ret){
rt_kprintf("can't capture cyclic prepare \n");
return RT_ERROR;
}
ret = rt_dma_dev->ops->control(rt_dma_dev,RT_DEVICE_CTRL_DMA_CYCLIC_START,capture_slave);
if(ret){
rt_kprintf("can't capture cyclic start \n");
return RT_ERROR;
}
}
else
return RT_ERROR;
writel(0x11,audio_dev.reg_base + ACW_RXFIFO_CTRL);//clear rx fifo
writel(0x30029,audio_dev.reg_base + ACW_RXFIFO_CTRL);/*enable rx fifo*/
return 0;
}
void playback_start_wq_handler(struct work_struct *work)
{
int avail;
unsigned int rx_status;
while(1)
{
if (stopping == audio_dev.audio_config->playback.state)
{
return;
}
avail = avail_data_len(playback, audio_dev.audio_config);
if (avail < audio_dev.audio_config->playback.cfg.period_bytes)
{
rt_thread_sleep(0);
}
else
{
rx_status = readl( audio_dev.reg_base + ACW_TXFIFO_CTRL);//clear rx fifo
rx_status = rx_status|(1<<4);
writel(rx_status,audio_dev.reg_base + ACW_TXFIFO_CTRL);
writel(0x30029, audio_dev.reg_base + ACW_TXFIFO_CTRL);
break;
}
}
}
int fh_acw_start_playback(struct fh_audio_cfg *audio_config)
{
int ret;
if(audio_config->playback.state == running)
{
rt_kprintf("playback is running \n");
return 0;
}
if (audio_config->playback.cfg.buffer_bytes >= AUDIO_DMA_PREALLOC_SIZE)
{
rt_kprintf("DMA prealloc buffer is smaller than audio_config->buffer_bytes %x\n",audio_config->playback.cfg.buffer_bytes);
return -ENOMEM;
}
reset_dma_buff(playback,audio_config);
rt_memset(audio_config->playback.area, 0, audio_config->playback.cfg.buffer_bytes);
audio_config->playback.size = audio_config->playback.cfg.buffer_bytes;
audio_config->playback.state = running;
ret = audio_request_playback_channel(audio_config);
if(ret){
rt_kprintf("can't request playback channel\n");
return ret;
}
ret = register_tx_dma(audio_config);
if (ret < 0)
{
rt_kprintf("can't register tx dma\n");
return ret;
}
rt_list_init(&(playback_wq.list));
playback_wq.work_func = (void *)playback_start_wq_handler;
playback_wq.work_data = RT_NULL;
playback_queue = rt_workqueue_create("play_workqueue",WORK_QUEUE_STACK_SIZE,WORK_QUEUE_PRIORITY);
if(!playback_queue){
rt_kprintf("init work_queue error....\n");
return -1;
}
rt_workqueue_dowork(playback_queue,&playback_wq);
return 0;
}
int fh_acw_start_capture(struct fh_audio_cfg *audio_config)
{
int ret;
if(audio_config->capture.state == running)
{
return 0;
}
if (audio_config->capture.cfg.buffer_bytes >= AUDIO_DMA_PREALLOC_SIZE)
{
rt_kprintf("DMA prealloc buffer is smaller than audio_config->buffer_bytes %x\n",audio_config->capture.cfg.buffer_bytes);
return -ENOMEM;
}
reset_dma_buff(capture,audio_config);
rt_memset(audio_config->capture.area, 0, audio_config->capture.cfg.buffer_bytes);
audio_config->capture.size = audio_config->capture.cfg.buffer_bytes;
audio_config->capture.state = running;
ret = audio_request_capture_channel(audio_config);
if(ret){
rt_kprintf("can't request capture channel \n");
return ret;
}
return register_rx_dma(audio_config);
}
static void fh_acw_rx_dma_done(struct fh_audio_cfg *arg)
{
#if 1
struct fh_audio_cfg *audio_config;
audio_config = arg;
audio_config->capture.hw_ptr += audio_config->capture.cfg.period_bytes;
if (audio_config->capture.hw_ptr > audio_config->capture.size ) // TBD_WAIT ...
