4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-22 23:37:24 +08:00
xinyigao 53be4393aa
add rt1170/rt1020 bsp (#5927)
* add rt1170 bsp
* add rt1020 bsp
2022-05-19 14:06:35 +08:00

613 lines
20 KiB
C

/*
* Copyright 2017-2020 NXP
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_qtmr.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.qtmr"
#endif
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Gets the instance from the base address to be used to gate or ungate the module clock
*
* @param base Quad Timer peripheral base address
*
* @return The Quad Timer instance
*/
static uint32_t QTMR_GetInstance(TMR_Type *base);
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to Quad Timer bases for each instance. */
static TMR_Type *const s_qtmrBases[] = TMR_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to Quad Timer clocks for each instance. */
static const clock_ip_name_t s_qtmrClocks[] = TMR_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t QTMR_GetInstance(TMR_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_qtmrBases); instance++)
{
if (s_qtmrBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_qtmrBases));
return instance;
}
/*!
* brief Ungates the Quad Timer clock and configures the peripheral for basic operation.
*
* note This API should be called at the beginning of the application using the Quad Timer driver.
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
* param config Pointer to user's Quad Timer config structure
*/
void QTMR_Init(TMR_Type *base, qtmr_channel_selection_t channel, const qtmr_config_t *config)
{
assert(NULL != config);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the module clock */
CLOCK_EnableClock(s_qtmrClocks[QTMR_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/* Setup the counter sources */
base->CHANNEL[channel].CTRL = (TMR_CTRL_PCS(config->primarySource) | TMR_CTRL_SCS(config->secondarySource));
/* Setup the master mode operation */
base->CHANNEL[channel].SCTRL =
(TMR_SCTRL_EEOF(config->enableExternalForce) | TMR_SCTRL_MSTR(config->enableMasterMode));
/* Setup debug mode */
base->CHANNEL[channel].CSCTRL = TMR_CSCTRL_DBG_EN(config->debugMode);
base->CHANNEL[channel].FILT &= (uint16_t)(~(TMR_FILT_FILT_CNT_MASK | TMR_FILT_FILT_PER_MASK));
/* Setup input filter */
base->CHANNEL[channel].FILT =
(TMR_FILT_FILT_CNT(config->faultFilterCount) | TMR_FILT_FILT_PER(config->faultFilterPeriod));
}
/*!
* brief Stops the counter and gates the Quad Timer clock
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
*/
void QTMR_Deinit(TMR_Type *base, qtmr_channel_selection_t channel)
{
/* Stop the counter */
base->CHANNEL[channel].CTRL &= (uint16_t)(~TMR_CTRL_CM_MASK);
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable the module clock */
CLOCK_DisableClock(s_qtmrClocks[QTMR_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
/*!
* brief Fill in the Quad Timer config struct with the default settings
*
* The default values are:
* code
* config->debugMode = kQTMR_RunNormalInDebug;
* config->enableExternalForce = false;
* config->enableMasterMode = false;
* config->faultFilterCount = 0;
* config->faultFilterPeriod = 0;
* config->primarySource = kQTMR_ClockDivide_2;
* config->secondarySource = kQTMR_Counter0InputPin;
* endcode
* param config Pointer to user's Quad Timer config structure.
*/
void QTMR_GetDefaultConfig(qtmr_config_t *config)
{
assert(NULL != config);
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
/* Halt counter during debug mode */
config->debugMode = kQTMR_RunNormalInDebug;
/* Another counter cannot force state of OFLAG signal */
config->enableExternalForce = false;
/* Compare function's output from this counter is not broadcast to other counters */
config->enableMasterMode = false;
/* Fault filter count is set to 0 */
config->faultFilterCount = 0;
/* Fault filter period is set to 0 which disables the fault filter */
config->faultFilterPeriod = 0;
/* Primary count source is IP bus clock divide by 2 */
config->primarySource = kQTMR_ClockDivide_2;
/* Secondary count source is counter 0 input pin */
config->secondarySource = kQTMR_Counter0InputPin;
}
/*!
* brief Sets up Quad timer module for PWM signal output.
*
* The function initializes the timer module according to the parameters passed in by the user. The
* function also sets up the value compare registers to match the PWM signal requirements.
