4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-23 02:57:24 +08:00
Wayne Lin 1c4328e5a9 Update NUC980 and M480
1. Add 980 drv_usbd.
2. EMAC - move MDC CLK divider before EMAC initialization.
3. Correct NUC980 and M480 CAN RX_MSG_ID_INDEX definition.
4. add USBD cdc demo - vcom_echo.
5. mnt - add mount_table definition.
2020-12-29 19:35:43 +08:00

577 lines
16 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2019 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-2-07 ChingI First version
*
******************************************************************************/
#include <rtconfig.h>
#if defined(BSP_USING_CAN)
#include <rtdevice.h>
#include <rthw.h>
#include <NuMicro.h>
/* Private Define ---------------------------------------------------------------*/
#define RX_MSG_ID_INDEX 16
#define IS_CAN_STDID(STDID) ((STDID) <= 0x7FFU)
#define IS_CAN_EXTID(EXTID) ((EXTID) <= 0x1FFFFFFFU)
#define IS_CAN_DLC(DLC) ((DLC) <= 8U)
/* Default config for serial_configure structure */
#define NU_CAN_CONFIG_DEFAULT \
{ \
CAN1MBaud, /* 1M bits/s */ \
RT_CANMSG_BOX_SZ, /* message box max size */ \
RT_CANSND_BOX_NUM, /* message box number */ \
RT_CAN_MODE_NORMAL, /* Normal mode */ \
0, /* privmode */ \
0, /* reserved */ \
100, /* Timeout Tick */ \
}
enum
{
CAN_START = -1,
#if defined(BSP_USING_CAN0)
CAN0_IDX,
#endif
#if defined(BSP_USING_CAN1)
CAN1_IDX,
#endif
#if defined(BSP_USING_CAN2)
CAN2_IDX,
#endif
CAN_CNT
};
/* Private Typedef --------------------------------------------------------------*/
struct nu_can
{
struct rt_can_device dev;
char *name;
CAN_T *can_base;
uint32_t can_rst;
IRQn_Type can_irq_n;
};
typedef struct nu_can *nu_can_t;
/* Private functions ------------------------------------------------------------*/
static rt_err_t nu_can_configure(struct rt_can_device *can, struct can_configure *cfg);
static rt_err_t nu_can_control(struct rt_can_device *can, int cmd, void *arg);
static int nu_can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t boxno);
static int nu_can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t boxno);
static void nu_can_isr(nu_can_t can);
static struct nu_can nu_can_arr[] =
{
#if defined(BSP_USING_CAN0)
{
.name = "can0",
.can_base = CAN0,
.can_rst = CAN0_RST,
.can_irq_n = CAN0_IRQn,
},
#endif
#if defined(BSP_USING_CAN1)
{
.name = "can1",
.can_base = CAN1,
.can_rst = CAN1_RST,
.can_irq_n = CAN1_IRQn,
},
#endif
#if defined(BSP_USING_CAN2)
{
.name = "can2",
.can_base = CAN2,
.can_rst = CAN2_RST,
.can_irq_n = CAN2_IRQn,
},
#endif
{0}
}; /* struct nu_can */
/* Public functions ------------------------------------------------------------*/
/* Private variables ------------------------------------------------------------*/
static const struct rt_can_ops nu_can_ops =
{
.configure = nu_can_configure,
.control = nu_can_control,
.sendmsg = nu_can_sendmsg,
.recvmsg = nu_can_recvmsg,
};
static const struct can_configure nu_can_default_config = NU_CAN_CONFIG_DEFAULT;
/* Interrupt Handle Function ----------------------------------------------------*/
#if defined(BSP_USING_CAN0)
/* CAN0 interrupt entry */
void CAN0_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_can_isr(&nu_can_arr[CAN0_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_CAN1)
/* CAN1 interrupt entry */
void CAN1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_can_isr(&nu_can_arr[CAN1_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
