mirror of
https://github.com/RT-Thread/rt-thread.git
synced 2025-01-23 06:17:21 +08:00
400 lines
13 KiB
C
400 lines
13 KiB
C
/*
|
|
* The Clear BSD License
|
|
* Copyright (c) 2016, Freescale Semiconductor, Inc.
|
|
* Copyright 2016-2017 NXP
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted (subject to the limitations in the disclaimer below) provided
|
|
* that the following conditions are met:
|
|
*
|
|
* o Redistributions of source code must retain the above copyright notice, this list
|
|
* of conditions and the following disclaimer.
|
|
*
|
|
* o Redistributions in binary form must reproduce the above copyright notice, this
|
|
* list of conditions and the following disclaimer in the documentation and/or
|
|
* other materials provided with the distribution.
|
|
*
|
|
* o Neither the name of the copyright holder nor the names of its
|
|
* contributors may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
|
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "fsl_adc.h"
|
|
#include "fsl_clock.h"
|
|
|
|
/* Component ID definition, used by tools. */
|
|
#ifndef FSL_COMPONENT_ID
|
|
#define FSL_COMPONENT_ID "platform.drivers.lpc_adc"
|
|
#endif
|
|
|
|
|
|
static ADC_Type *const s_adcBases[] = ADC_BASE_PTRS;
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
static const clock_ip_name_t s_adcClocks[] = ADC_CLOCKS;
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
static uint32_t ADC_GetInstance(ADC_Type *base)
|
|
{
|
|
uint32_t instance;
|
|
|
|
/* Find the instance index from base address mappings. */
|
|
for (instance = 0; instance < ARRAY_SIZE(s_adcBases); instance++)
|
|
{
|
|
if (s_adcBases[instance] == base)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert(instance < ARRAY_SIZE(s_adcBases));
|
|
|
|
return instance;
|
|
}
|
|
|
|
void ADC_Init(ADC_Type *base, const adc_config_t *config)
|
|
{
|
|
assert(config != NULL);
|
|
|
|
uint32_t tmp32 = 0U;
|
|
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/* Enable clock. */
|
|
CLOCK_EnableClock(s_adcClocks[ADC_GetInstance(base)]);
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
|
|
/* Disable the interrupts. */
|
|
base->INTEN = 0U; /* Quickly disable all the interrupts. */
|
|
|
|
/* Configure the ADC block. */
|
|
tmp32 = ADC_CTRL_CLKDIV(config->clockDividerNumber);
|
|
|
|
#if defined(FSL_FEATURE_ADC_HAS_CTRL_ASYNMODE) & FSL_FEATURE_ADC_HAS_CTRL_ASYNMODE
|
|
/* Async or Sync clock mode. */
|
|
switch (config->clockMode)
|
|
{
|
|
case kADC_ClockAsynchronousMode:
|
|
tmp32 |= ADC_CTRL_ASYNMODE_MASK;
|
|
break;
|
|
default: /* kADC_ClockSynchronousMode */
|
|
break;
|
|
}
|
|
#endif /* FSL_FEATURE_ADC_HAS_CTRL_ASYNMODE. */
|
|
|
|
#if defined(FSL_FEATURE_ADC_HAS_CTRL_RESOL) & FSL_FEATURE_ADC_HAS_CTRL_RESOL
|
|
/* Resolution. */
|
|
tmp32 |= ADC_CTRL_RESOL(config->resolution);
|
|