{
audio_config->capture.hw_ptr = audio_config->capture.hw_ptr - audio_config->capture.size;
}
int avail = avail_data_len(capture,audio_config);
if (avail > audio_config->capture.cfg.period_bytes)
{
rt_sem_release(&audio_config->sem_capture);
}
#endif
}
static void fh_acw_tx_dma_done(void *arg)
{
#if 1
struct fh_audio_cfg *audio_config;
audio_config = ( struct fh_audio_cfg *)arg;
audio_config->playback.hw_ptr += audio_config->playback.cfg.period_bytes;
if (audio_config->playback.hw_ptr > audio_config->playback.size )
{
audio_config->playback.hw_ptr = audio_config->playback.hw_ptr - audio_config->playback.size;
}
int avail = avail_data_len(playback,audio_config);
if (avail > audio_config->playback.cfg.period_bytes)
{
rt_sem_release(&audio_config->sem_playback);
}
#endif
}
bool fh_acw_dma_chan_filter(struct dma_chan *chan, void *filter_param)
{
}
int arg_config_support(struct fh_audio_cfg_arg * cfg)
{
int ret;
ret = get_param_from_volume(cfg->volume);
if (ret < 0) {
rt_kprintf("invalid volume\n");
return -EINVAL;
}
ret = get_factor_from_table(cfg->rate);
if (ret < 0) {
rt_kprintf("invalid rate\n");
return -EINVAL;
}
return 0;
}
void reset_dma_buff(enum audio_type type, struct fh_audio_cfg *audio_config)
{
if (capture == type)
{
audio_config->capture.appl_ptr = 0;
audio_config->capture.hw_ptr = 0;
}
else
{
audio_config->playback.appl_ptr = 0;
audio_config->playback.hw_ptr = 0;
}
}
static rt_err_t fh_audio_ioctl(rt_device_t dev, int cmd, void *arg)
{
struct fh_audio_cfg_arg *cfg;
struct fh_audio_cfg *audio_config = (struct fh_audio_cfg *)dev->user_data;
int ret;
int reg;
int value,pid;
int *p = (int *)arg;
int rx_status,tx_status;
switch (cmd)
{
case AC_INIT_CAPTURE_MEM:
cfg = (struct fh_audio_cfg_arg *)arg;
if (0 == arg_config_support(cfg))
{
audio_config->capture.cfg.io_type = cfg->io_type;
audio_config->capture.cfg.volume = cfg->volume;
audio_config->capture.cfg.rate = cfg->rate;
audio_config->capture.cfg.channels = cfg->channels;
audio_config->capture.cfg.buffer_size = cfg->buffer_size;
audio_config->capture.cfg.frame_bit = FIX_SAMPLE_BIT;
audio_config->capture.cfg.period_size = cfg->period_size;
audio_config->capture.cfg.buffer_bytes = frames_to_bytes(audio_config->capture.cfg.frame_bit,audio_config->capture.cfg.buffer_size);
audio_config->capture.cfg.period_bytes = frames_to_bytes(audio_config->capture.cfg.frame_bit,audio_config->capture.cfg.period_size);
audio_config->capture.cfg.start_threshold =audio_config->capture.cfg.buffer_bytes;
audio_config->capture.cfg.stop_threshold = audio_config->capture.cfg.buffer_bytes;
audio_prealloc_dma_buffer((int)cfg->io_type,audio_config);
reset_dma_buff(capture, audio_config);
rt_mutex_init(&audio_config->capture.lock, "audio_c", RT_IPC_FLAG_PRIO);
init_audio(capture, audio_config);
audio_param_store.input_io_type = audio_config->capture.cfg.io_type;
audio_param_store.input_volume = audio_config->capture.cfg.volume;
}
else
{
return -EINVAL;
}
break;
case AC_INIT_PLAYBACK_MEM:
cfg = arg;
if (0 == arg_config_support(cfg))
{
audio_config->playback.cfg.io_type = cfg->io_type;
audio_config->playback.cfg.volume = cfg->volume;
audio_config->playback.cfg.rate = cfg->rate;
audio_config->playback.cfg.channels = cfg->channels;
audio_config->playback.cfg.buffer_size = cfg->buffer_size;
audio_config->playback.cfg.frame_bit = FIX_SAMPLE_BIT;
audio_config->playback.cfg.period_size = cfg->period_size;
audio_config->playback.cfg.buffer_bytes = frames_to_bytes(audio_config->playback.cfg.frame_bit,audio_config->playback.cfg.buffer_size);
audio_config->playback.cfg.period_bytes = frames_to_bytes(audio_config->playback.cfg.frame_bit,audio_config->playback.cfg.period_size);
audio_config->playback.cfg.start_threshold =audio_config->playback.cfg.buffer_bytes;
audio_config->playback.cfg.stop_threshold = audio_config->playback.cfg.buffer_bytes;
audio_prealloc_dma_buffer((int)cfg->io_type,audio_config); // TBD_WAIT ...