#if defined(BSP_USING_CAN2)
/* CAN2 interrupt entry */
void CAN2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
nu_can_isr(&nu_can_arr[CAN2_IDX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif
/* Private Variables ------------------------------------------------------------*/
static void nu_can_isr(nu_can_t can)
{
uint32_t u32IIDRstatus;
/* Get base address of CAN register */
CAN_T *can_base = ((nu_can_t)can)->can_base;
/* Get interrupt event */
u32IIDRstatus = CAN_GET_INT_PENDING_STATUS(can_base);
if (u32IIDRstatus == 0x00008000) /* Check Status Interrupt Flag (Error status Int and Status change Int) */
{
/**************************/
/* Status Change interrupt*/
/**************************/
if (can_base->STATUS & CAN_STATUS_TXOK_Msk)
{
can_base->STATUS &= ~CAN_STATUS_TXOK_Msk; /* Clear Tx Ok status*/
#ifndef RT_CAN_USING_HDR
/* Using as Lisen,Loopback,Loopback+Lisen mode*/
rt_hw_can_isr(&can->dev, RT_CAN_EVENT_TX_DONE);
#endif
//rt_kprintf("[%s]TX OK INT\n", can->name) ;
}
if (can_base->STATUS & CAN_STATUS_RXOK_Msk)
{
can_base->STATUS &= ~CAN_STATUS_RXOK_Msk; /* Clear Rx Ok status*/
#ifndef RT_CAN_USING_HDR
/* Using as Lisen,Loopback,Loopback+Lisen mode*/
rt_hw_can_isr(&can->dev, RT_CAN_EVENT_RX_IND);
#endif
//rt_kprintf("[%s]RX OK INT\n", can->name) ;
}
/**************************/
/* Error Status interrupt */
/**************************/
if (can_base->STATUS & CAN_STATUS_EWARN_Msk)
{
rt_kprintf("[%s]EWARN INT\n", can->name) ;
}
if (can_base->STATUS & CAN_STATUS_BOFF_Msk)
{
rt_kprintf("[%s]BUSOFF INT\n", can->name) ;
/* Do Init to release busoff pin */
can_base->CON = (CAN_CON_INIT_Msk | CAN_CON_CCE_Msk);
can_base->CON &= (~(CAN_CON_INIT_Msk | CAN_CON_CCE_Msk));
while (can_base->CON & CAN_CON_INIT_Msk);
}
}
#ifdef RT_CAN_USING_HDR
/*IntId: 0x0001-0x0020, Number of Message Object which caused the interrupt.*/
else if (u32IIDRstatus > 0 && u32IIDRstatus <= 32)
{
/*Message RAM 0~RX_MSG_ID_INDEX for CAN Tx using*/
if (u32IIDRstatus <= RX_MSG_ID_INDEX)
{
//rt_kprintf("[%s-Tx]IntId = %d\n", can->name, u32IIDRstatus);
rt_hw_can_isr(&can->dev, RT_CAN_EVENT_TX_DONE);
}
else /*Message RAM RX_MSG_ID_INDEX~31 for CAN Rx using*/
{
//rt_kprintf("[%s-Rx]IntId = %d\n", can->name, u32IIDRstatus);
rt_hw_can_isr(&can->dev, (RT_CAN_EVENT_RX_IND | ((u32IIDRstatus - 1) << 8)));
}
CAN_CLR_INT_PENDING_BIT(can_base, (u32IIDRstatus - 1)); /* Clear Interrupt Pending */
}
#endif
}
static rt_err_t nu_can_configure(struct rt_can_device *can, struct can_configure *cfg)
{
RT_ASSERT(can != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
/* Get base address of CAN register */
CAN_T *can_base = ((nu_can_t)can)->can_base;
RT_ASSERT(can_base != RT_NULL);
/* Reset this module */
SYS_ResetModule(((nu_can_t)can)->can_rst);
switch (cfg->mode)
{
/* CAN default Normal mode */
case RT_CAN_MODE_NORMAL:
can->config.mode = CAN_NORMAL_MODE;
break;
case RT_CAN_MODE_LISEN:
can->config.mode = RT_CAN_MODE_LISEN;
break;
case RT_CAN_MODE_LOOPBACK:
can->config.mode = RT_CAN_MODE_LOOPBACK;
break;
case RT_CAN_MODE_LOOPBACKANLISEN:
can->config.mode = RT_CAN_MODE_LOOPBACKANLISEN;
break;
default:
rt_kprintf("Unsupported Operating mode");
goto exit_nu_can_configure;
}
/*Set the CAN Bit Rate and Operating mode*/
if (CAN_Open(can_base, can->config.baud_rate, can->config.mode) < 1)
return -(RT_ERROR);
switch (cfg->mode)
{