#endif/* FSL_FEATURE_ADC_HAS_CTRL_RESOL. */
|
|
|
|
#if defined(FSL_FEATURE_ADC_HAS_CTRL_BYPASSCAL) & FSL_FEATURE_ADC_HAS_CTRL_BYPASSCAL
|
|
/* Bypass calibration. */
|
|
if (config->enableBypassCalibration)
|
|
{
|
|
tmp32 |= ADC_CTRL_BYPASSCAL_MASK;
|
|
}
|
|
#endif/* FSL_FEATURE_ADC_HAS_CTRL_BYPASSCAL. */
|
|
|
|
#if defined(FSL_FEATURE_ADC_HAS_CTRL_TSAMP) & FSL_FEATURE_ADC_HAS_CTRL_TSAMP
|
|
/* Sample time clock count. */
|
|
tmp32 |= ADC_CTRL_TSAMP(config->sampleTimeNumber);
|
|
#endif/* FSL_FEATURE_ADC_HAS_CTRL_TSAMP. */
|
|
|
|
#if defined(FSL_FEATURE_ADC_HAS_CTRL_LPWRMODE) & FSL_FEATURE_ADC_HAS_CTRL_LPWRMODE
|
|
if(config->enableLowPowerMode)
|
|
{
|
|
tmp32 |= ADC_CTRL_LPWRMODE_MASK;
|
|
}
|
|
#endif/* FSL_FEATURE_ADC_HAS_CTRL_LPWRMODE. */
|
|
|
|
base->CTRL = tmp32;
|
|
|
|
#if defined(FSL_FEATURE_ADC_HAS_TRIM_REG) & FSL_FEATURE_ADC_HAS_TRIM_REG
|
|
base->TRM &= ~ADC_TRM_VRANGE_MASK;
|
|
base->TRM |= ADC_TRM_VRANGE(config->voltageRange);
|
|
#endif/* FSL_FEATURE_ADC_HAS_TRIM_REG. */
|
|
}
|
|
|
|
void ADC_GetDefaultConfig(adc_config_t *config)
|
|
{
|
|
#if defined(FSL_FEATURE_ADC_HAS_CTRL_ASYNMODE) & FSL_FEATURE_ADC_HAS_CTRL_ASYNMODE
|
|
config->clockMode = kADC_ClockSynchronousMode;
|
|
#endif/* FSL_FEATURE_ADC_HAS_CTRL_ASYNMODE. */
|
|
|
|
config->clockDividerNumber = 0U;
|
|
#if defined(FSL_FEATURE_ADC_HAS_CTRL_RESOL) & FSL_FEATURE_ADC_HAS_CTRL_RESOL
|
|
config->resolution = kADC_Resolution12bit;
|
|
#endif/* FSL_FEATURE_ADC_HAS_CTRL_RESOL. */
|
|
#if defined(FSL_FEATURE_ADC_HAS_CTRL_BYPASSCAL) & FSL_FEATURE_ADC_HAS_CTRL_BYPASSCAL
|
|
config->enableBypassCalibration = false;
|
|
#endif/* FSL_FEATURE_ADC_HAS_CTRL_BYPASSCAL. */
|
|
#if defined(FSL_FEATURE_ADC_HAS_CTRL_TSAMP) & FSL_FEATURE_ADC_HAS_CTRL_TSAMP
|
|
config->sampleTimeNumber = 0U;
|
|
#endif/* FSL_FEATURE_ADC_HAS_CTRL_TSAMP. */
|
|
#if defined(FSL_FEATURE_ADC_HAS_CTRL_LPWRMODE) & FSL_FEATURE_ADC_HAS_CTRL_LPWRMODE
|
|
config->enableLowPowerMode = false;
|
|
#endif/* FSL_FEATURE_ADC_HAS_CTRL_LPWRMODE. */
|
|
#if defined(FSL_FEATURE_ADC_HAS_TRIM_REG) & FSL_FEATURE_ADC_HAS_TRIM_REG
|
|
config->voltageRange = kADC_HighVoltageRange;
|
|
#endif/* FSL_FEATURE_ADC_HAS_TRIM_REG. */
|
|
}
|
|
|
|
void ADC_Deinit(ADC_Type *base)
|
|
{
|
|
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
|
|
/* Disable the clock. */
|
|
CLOCK_DisableClock(s_adcClocks[ADC_GetInstance(base)]);
|
|
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
|
|
}
|
|
|
|
#if !(defined(FSL_FEATURE_ADC_HAS_NO_CALIB_FUNC) && FSL_FEATURE_ADC_HAS_NO_CALIB_FUNC)
|
|
#if defined(FSL_FEATURE_ADC_HAS_CALIB_REG) & FSL_FEATURE_ADC_HAS_CALIB_REG
|
|
bool ADC_DoSelfCalibration(ADC_Type *base)
|
|
{
|
|
uint32_t i;
|
|
|
|
/* Enable the converter. */
|
|
/* This bit acn only be set 1 by software. It is cleared automatically whenever the ADC is powered down.