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
* param pwmFreqHz PWM signal frequency in Hz
* param dutyCyclePercent PWM pulse width, value should be between 0 to 100
* 0=inactive signal(0% duty cycle)...
* 100=active signal (100% duty cycle)
* param outputPolarity true: invert polarity of the output signal, false: no inversion
* param srcClock_Hz Main counter clock in Hz.
*
* return Returns an error if there was error setting up the signal.
*/
status_t QTMR_SetupPwm(TMR_Type *base,
qtmr_channel_selection_t channel,
uint32_t pwmFreqHz,
uint8_t dutyCyclePercent,
bool outputPolarity,
uint32_t srcClock_Hz)
{
uint32_t periodCount, highCount, lowCount;
uint16_t reg;
status_t status;
if (dutyCyclePercent <= 100U)
{
/* Set OFLAG pin for output mode and force out a low on the pin */
base->CHANNEL[channel].SCTRL |= (TMR_SCTRL_FORCE_MASK | TMR_SCTRL_OEN_MASK);
/* Counter values to generate a PWM signal */
periodCount = srcClock_Hz / pwmFreqHz;
highCount = periodCount * dutyCyclePercent / 100U;
lowCount = periodCount - highCount;
if (highCount > 0U)
{
highCount -= 1U;
}
if (lowCount > 0U)
{
lowCount -= 1U;
}
/* This should not be a 16-bit overflow value. If it is, change to a larger divider for clock source. */
assert(highCount <= 0xFFFFU);
assert(lowCount <= 0xFFFFU);
/* Setup the compare registers for PWM output */
base->CHANNEL[channel].COMP1 = (uint16_t)lowCount;
base->CHANNEL[channel].COMP2 = (uint16_t)highCount;
/* Setup the pre-load registers for PWM output */
base->CHANNEL[channel].CMPLD1 = (uint16_t)lowCount;
base->CHANNEL[channel].CMPLD2 = (uint16_t)highCount;
reg = base->CHANNEL[channel].CSCTRL;
/* Setup the compare load control for COMP1 and COMP2.
* Load COMP1 when CSCTRL[TCF2] is asserted, load COMP2 when CSCTRL[TCF1] is asserted
*/
reg &= (uint16_t)(~(TMR_CSCTRL_CL1_MASK | TMR_CSCTRL_CL2_MASK));
reg |= (TMR_CSCTRL_CL1(kQTMR_LoadOnComp2) | TMR_CSCTRL_CL2(kQTMR_LoadOnComp1));
base->CHANNEL[channel].CSCTRL = reg;
if (outputPolarity)
{
/* Invert the polarity */
base->CHANNEL[channel].SCTRL |= TMR_SCTRL_OPS_MASK;
}
else
{
/* True polarity, no inversion */
base->CHANNEL[channel].SCTRL &= ~(uint16_t)TMR_SCTRL_OPS_MASK;
}
reg = base->CHANNEL[channel].CTRL;
reg &= ~(uint16_t)TMR_CTRL_OUTMODE_MASK;
/* Count until compare value is reached and re-initialize the counter, toggle OFLAG output
* using alternating compare register
*/
reg |= (TMR_CTRL_LENGTH_MASK | TMR_CTRL_OUTMODE(kQTMR_ToggleOnAltCompareReg));
base->CHANNEL[channel].CTRL = reg;
status = kStatus_Success;
}
else
{
/* Invalid dutycycle */
status = kStatus_Fail;
}
return status;
}
/*!
* brief Allows the user to count the source clock cycles until a capture event arrives.
*
* The count is stored in the capture register.