/* CAN default Normal mode */
case RT_CAN_MODE_NORMAL:
#ifdef RT_CAN_USING_HDR
CAN_LeaveTestMode(can_base);
#else
CAN_EnterTestMode(can_base, CAN_TEST_BASIC_Msk);
#endif
break;
case RT_CAN_MODE_LISEN:
CAN_EnterTestMode(can_base, CAN_TEST_BASIC_Msk | CAN_TEST_SILENT_Msk);
break;
case RT_CAN_MODE_LOOPBACK:
CAN_EnterTestMode(can_base, CAN_TEST_BASIC_Msk | CAN_TEST_LBACK_Msk);
break;
case RT_CAN_MODE_LOOPBACKANLISEN:
CAN_EnterTestMode(can_base, CAN_TEST_BASIC_Msk | CAN_TEST_SILENT_Msk | CAN_TEST_LBACK_Msk);
break;
default:
rt_kprintf("Unsupported Operating mode");
goto exit_nu_can_configure;
}
return RT_EOK;
exit_nu_can_configure:
CAN_Close(can_base);
return -(RT_ERROR);
}
static rt_err_t nu_can_control(struct rt_can_device *can, int cmd, void *arg)
{
rt_uint32_t argval;
#ifdef RT_CAN_USING_HDR
struct rt_can_filter_config *filter_cfg;
#endif
/* Get base address of CAN register */
CAN_T *can_base = ((nu_can_t)can)->can_base;
RT_ASSERT(can_base != RT_NULL);
/* Check baud rate */
RT_ASSERT(can->config.baud_rate != 0);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
argval = (rt_uint32_t) arg;
if ((argval == RT_DEVICE_FLAG_INT_RX) || (argval == RT_DEVICE_FLAG_INT_TX))
{
/* Disable NVIC interrupt. */
NVIC_DisableIRQ(((nu_can_t)can)->can_irq_n);
/* Disable Status Change Interrupt */
CAN_DisableInt(can_base, CAN_CON_IE_Msk | CAN_CON_SIE_Msk);
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
/* Disable NVIC interrupt. */
NVIC_DisableIRQ(((nu_can_t)can)->can_irq_n);
/* Disable Error Interrupt */
CAN_DisableInt(can_base, CAN_CON_EIE_Msk);
}
break;
case RT_DEVICE_CTRL_SET_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX || (argval == RT_DEVICE_FLAG_INT_TX))
{
/* Enable Status Change Interrupt */
CAN_EnableInt(can_base, CAN_CON_IE_Msk | CAN_CON_SIE_Msk);
/* Enable NVIC interrupt. */
NVIC_EnableIRQ(((nu_can_t)can)->can_irq_n);
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
/* Enable Error Status and Status Change Interrupt */
CAN_EnableInt(can_base, CAN_CON_IE_Msk | CAN_CON_SIE_Msk | CAN_CON_EIE_Msk);
/* Enable NVIC interrupt. */
NVIC_EnableIRQ(((nu_can_t)can)->can_irq_n);
}
break;
#ifdef RT_CAN_USING_HDR
case RT_CAN_CMD_SET_FILTER:
filter_cfg = (struct rt_can_filter_config *)arg;
for (int i = 0; i < filter_cfg->count; i++)
{
/*set the filter message object*/
if (filter_cfg->items[i].mode == 1)
{
if (CAN_SetRxMsgObjAndMsk(can_base, MSG(filter_cfg->items[i].hdr + RX_MSG_ID_INDEX), filter_cfg->items[i].ide, filter_cfg->items[i].id, filter_cfg->items[i].mask, FALSE) == FALSE)
{
return -(RT_ERROR);
}
}
else
{
/*set the filter message object*/
if (CAN_SetRxMsgAndMsk(can_base, MSG(filter_cfg->items[i].hdr + RX_MSG_ID_INDEX), filter_cfg->items[i].ide, filter_cfg->items[i].id, filter_cfg->items[i].mask) == FALSE)
{
return -(RT_ERROR);
}
}
}
break;
#endif
case RT_CAN_CMD_SET_MODE:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_NORMAL && argval != RT_CAN_MODE_LISEN &&
argval != RT_CAN_MODE_LOOPBACK && argval != RT_CAN_MODE_LOOPBACKANLISEN)
{
return -(RT_ERROR);
}
if (argval != can->config.mode)
{
can->config.mode = argval;
return nu_can_configure(can, &can->config);
}
break;
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
if (argval != CAN1MBaud && argval != CAN800kBaud && argval != CAN500kBaud && argval != CAN250kBaud &&
argval != CAN125kBaud && argval != CAN100kBaud && argval != CAN50kBaud && argval != CAN20kBaud && argval != CAN10kBaud)