|
|
This bit should be set after at least 10 ms after the ADC is powered on. */
|
|
base->STARTUP = ADC_STARTUP_ADC_ENA_MASK;
|
|
for (i = 0U; i < 0x10; i++) /* Wait a few clocks to startup up. */
|
|
{
|
|
__ASM("NOP");
|
|
}
|
|
if (!(base->STARTUP & ADC_STARTUP_ADC_ENA_MASK))
|
|
{
|
|
return false; /* ADC is not powered up. */
|
|
}
|
|
|
|
/* If not in by-pass mode, do the calibration. */
|
|
if ((ADC_CALIB_CALREQD_MASK == (base->CALIB & ADC_CALIB_CALREQD_MASK)) &&
|
|
(0U == (base->CTRL & ADC_CTRL_BYPASSCAL_MASK)))
|
|
{
|
|
/* Calibration is needed, do it now. */
|
|
base->CALIB = ADC_CALIB_CALIB_MASK;
|
|
i = 0xF0000;
|
|
while ((ADC_CALIB_CALIB_MASK == (base->CALIB & ADC_CALIB_CALIB_MASK)) && (--i))
|
|
{
|
|
}
|
|
if (i == 0U)
|
|
{
|
|
return false; /* Calibration timeout. */
|
|
}
|
|
}
|
|
|
|
/* A dummy conversion cycle will be performed. */
|
|
base->STARTUP |= ADC_STARTUP_ADC_INIT_MASK;
|
|
i = 0x7FFFF;
|
|
while ((ADC_STARTUP_ADC_INIT_MASK == (base->STARTUP & ADC_STARTUP_ADC_INIT_MASK)) && (--i))
|
|
{
|
|
}
|
|
if (i == 0U)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#else
|
|
bool ADC_DoSelfCalibration(ADC_Type *base, uint32_t frequency)
|
|
{
|
|
uint32_t tmp32;
|
|
uint32_t i = 0xF0000;
|
|
|
|
/* Store the current contents of the ADC CTRL register. */
|
|
tmp32 = base->CTRL;
|
|
|
|
/* Start ADC self-calibration. */
|
|
base->CTRL |= ADC_CTRL_CALMODE_MASK;
|
|
|
|
/* Divide the system clock to yield an ADC clock of about 500 kHz. */
|
|
base->CTRL &= ~ADC_CTRL_CLKDIV_MASK;
|
|
base->CTRL |= ADC_CTRL_CLKDIV((frequency / 500000U) - 1U);
|
|
|
|
/* Clear the LPWR bit. */
|
|
base->CTRL &= ~ADC_CTRL_LPWRMODE_MASK;
|
|
|
|
/* Wait for the completion of calibration. */
|
|
while ((ADC_CTRL_CALMODE_MASK == (base->CTRL & ADC_CTRL_CALMODE_MASK)) && (--i))
|
|
{
|
|
}
|
|
/* Restore the contents of the ADC CTRL register. */
|
|
base->CTRL = tmp32;
|
|
|
|
/* Judge whether the calibration is overtime. */
|
|
if (i == 0U)
|
|
{
|
|
return false; /* Calibration timeout. */
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif/* FSL_FEATURE_ADC_HAS_CALIB_REG */
|
|
#endif/* FSL_FEATURE_ADC_HAS_NO_CALIB_FUNC*/
|
|
|
|
void ADC_SetConvSeqAConfig(ADC_Type *base, const adc_conv_seq_config_t *config)
|
|
{
|
|
assert(config != NULL);
|
|
|
|
uint32_t tmp32;
|
|
|
|