reset_dma_buff(playback, audio_config);
rt_mutex_init(&audio_config->playback.lock, "audio_p", RT_IPC_FLAG_PRIO);
init_audio(playback, audio_config);
}
else
{
return -EINVAL;
}
break;
case AC_AI_EN:
return fh_acw_start_capture(audio_config);
case AC_AO_EN:
rt_kprintf("ao en \n");
return fh_acw_start_playback(audio_config);
case AC_SET_VOL:
value = *(rt_uint32_t *)arg;
ret = get_param_from_volume(value);
if (ret < 0) {
return -EINVAL;
}
audio_param_store.input_volume = value;
switch_input_volume(audio_param_store.input_volume);
break;
case AC_SET_INPUT_MODE:
value = *(rt_uint32_t *)arg;
if (value != mic_in && value != line_in) {
return -EINVAL;
}
audio_param_store.input_io_type = value;
switch_io_type(capture, audio_param_store.input_io_type);
break;
case AC_SET_OUTPUT_MODE:
value = *(rt_uint32_t *)arg;
if (value != speaker_out && value != line_out) {
return -EINVAL;
}
switch_io_type(playback, value);
break;
case AC_AI_DISABLE:
rt_kprintf(" AC_AI_DISABLE\n");
fh_acw_stop_capture(audio_config);
if (audio_config->capture_trans != RT_NULL)
{
rt_free(audio_config->capture_trans);
audio_config->capture_trans = NULL;
}
break;
case AC_AO_DISABLE:
rt_kprintf("[ac_driver]AC_AO_DISABLE\n");
fh_acw_stop_playback(audio_config);
if (audio_config->plauback_trans != RT_NULL)
{
rt_free(audio_config->plauback_trans);
audio_config->plauback_trans = NULL;
}
rt_kprintf(" AC_AO_DISABLE\n");
break;
case AC_AI_PAUSE:
rt_kprintf( "capture pause\n");
rx_status = readl(audio_dev.reg_base + ACW_RXFIFO_CTRL);/*rx fifo disable*/
rx_status = rx_status&(~(1<<0));
writel(rx_status, audio_dev.reg_base + ACW_RXFIFO_CTRL);/*rx fifo disable*/
break;
case AC_AI_RESUME:
rt_kprintf( "capture resume\n");
rx_status = readl( audio_dev.reg_base + ACW_RXFIFO_CTRL);//clear rx fifo
rx_status = rx_status|(1<<4);
writel(rx_status,audio_dev.reg_base+ ACW_RXFIFO_CTRL);/*enable rx fifo*/
rx_status = rx_status&(~(1<<4));
rx_status = rx_status|(1<<0);
writel(rx_status,audio_dev.reg_base + ACW_RXFIFO_CTRL);/*enable rx fifo*/
break;
case AC_AO_PAUSE:
rt_kprintf( "playback pause\n");
tx_status = readl(audio_dev.reg_base + ACW_TXFIFO_CTRL);/*rx fifo disable*/
tx_status = tx_status&(~(1<<0));
writel(tx_status, audio_dev.reg_base + ACW_TXFIFO_CTRL);/*tx fifo disable*/
break;
case AC_AO_RESUME:
rt_kprintf( "playback resume\n");
tx_status = readl( audio_dev.reg_base + ACW_TXFIFO_CTRL);//clear rx fifo
tx_status = tx_status|(1<<0);
writel(tx_status,audio_dev.reg_base + ACW_TXFIFO_CTRL); //enable tx fifo read enable
break;
default:
return -ENOTTY;
}
return 0;
}
static rt_err_t fh_audio_open(rt_device_t dev, rt_uint16_t oflag)
{
unsigned int reg;
struct fh_audio_cfg *audio_config = dev->user_data;
//enable interrupts
reg = readl(audio_dev.reg_base + ACW_CTRL);
reg |= 0xa;
writel(reg, audio_dev.reg_base + ACW_CTRL);
return 0;
}
static rt_err_t fh_audio_tx_poll(rt_device_t dev, void *buffer){
struct fh_audio_cfg *audio_config = dev->user_data;
unsigned int mask = 0;
long avail;
if (running == audio_config->playback.state)
{
rt_sem_take(&audio_config->sem_playback, RT_WAITING_FOREVER);