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
* param capturePin Pin through which we receive the input signal to trigger the capture
* param inputPolarity true: invert polarity of the input signal, false: no inversion
* param reloadOnCapture true: reload the counter when an input capture occurs, false: no reload
* param captureMode Specifies which edge of the input signal triggers a capture
*/
void QTMR_SetupInputCapture(TMR_Type *base,
qtmr_channel_selection_t channel,
qtmr_input_source_t capturePin,
bool inputPolarity,
bool reloadOnCapture,
qtmr_input_capture_edge_t captureMode)
{
uint16_t reg;
/* Clear the prior value for the input source for capture */
reg = base->CHANNEL[channel].CTRL & (uint16_t)(~TMR_CTRL_SCS_MASK);
/* Set the new input source */
reg |= TMR_CTRL_SCS(capturePin);
base->CHANNEL[channel].CTRL = reg;
/* Clear the prior values for input polarity, capture mode. Set the external pin as input */
reg = base->CHANNEL[channel].SCTRL &
(uint16_t)(~(TMR_SCTRL_IPS_MASK | TMR_SCTRL_CAPTURE_MODE_MASK | TMR_SCTRL_OEN_MASK));
/* Set the new values */
reg |= (TMR_SCTRL_IPS(inputPolarity) | TMR_SCTRL_CAPTURE_MODE(captureMode));
base->CHANNEL[channel].SCTRL = reg;
/* Setup if counter should reload when a capture occurs */
if (reloadOnCapture)
{
base->CHANNEL[channel].CSCTRL |= TMR_CSCTRL_ROC_MASK;
}
else
{
base->CHANNEL[channel].CSCTRL &= (uint16_t)(~TMR_CSCTRL_ROC_MASK);
}
}
/*!
* brief Enables the selected Quad Timer interrupts
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
* param mask The interrupts to enable. This is a logical OR of members of the
* enumeration ::qtmr_interrupt_enable_t
*/
void QTMR_EnableInterrupts(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
{
uint16_t reg;
reg = base->CHANNEL[channel].SCTRL;
/* Compare interrupt */
if ((mask & (uint16_t)kQTMR_CompareInterruptEnable) != 0UL)
{
reg |= TMR_SCTRL_TCFIE_MASK;
}
/* Overflow interrupt */
if ((mask & (uint16_t)kQTMR_OverflowInterruptEnable) != 0UL)
{
reg |= TMR_SCTRL_TOFIE_MASK;
}
/* Input edge interrupt */
if ((mask & (uint16_t)kQTMR_EdgeInterruptEnable) != 0UL)
{
/* Restriction: Do not set both SCTRL[IEFIE] and DMA[IEFDE] */
base->CHANNEL[channel].DMA &= ~(uint16_t)TMR_DMA_IEFDE_MASK;
reg |= TMR_SCTRL_IEFIE_MASK;
}
base->CHANNEL[channel].SCTRL = reg;
reg = base->CHANNEL[channel].CSCTRL;
/* Compare 1 interrupt */
if ((mask & (uint16_t)kQTMR_Compare1InterruptEnable) != 0UL)
{
reg |= TMR_CSCTRL_TCF1EN_MASK;
}
/* Compare 2 interrupt */
if ((mask & (uint16_t)kQTMR_Compare2InterruptEnable) != 0UL)
{
reg |= TMR_CSCTRL_TCF2EN_MASK;
}
base->CHANNEL[channel].CSCTRL = reg;
}
/*!
* brief Disables the selected Quad Timer interrupts
*
* param base Quad Timer peripheral base addres
* param channel Quad Timer channel number
* param mask The interrupts to enable. This is a logical OR of members of the
* enumeration ::qtmr_interrupt_enable_t
*/
void QTMR_DisableInterrupts(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
{
uint16_t reg;
reg = base->CHANNEL[channel].SCTRL;
/* Compare interrupt */
if ((mask & (uint16_t)kQTMR_CompareInterruptEnable) != 0UL)
{
reg &= (uint16_t)(~TMR_SCTRL_TCFIE_MASK);
}
/* Overflow interrupt */
if ((mask & (uint16_t)kQTMR_OverflowInterruptEnable) != 0UL)
{
reg &= (uint16_t)(~TMR_SCTRL_TOFIE_MASK);
}
/* Input edge interrupt */
if ((mask & (uint16_t)kQTMR_EdgeInterruptEnable) != 0UL)
{
reg &= (uint16_t)(~TMR_SCTRL_IEFIE_MASK);
}
base->CHANNEL[channel].SCTRL = reg;
reg = base->CHANNEL[channel].CSCTRL;
/* Compare 1 interrupt */
if ((mask & (uint16_t)kQTMR_Compare1InterruptEnable) != 0UL)
{
reg &= ~(uint16_t)TMR_CSCTRL_TCF1EN_MASK;
}
/* Compare 2 interrupt */
if ((mask & (uint16_t)kQTMR_Compare2InterruptEnable) != 0UL)
{
reg &= ~(uint16_t)TMR_CSCTRL_TCF2EN_MASK;
}
base->CHANNEL[channel].CSCTRL = reg;
}
/*!