tmp32 = ADC_SEQ_CTRL_CHANNELS(config->channelMask) /* Channel mask. */
|
|
| ADC_SEQ_CTRL_TRIGGER(config->triggerMask); /* Trigger mask. */
|
|
|
|
/* Polarity for tirgger signal. */
|
|
switch (config->triggerPolarity)
|
|
{
|
|
case kADC_TriggerPolarityPositiveEdge:
|
|
tmp32 |= ADC_SEQ_CTRL_TRIGPOL_MASK;
|
|
break;
|
|
default: /* kADC_TriggerPolarityNegativeEdge */
|
|
break;
|
|
}
|
|
|
|
/* Bypass the clock Sync. */
|
|
if (config->enableSyncBypass)
|
|
{
|
|
tmp32 |= ADC_SEQ_CTRL_SYNCBYPASS_MASK;
|
|
}
|
|
|
|
/* Interrupt point. */
|
|
switch (config->interruptMode)
|
|
{
|
|
case kADC_InterruptForEachSequence:
|
|
tmp32 |= ADC_SEQ_CTRL_MODE_MASK;
|
|
break;
|
|
default: /* kADC_InterruptForEachConversion */
|
|
break;
|
|
}
|
|
|
|
/* One trigger for a conversion, or for a sequence. */
|
|
if (config->enableSingleStep)
|
|
{
|
|
tmp32 |= ADC_SEQ_CTRL_SINGLESTEP_MASK;
|
|
}
|
|
|
|
base->SEQ_CTRL[0] = tmp32;
|
|
}
|
|
|
|
void ADC_SetConvSeqBConfig(ADC_Type *base, const adc_conv_seq_config_t *config)
|
|
{
|
|
assert(config != NULL);
|
|
|
|
uint32_t tmp32;
|
|
|
|
tmp32 = ADC_SEQ_CTRL_CHANNELS(config->channelMask) /* Channel mask. */
|
|
| ADC_SEQ_CTRL_TRIGGER(config->triggerMask); /* Trigger mask. */
|
|
|
|
/* Polarity for tirgger signal. */
|
|
switch (config->triggerPolarity)
|
|
{
|
|
case kADC_TriggerPolarityPositiveEdge:
|
|
tmp32 |= ADC_SEQ_CTRL_TRIGPOL_MASK;
|
|
break;
|
|
default: /* kADC_TriggerPolarityPositiveEdge */
|
|
break;
|
|
}
|
|
|
|
/* Bypass the clock Sync. */
|
|
if (config->enableSyncBypass)
|
|
{
|
|
tmp32 |= ADC_SEQ_CTRL_SYNCBYPASS_MASK;
|
|
}
|
|
|
|
/* Interrupt point. */
|
|
switch (config->interruptMode)
|
|
{
|
|
case kADC_InterruptForEachSequence:
|
|
tmp32 |= ADC_SEQ_CTRL_MODE_MASK;
|
|
break;
|
|
default: /* kADC_InterruptForEachConversion */
|
|
break;
|
|
}
|
|
|
|
/* One trigger for a conversion, or for a sequence. */
|
|
if (config->enableSingleStep)
|
|
{
|
|
tmp32 |= ADC_SEQ_CTRL_SINGLESTEP_MASK;
|
|
}
|
|
|
|
base->SEQ_CTRL[1] = tmp32;
|
|
}
|
|
|
|
bool ADC_GetConvSeqAGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
|
|
{
|
|
assert(info != NULL);
|
|
|
|
uint32_t tmp32 = base->SEQ_GDAT[0]; /* Read to clear the status. */
|
|
|
|
if (0U == (ADC_SEQ_GDAT_DATAVALID_MASK & tmp32))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