avail = avail_data_len(playback, audio_config);
if (avail > audio_config->playback.cfg.period_bytes)
{
mask |= POLLOUT | POLLWRNORM;
}
}
return mask;
}
static rt_err_t fh_audio_rx_poll(rt_device_t dev, rt_size_t size){
struct fh_audio_cfg *audio_config = dev->user_data;
unsigned int mask = 0;
long avail;
if (running == audio_config->capture.state)
{
rt_sem_take(&audio_config->sem_capture, RT_WAITING_FOREVER);
avail = avail_data_len(capture, audio_config);
if (avail > audio_config->capture.cfg.period_bytes)
{
mask |= POLLIN | POLLRDNORM;
}
}
return mask;
}
static dma_complete_callback mem_complete(void *p){
struct rt_completion *completion = (struct rt_completion *)p;
rt_completion_done(completion);
}
static rt_size_t fh_audio_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
int ret;
struct fh_audio_cfg *audio_config = dev->user_data;
int after,left;
int pid,avail;
avail = avail_data_len(capture, audio_config);
if (avail > size)
{
avail = size;
}
after = avail + audio_config->capture.appl_ptr;
if(after > audio_config->capture.size)
{
left = avail - (audio_config->capture.size - audio_config->capture.appl_ptr);
rt_memcpy(buffer, audio_config->capture.area+audio_config->capture.appl_ptr, audio_config->capture.size-audio_config->capture.appl_ptr);
rt_memcpy(buffer+audio_config->capture.size-audio_config->capture.appl_ptr,audio_config->capture.area,left);
rt_mutex_take(&audio_config->capture.lock, RT_WAITING_FOREVER);
audio_config->capture.appl_ptr = left;
rt_mutex_release(&audio_config->capture.lock);
}
else
{
rt_memcpy(buffer,audio_config->capture.area+audio_config->capture.appl_ptr,avail);
rt_mutex_take(&audio_config->capture.lock, RT_WAITING_FOREVER);
audio_config->capture.appl_ptr += avail;
rt_mutex_release(&audio_config->capture.lock);
}
return avail;
}
static rt_size_t fh_audio_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
struct fh_audio_cfg *audio_config = dev->user_data;
int ret;
int after,left;
int pid,avail;
avail = avail_data_len(playback,audio_config);
if (0 == avail)
{
return 0;
}
if (avail > size)
{
avail = size;
}
after = avail+audio_config->playback.appl_ptr;
if(after > audio_config->playback.size)
{
left = avail - (audio_config->playback.size-audio_config->playback.appl_ptr);
rt_memcpy(audio_config->playback.area+audio_config->playback.appl_ptr,buffer,audio_config->playback.size-audio_config->playback.appl_ptr);
rt_memcpy(audio_config->playback.area,buffer+audio_config->playback.size-audio_config->playback.appl_ptr,left);
rt_mutex_take(&audio_config->playback.lock, RT_WAITING_FOREVER);
audio_config->playback.appl_ptr = left;
rt_mutex_release(&audio_config->playback.lock);
}
else
{
rt_memcpy(audio_config->playback.area+audio_config->playback.appl_ptr,buffer,avail);
rt_mutex_take(&audio_config->playback.lock, RT_WAITING_FOREVER);
audio_config->playback.appl_ptr += avail;
rt_mutex_release(&audio_config->playback.lock);
}
return avail;
}
static void fh_audio_interrupt(int irq, void *param)
{
unsigned int interrupts, reg;
struct fh_audio_cfg *audio_config = audio_dev.audio_config;