* brief Gets the enabled Quad Timer interrupts
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
*
* return The enabled interrupts. This is the logical OR of members of the
* enumeration ::qtmr_interrupt_enable_t
*/
uint32_t QTMR_GetEnabledInterrupts(TMR_Type *base, qtmr_channel_selection_t channel)
{
uint32_t enabledInterrupts = 0;
uint16_t reg;
reg = base->CHANNEL[channel].SCTRL;
/* Compare interrupt */
if ((reg & TMR_SCTRL_TCFIE_MASK) != 0U)
{
enabledInterrupts |= (uint32_t)kQTMR_CompareFlag;
}
/* Overflow interrupt */
if ((reg & TMR_SCTRL_TOFIE_MASK) != 0U)
{
enabledInterrupts |= (uint32_t)kQTMR_OverflowInterruptEnable;
}
/* Input edge interrupt */
if ((reg & TMR_SCTRL_IEFIE_MASK) != 0U)
{
enabledInterrupts |= (uint32_t)kQTMR_EdgeInterruptEnable;
}
reg = base->CHANNEL[channel].CSCTRL;
/* Compare 1 interrupt */
if ((reg & TMR_CSCTRL_TCF1EN_MASK) != 0U)
{
enabledInterrupts |= (uint32_t)kQTMR_Compare1InterruptEnable;
}
/* Compare 2 interrupt */
if ((reg & TMR_CSCTRL_TCF2EN_MASK) != 0U)
{
enabledInterrupts |= (uint32_t)kQTMR_Compare2InterruptEnable;
}
return enabledInterrupts;
}
/*!
* brief Gets the Quad Timer status flags
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
*
* return The status flags. This is the logical OR of members of the
* enumeration ::qtmr_status_flags_t
*/
uint32_t QTMR_GetStatus(TMR_Type *base, qtmr_channel_selection_t channel)
{
uint32_t statusFlags = 0;
uint16_t reg;
reg = base->CHANNEL[channel].SCTRL;
/* Timer compare flag */
if ((reg & TMR_SCTRL_TCF_MASK) != 0U)
{
statusFlags |= (uint32_t)kQTMR_CompareFlag;
}
/* Timer overflow flag */
if ((reg & TMR_SCTRL_TOF_MASK) != 0U)
{
statusFlags |= (uint32_t)kQTMR_OverflowFlag;
}
/* Input edge flag */
if ((reg & TMR_SCTRL_IEF_MASK) != 0U)
{
statusFlags |= (uint32_t)kQTMR_EdgeFlag;
}
reg = base->CHANNEL[channel].CSCTRL;
/* Compare 1 flag */
if ((reg & TMR_CSCTRL_TCF1_MASK) != 0U)
{
statusFlags |= (uint32_t)kQTMR_Compare1Flag;
}
/* Compare 2 flag */
if ((reg & TMR_CSCTRL_TCF2_MASK) != 0U)
{
statusFlags |= (uint32_t)kQTMR_Compare2Flag;
}
return statusFlags;
}
/*!
* brief Clears the Quad Timer status flags.
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
* param mask The status flags to clear. This is a logical OR of members of the
* enumeration ::qtmr_status_flags_t
*/
void QTMR_ClearStatusFlags(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
{
uint16_t reg;
reg = base->CHANNEL[channel].SCTRL;
/* Timer compare flag */
if ((mask & (uint32_t)kQTMR_CompareFlag) != 0U)
{
reg &= (uint16_t)(~TMR_SCTRL_TCF_MASK);
}
/* Timer overflow flag */
if ((mask & (uint32_t)kQTMR_OverflowFlag) != 0U)
{
reg &= (uint16_t)(~TMR_SCTRL_TOF_MASK);
}
/* Input edge flag */
if ((mask & (uint32_t)kQTMR_EdgeFlag) != 0U)
{
reg &= (uint16_t)(~TMR_SCTRL_IEF_MASK);
}
base->CHANNEL[channel].SCTRL = reg;
reg = base->CHANNEL[channel].CSCTRL;
/* Compare 1 flag */
if ((mask & (uint32_t)kQTMR_Compare1Flag) != 0U)
{
reg &= ~(uint16_t)TMR_CSCTRL_TCF1_MASK;
}
/* Compare 2 flag */
if ((mask & (uint32_t)kQTMR_Compare2Flag) != 0U)
{
reg &= ~(uint16_t)TMR_CSCTRL_TCF2_MASK;
}
base->CHANNEL[channel].CSCTRL = reg;
}
/*!