info->result = (tmp32 & ADC_SEQ_GDAT_RESULT_MASK) >> ADC_SEQ_GDAT_RESULT_SHIFT;
|
|
info->thresholdCompareStatus =
|
|
(adc_threshold_compare_status_t)((tmp32 & ADC_SEQ_GDAT_THCMPRANGE_MASK) >> ADC_SEQ_GDAT_THCMPRANGE_SHIFT);
|
|
info->thresholdCorssingStatus =
|
|
(adc_threshold_crossing_status_t)((tmp32 & ADC_SEQ_GDAT_THCMPCROSS_MASK) >> ADC_SEQ_GDAT_THCMPCROSS_SHIFT);
|
|
info->channelNumber = (tmp32 & ADC_SEQ_GDAT_CHN_MASK) >> ADC_SEQ_GDAT_CHN_SHIFT;
|
|
info->overrunFlag = ((tmp32 & ADC_SEQ_GDAT_OVERRUN_MASK) == ADC_SEQ_GDAT_OVERRUN_MASK);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ADC_GetConvSeqBGlobalConversionResult(ADC_Type *base, adc_result_info_t *info)
|
|
{
|
|
assert(info != NULL);
|
|
|
|
uint32_t tmp32 = base->SEQ_GDAT[1]; /* Read to clear the status. */
|
|
|
|
if (0U == (ADC_SEQ_GDAT_DATAVALID_MASK & tmp32))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
info->result = (tmp32 & ADC_SEQ_GDAT_RESULT_MASK) >> ADC_SEQ_GDAT_RESULT_SHIFT;
|
|
info->thresholdCompareStatus =
|
|
(adc_threshold_compare_status_t)((tmp32 & ADC_SEQ_GDAT_THCMPRANGE_MASK) >> ADC_SEQ_GDAT_THCMPRANGE_SHIFT);
|
|
info->thresholdCorssingStatus =
|
|
(adc_threshold_crossing_status_t)((tmp32 & ADC_SEQ_GDAT_THCMPCROSS_MASK) >> ADC_SEQ_GDAT_THCMPCROSS_SHIFT);
|
|
info->channelNumber = (tmp32 & ADC_SEQ_GDAT_CHN_MASK) >> ADC_SEQ_GDAT_CHN_SHIFT;
|
|
info->overrunFlag = ((tmp32 & ADC_SEQ_GDAT_OVERRUN_MASK) == ADC_SEQ_GDAT_OVERRUN_MASK);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool ADC_GetChannelConversionResult(ADC_Type *base, uint32_t channel, adc_result_info_t *info)
|
|
{
|
|
assert(info != NULL);
|
|
assert(channel < ADC_DAT_COUNT);
|
|
|
|
uint32_t tmp32 = base->DAT[channel]; /* Read to clear the status. */
|
|
|
|
if (0U == (ADC_DAT_DATAVALID_MASK & tmp32))
|
|
{
|
|
return false;
|
|
}
|
|
|
|
info->result = (tmp32 & ADC_DAT_RESULT_MASK) >> ADC_DAT_RESULT_SHIFT;
|
|
info->thresholdCompareStatus =
|
|
(adc_threshold_compare_status_t)((tmp32 & ADC_DAT_THCMPRANGE_MASK) >> ADC_DAT_THCMPRANGE_SHIFT);
|
|
info->thresholdCorssingStatus =
|
|
(adc_threshold_crossing_status_t)((tmp32 & ADC_DAT_THCMPCROSS_MASK) >> ADC_DAT_THCMPCROSS_SHIFT);
|
|
info->channelNumber = (tmp32 & ADC_DAT_CHANNEL_MASK) >> ADC_DAT_CHANNEL_SHIFT;
|
|
info->overrunFlag = ((tmp32 & ADC_DAT_OVERRUN_MASK) == ADC_DAT_OVERRUN_MASK);
|
|
|
|
return true;
|
|
}
|