{
return -(RT_ERROR);
}
if (argval != can->config.baud_rate)
{
can->config.baud_rate = argval;
return nu_can_configure(can, &can->config);
}
break;
case RT_CAN_CMD_SET_PRIV:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_PRIV && argval != RT_CAN_MODE_NOPRIV)
{
return -(RT_ERROR);
}
if (argval != can->config.privmode)
{
can->config.privmode = argval;
return nu_can_configure(can, &can->config);
}
break;
case RT_CAN_CMD_GET_STATUS:
{
rt_uint32_t errtype;
errtype = can_base->ERR;
/*Receive Error Counter*/
can->status.rcverrcnt = (errtype >> 8);
/*Transmit Error Counter*/
can->status.snderrcnt = ((errtype >> 24) & 0xFF);
can->status.lasterrtype = CAN_GET_INT_STATUS(can_base) & 0x8000;
/*status error code*/
can->status.errcode = CAN_GET_INT_STATUS(can_base) & 0x07;
rt_memcpy(arg, &can->status, sizeof(can->status));
}
break;
default:
return -(RT_EINVAL);
}
return RT_EOK;
}
static int nu_can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t boxno)
{
STR_CANMSG_T tMsg;
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
/* Get base address of CAN register */
CAN_T *can_base = ((nu_can_t)can)->can_base;
RT_ASSERT(can_base != RT_NULL);
RT_ASSERT(buf != RT_NULL);
/* Check the parameters */
RT_ASSERT(IS_CAN_DLC(pmsg->len));
/* Standard ID (11 bits)*/
if (pmsg->ide == RT_CAN_STDID)
{
tMsg.IdType = CAN_STD_ID;
RT_ASSERT(IS_CAN_STDID(pmsg->id))
tMsg.Id = pmsg->id ;
}
else
{
/* Extended ID (29 bits)*/
tMsg.IdType = CAN_EXT_ID;
RT_ASSERT(IS_CAN_EXTID(pmsg->id));
tMsg.Id = pmsg->id ;
}
if (pmsg->rtr == RT_CAN_DTR)
{
/* Data frame */
tMsg.FrameType = CAN_DATA_FRAME;
}
else
{
/* Remote frame */
tMsg.FrameType = CAN_REMOTE_FRAME;
}
tMsg.DLC = pmsg->len;
rt_memcpy(tMsg.Data, pmsg->data, pmsg->len);
if (CAN_Transmit(can_base, MSG(boxno), &tMsg) == FALSE) // Configure Msg RAM and send the Msg in the RAM
{
return -(RT_ERROR);
}
return RT_EOK;
}
static int nu_can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t boxno)
{
STR_CANMSG_T tMsg;
struct rt_can_msg *pmsg = (struct rt_can_msg *) buf;
/* Get base address of CAN register */
CAN_T *can_base = ((nu_can_t)can)->can_base;
RT_ASSERT(can_base != RT_NULL);
RT_ASSERT(buf != RT_NULL);
/* get data */
if (CAN_Receive(can_base, boxno, &tMsg) == FALSE)
{
rt_kprintf("No available RX Msg.\n");
return -(RT_ERROR);
}
#ifdef RT_CAN_USING_HDR
/* Hardware filter messages are valid */
pmsg->hdr = boxno - RX_MSG_ID_INDEX;
can->hdr[pmsg->hdr].connected = 1;
#endif
/* Standard ID (11 bits)*/
if (tMsg.IdType == CAN_STD_ID)
{
pmsg->ide = RT_CAN_STDID;
pmsg->id = tMsg.Id;
}
else /* Extended ID (29 bits)*/
{
pmsg->ide = RT_CAN_EXTID;
pmsg->id = tMsg.Id;
}
if (tMsg.FrameType == CAN_DATA_FRAME)
{
/* Data frame */
pmsg->rtr = RT_CAN_DTR;
}
else
{
/* Remote frame */
pmsg->rtr = RT_CAN_RTR;
}
pmsg->len = tMsg.DLC ;
rt_memcpy(pmsg->data, tMsg.Data, pmsg->len);
return RT_EOK;
}
/**
* Hardware CAN Initialization
*/
static int rt_hw_can_init(void)
{
int i;
rt_err_t ret = RT_EOK;
for (i = (CAN_START + 1); i < CAN_CNT; i++)
{
nu_can_arr[i].dev.ops = &nu_can_ops;
nu_can_arr[i].dev.config = nu_can_default_config;
#ifdef RT_CAN_USING_HDR
nu_can_arr[i].dev.config.maxhdr = RT_CANMSG_BOX_SZ;
#endif
ret = rt_hw_can_register(&nu_can_arr[i].dev, nu_can_arr[i].name, &nu_can_ops, NULL);
RT_ASSERT(ret == RT_EOK);
}
return (int)ret;
}
INIT_DEVICE_EXPORT(rt_hw_can_init);
#endif //#if defined(BSP_USING_CAN)