* brief Sets the timer period in ticks.
*
* Timers counts from initial value till it equals the count value set here. The counter
* will then reinitialize to the value specified in the Load register.
*
* note
* 1. This function will write the time period in ticks to COMP1 or COMP2 register
* depending on the count direction
* 2. User can call the utility macros provided in fsl_common.h to convert to ticks
* 3. This function supports cases, providing only primary source clock without secondary source clock.
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
* param ticks Timer period in units of ticks
*/
void QTMR_SetTimerPeriod(TMR_Type *base, qtmr_channel_selection_t channel, uint16_t ticks)
{
/* Set the length bit to reinitialize the counters on a match */
base->CHANNEL[channel].CTRL |= TMR_CTRL_LENGTH_MASK;
if ((base->CHANNEL[channel].CTRL & TMR_CTRL_DIR_MASK) != 0U)
{
/* Counting down */
base->CHANNEL[channel].COMP2 = ticks;
}
else
{
/* Counting up */
base->CHANNEL[channel].COMP1 = ticks;
}
}
/*!
* brief Enable the Quad Timer DMA.
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
* param mask The DMA to enable. This is a logical OR of members of the
* enumeration ::qtmr_dma_enable_t
*/
void QTMR_EnableDma(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
{
uint16_t reg;
reg = base->CHANNEL[channel].DMA;
/* Input Edge Flag DMA Enable */
if ((mask & (uint32_t)kQTMR_InputEdgeFlagDmaEnable) != 0U)
{
/* Restriction: Do not set both DMA[IEFDE] and SCTRL[IEFIE] */
base->CHANNEL[channel].SCTRL &= (uint16_t)(~TMR_SCTRL_IEFIE_MASK);
reg |= TMR_DMA_IEFDE_MASK;
}
/* Comparator Preload Register 1 DMA Enable */
if ((mask & (uint32_t)kQTMR_ComparatorPreload1DmaEnable) != 0U)
{
reg |= TMR_DMA_CMPLD1DE_MASK;
}
/* Comparator Preload Register 2 DMA Enable */
if ((mask & (uint32_t)kQTMR_ComparatorPreload2DmaEnable) != 0U)
{
reg |= TMR_DMA_CMPLD2DE_MASK;
}
base->CHANNEL[channel].DMA = reg;
}
/*!
* brief Disable the Quad Timer DMA.
*
* param base Quad Timer peripheral base address
* param channel Quad Timer channel number
* param mask The DMA to enable. This is a logical OR of members of the
* enumeration ::qtmr_dma_enable_t
*/
void QTMR_DisableDma(TMR_Type *base, qtmr_channel_selection_t channel, uint32_t mask)
{
uint16_t reg;
reg = base->CHANNEL[channel].DMA;
/* Input Edge Flag DMA Enable */
if ((mask & (uint32_t)kQTMR_InputEdgeFlagDmaEnable) != 0U)
{
reg &= ~(uint16_t)TMR_DMA_IEFDE_MASK;
}
/* Comparator Preload Register 1 DMA Enable */
if ((mask & (uint32_t)kQTMR_ComparatorPreload1DmaEnable) != 0U)
{
reg &= ~(uint16_t)TMR_DMA_CMPLD1DE_MASK;
}
/* Comparator Preload Register 2 DMA Enable */
if ((mask & (uint32_t)kQTMR_ComparatorPreload2DmaEnable) != 0U)
{
reg &= ~(uint16_t)TMR_DMA_CMPLD2DE_MASK;
}
base->CHANNEL[channel].DMA = reg;
}