interrupts = readl(audio_dev.reg_base + ACW_CTRL);
writel(interrupts, audio_dev.reg_base + ACW_CTRL);
if(interrupts & ACW_INTR_RX_UNDERFLOW)
{
fh_acw_stop_capture(audio_config);
fh_acw_start_capture(audio_config);
rt_kprintf("ACW_INTR_RX_UNDERFLOW\n");
}
if(interrupts & ACW_INTR_RX_OVERFLOW)
{
fh_acw_stop_capture(audio_config);
fh_acw_start_capture(audio_config);
rt_kprintf("ACW_INTR_RX_OVERFLOW\n");
}
if(interrupts & ACW_INTR_TX_UNDERFLOW)
{
fh_acw_stop_capture(audio_config);
fh_acw_start_capture(audio_config);
rt_kprintf("ACW_INTR_TX_UNDERFLOW\n");
}
if(interrupts & ACW_INTR_TX_OVERFLOW)
{
fh_acw_stop_capture(audio_config);
fh_acw_start_capture(audio_config);
rt_kprintf("ACW_INTR_TX_OVERFLOW\n");
}
rt_kprintf("interrupts: 0x%x\n", interrupts);
}
void audio_prealloc_dma_buffer(int aiaotype,struct fh_audio_cfg *audio_config)
{
if(aiaotype == mic_in || aiaotype == line_in){
audio_config->capture.area = (void *)fh_dma_mem_malloc(audio_config->capture.cfg.buffer_bytes \
+ audio_config->capture.cfg.period_bytes);
if (!audio_config->capture.area)
{
rt_kprintf("no enough mem for capture buffer alloc\n");
return ;
}
}
if(aiaotype == speaker_out || aiaotype == line_out){
audio_config->playback.area = (void *)fh_dma_mem_malloc(audio_config->playback.cfg.buffer_bytes \
+ audio_config->playback.cfg.period_bytes);
if (!audio_config->playback.area)
{
rt_kprintf("no enough mem for playback buffer alloc\n");
return ;
}}
}
void audio_free_prealloc_dma_buffer(struct fh_audio_cfg *audio_config)
{
rt_free( audio_config->capture.area);
rt_free( audio_config->playback.area);
}
static void init_audio_mutex(struct fh_audio_cfg *audio_config)
{
rt_sem_init(&audio_config->sem_capture, "sem_capture", 0, RT_IPC_FLAG_FIFO);
rt_sem_init(&audio_config->sem_playback, "sem_playback", 0, RT_IPC_FLAG_FIFO);
}
int audio_request_capture_channel(struct fh_audio_cfg *audio_config){
struct rt_dma_device *rt_dma_dev;
/*request audio rx dma channel*/
struct dma_transfer *dma_rx_transfer;
int ret;
dma_rx_transfer = rt_malloc(sizeof(struct dma_transfer));
if (!dma_rx_transfer)
{
rt_kprintf("alloc dma_rx_transfer failed\n");
return RT_ENOMEM;
}
rt_memset(dma_rx_transfer, 0, sizeof(struct dma_transfer));
rt_dma_dev = (struct rt_dma_device *)rt_device_find("fh81_dma");
if(rt_dma_dev == RT_NULL){
rt_kprintf("can't find dma dev\n");
return -1;
}
audio_config->capture_dma = rt_dma_dev;
audio_config->capture_trans = dma_rx_transfer;
rt_dma_dev->ops->init(rt_dma_dev);
dma_rx_transfer->channel_number = ACW_CAP_DMA_CHAN;
dma_rx_transfer->dma_number = 0;
dma_rx_transfer->dst_add = (rt_uint32_t)audio_config->capture.area;//audio_config->capture.area;//(rt_uint32_t)&tx_buff[0];
dma_rx_transfer->dst_inc_mode = DW_DMA_SLAVE_INC;
dma_rx_transfer->dst_msize = DW_DMA_SLAVE_MSIZE_32;
dma_rx_transfer->dst_width = DW_DMA_SLAVE_WIDTH_32BIT;
dma_rx_transfer->fc_mode = DMA_P2M;
dma_rx_transfer->src_add = (rt_uint32_t)ACW_RXFIFO;
dma_rx_transfer->src_inc_mode = DW_DMA_SLAVE_FIX;
dma_rx_transfer->src_msize = DW_DMA_SLAVE_MSIZE_32;
dma_rx_transfer->src_hs = DMA_HW_HANDSHAKING;
dma_rx_transfer->src_width = DW_DMA_SLAVE_WIDTH_32BIT;
dma_rx_transfer->trans_len = (audio_config->capture.cfg.buffer_bytes / 4); // DW_DMA_SLAVE_WIDTH_32BIT BUFF_SIZE;
dma_rx_transfer->src_per =ACODEC_RX;
dma_rx_transfer->period_len = audio_config->capture.cfg.period_bytes / 4;// (audio_config->capture.cfg.period_bytes / 4); // TEST_PER_NO;
dma_rx_transfer->complete_callback =(dma_complete_callback)fh_acw_rx_dma_done;
dma_rx_transfer->complete_para = audio_config;
rt_dma_dev->ops->control(rt_dma_dev,RT_DEVICE_CTRL_DMA_OPEN,dma_rx_transfer);
ret = rt_dma_dev->ops->control(rt_dma_dev,RT_DEVICE_CTRL_DMA_REQUEST_CHANNEL,dma_rx_transfer);
if(ret){
rt_kprintf("can't request capture channel\n");
dma_rx_transfer->channel_number =0xff;
return -ret;
}
}
int audio_request_playback_channel(struct fh_audio_cfg *audio_config)
{
struct rt_dma_device *rt_dma_dev;
int ret;
struct dma_transfer *dma_tx_transfer;
dma_tx_transfer = rt_malloc(sizeof(struct dma_transfer));
if (!dma_tx_transfer)
{
rt_kprintf("alloc dma_tx_transfer failed\n");
return RT_ENOMEM;
}
audio_config->plauback_trans = dma_tx_transfer;
rt_dma_dev = (struct rt_dma_device *)rt_device_find("fh81_dma");
if(rt_dma_dev == RT_NULL){
rt_kprintf("can't find dma dev\n");
return -1;
}
rt_dma_dev->ops->init(rt_dma_dev);
audio_config->playback_dma = rt_dma_dev;
rt_memset(dma_tx_transfer, 0, sizeof(struct dma_transfer));
dma_tx_transfer->channel_number = ACW_PLY_DMA_CHAN;
dma_tx_transfer->dma_number = 0;
dma_tx_transfer->dst_add = (rt_uint32_t)ACW_TXFIFO;
dma_tx_transfer->dst_hs = DMA_HW_HANDSHAKING;
dma_tx_transfer->dst_inc_mode = DW_DMA_SLAVE_FIX;
dma_tx_transfer->dst_msize = DW_DMA_SLAVE_MSIZE_32;
dma_tx_transfer->dst_per = ACODEC_TX;
dma_tx_transfer->dst_width = DW_DMA_SLAVE_WIDTH_32BIT;
dma_tx_transfer->fc_mode = DMA_M2P;
dma_tx_transfer->src_add = (rt_uint32_t)audio_config->playback.area;
dma_tx_transfer->src_inc_mode = DW_DMA_SLAVE_INC;
dma_tx_transfer->src_msize = DW_DMA_SLAVE_MSIZE_32;
dma_tx_transfer->src_width = DW_DMA_SLAVE_WIDTH_32BIT;
dma_tx_transfer->trans_len = (audio_config->playback.cfg.buffer_bytes / 4);// BUFF_SIZE;
dma_tx_transfer->period_len = (audio_config->playback.cfg.period_bytes / 4); // TEST_PER_NO;
dma_tx_transfer->complete_callback =(dma_complete_callback)fh_acw_tx_dma_done;
dma_tx_transfer->complete_para = audio_config;
rt_dma_dev->ops->control(rt_dma_dev,RT_DEVICE_CTRL_DMA_OPEN,dma_tx_transfer);
ret = rt_dma_dev->ops->control(rt_dma_dev,RT_DEVICE_CTRL_DMA_REQUEST_CHANNEL,dma_tx_transfer);
if(ret){
rt_kprintf("can't request playbak channel\n");
dma_tx_transfer->channel_number = 0xff;
return -ret;
}
return 0;
}
void audio_release_dma_channel(struct fh_audio_cfg *audio_config)
{
if (audio_config->plauback_trans != RT_NULL)
{
audio_config->playback_dma->ops->control(audio_config->playback_dma,RT_DEVICE_CTRL_DMA_RELEASE_CHANNEL,audio_config->plauback_trans);
rt_free(audio_config->plauback_trans);
audio_config->plauback_trans = NULL;
}
if (audio_config->capture_trans != RT_NULL)
{
audio_config->capture_dma->ops->control(audio_config->capture_dma,RT_DEVICE_CTRL_DMA_RELEASE_CHANNEL,audio_config->capture_trans);
rt_free(audio_config->capture_trans);
audio_config->capture_trans = NULL;
}
}
void fh_audio_init(void)
{
struct fh_audio_cfg *audio_config;
audio_config = rt_malloc(sizeof(struct fh_audio_cfg));
memset(audio_config,0,sizeof(struct fh_audio_cfg)); // new add
audio_dev.reg_base = 0xf0a00000;
init_audio_mutex(audio_config);
rt_device_t audio ;
audio = rt_malloc(sizeof(struct rt_device));
if (audio == RT_NULL){
rt_kprintf("%s no mem \n",__func__);
}
audio->user_data = audio_config;
audio->open =fh_audio_open;
audio->read = fh_audio_read;
audio->write = fh_audio_write;
audio->close = fh_audio_close;
audio->control = fh_audio_ioctl;
audio->rx_indicate =fh_audio_rx_poll;
audio->tx_complete=fh_audio_tx_poll;
audio_dev.audio_config = audio_config; // TBD_WAIT 2015.09.17 add
rt_device_register(audio, "audio", RT_DEVICE_FLAG_RDWR);
}
#if ACW_SELFTEST
#define TEST_FN "/audio.dat"
static rt_uint32_t rx_buff[BUFF_SIZE] __attribute__((aligned(32))) ;
static const rt_uint32_t tx_buff[BUFF_SIZE*2] __attribute__((aligned(32)))= {
0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,
0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,
0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,
0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,
0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,
};
struct fh_audio_cfg_arg cfg;
void fh_acw_test(){
rt_device_t acw_dev ;
int i;
int output=3;
int select;
int select_rx_status =0;
int select_tx_status =0;
int fd;
int index, length;
int mic_boost=1;
int ret;
acw_dev = ( rt_device_t )rt_device_find("audio");
for(i=0;i<BUFF_SIZE;i++)
rx_buff[i] = i*0x500;
acw_dev->open(acw_dev,0);
cfg.buffer_size = BUFF_SIZE;
cfg.channels =0;
cfg.frame_bit = 16;
cfg.io_type = mic_in;
cfg.period_size = BUFF_SIZE/8;
cfg.rate = 8000;
cfg.volume = 80;
// for(i=0;i<100;i++){
// acw_dev->control(acw_dev,AC_INIT_CAPTURE_MEM,&cfg);
//
// acw_dev->control(acw_dev,AC_AI_EN,&cfg);
// cfg.io_type = line_out;
// acw_dev->control(acw_dev,AC_INIT_PLAYBACK_MEM,&cfg);
// acw_dev->control(acw_dev,AC_AO_EN,&cfg);
// acw_dev->control(acw_dev,AC_SET_OUTPUT_MODE,&output);
// acw_dev->control(acw_dev,AC_AI_DISABLE,&cfg);
//
// acw_dev->control(acw_dev,AC_AO_DISABLE,&cfg);
// rt_kprintf(" %d \n",i);
// }
cfg.io_type = mic_in;
acw_dev->control(acw_dev,AC_INIT_CAPTURE_MEM,&cfg);
ret = acw_dev->control(acw_dev,AC_AI_EN,&cfg);
if(ret)
acw_dev->control(acw_dev,AC_AI_DISABLE,&cfg);
cfg.io_type = line_out;
acw_dev->control(acw_dev,AC_INIT_PLAYBACK_MEM,&cfg);
ret = acw_dev->control(acw_dev,AC_AO_EN,&cfg);
if(ret){
acw_dev->control(acw_dev,AC_AO_DISABLE,&cfg);
// acw_dev->control(acw_dev,AC_SET_OUTPUT_MODE,&output);
return ;
}
for(i=0;i<100;i++)
{
rx:
select = acw_dev->rx_indicate(acw_dev,RT_NULL);
if(!select)
goto rx;
acw_dev->read(acw_dev,0,&rx_buff[0],1024*8);
tx:
select = acw_dev->tx_complete(acw_dev , RT_NULL);
if(!select)
goto tx;
acw_dev->write(acw_dev,0,&rx_buff[0],1024*8);
}
acw_dev->close(acw_dev);
}
#ifdef RT_USING_FINSH
#include <finsh.h>
FINSH_FUNCTION_EXPORT(fh_acw_test, fh_acw_test);
#endif
#endif
#endif