4
0
mirror of https://github.com/RT-Thread/rt-thread.git synced 2025-01-24 19:07:24 +08:00
luobeihai 8baaf73210
add apm32 can driver and add apm32e1/s1 rtt driver support (#7170)
* add apm32 can driver and add apm32e1/s1 rtt driver support

* format some files

* modified action.yml file and modified bsp picture and add bsp README.md
2023-04-05 00:18:51 -04:00

882 lines
28 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-03-30 luobeihai first version
*/
#include "drv_can.h"
#ifdef RT_USING_CAN
#if defined(BSP_USING_CAN1) || defined(BSP_USING_CAN2)
#define LOG_TAG "drv_can"
#include <drv_log.h>
#ifdef BSP_USING_CAN1
static struct apm32_can drv_can1 =
{
.name = "can1",
.CANx = CAN1,
};
#endif
#ifdef BSP_USING_CAN2
static struct apm32_can drv_can2 =
{
.name = "can2",
.CANx = CAN2,
};
#endif
/* baud calculation example: PCLK1 / ((timeSegment1 + timeSegment2 + 1) * prescaler) = 36 / ((1 + 8 + 3) * 3) = 1MHz */
#if defined (SOC_SERIES_APM32F1) || defined (SOC_SERIES_APM32E1) || defined (SOC_SERIES_APM32S1) /* APB1 36MHz(max) */
static const struct apm32_baud_rate_tab can_baud_rate_tab[] =
{
APM32_CAN_BAUD_DEF(CAN1MBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 3),
APM32_CAN_BAUD_DEF(CAN800kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_5, CAN_TIME_SEGMENT2_3, 5),
APM32_CAN_BAUD_DEF(CAN500kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 6),
APM32_CAN_BAUD_DEF(CAN250kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 12),
APM32_CAN_BAUD_DEF(CAN125kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 24),
APM32_CAN_BAUD_DEF(CAN100kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 30),
APM32_CAN_BAUD_DEF(CAN50kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 60),
APM32_CAN_BAUD_DEF(CAN20kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 150),
APM32_CAN_BAUD_DEF(CAN10kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_3, 300),
};
#elif defined (SOC_SERIES_APM32F4) /* APB1 42MHz(max) */
static const struct apm32_baud_rate_tab can_baud_rate_tab[] =
{
APM32_CAN_BAUD_DEF(CAN1MBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 3),
APM32_CAN_BAUD_DEF(CAN800kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_8, CAN_TIME_SEGMENT2_4, 4),
APM32_CAN_BAUD_DEF(CAN500kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 6),
APM32_CAN_BAUD_DEF(CAN250kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 12),
APM32_CAN_BAUD_DEF(CAN125kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 24),
APM32_CAN_BAUD_DEF(CAN100kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 30),
APM32_CAN_BAUD_DEF(CAN50kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 60),
APM32_CAN_BAUD_DEF(CAN20kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 150),
APM32_CAN_BAUD_DEF(CAN10kBaud, CAN_SJW_1, CAN_TIME_SEGMENT1_9, CAN_TIME_SEGMENT2_4, 300),
};
#endif
static rt_uint32_t get_can_baud_index(rt_uint32_t baud)
{
rt_uint32_t len, index;
len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]);
for (index = 0; index < len; index++)
{
if (can_baud_rate_tab[index].baud_rate == baud)
return index;
}
return 0; /* default baud is CAN1MBaud */
}
static rt_err_t apm32_can_config(struct rt_can_device *can, struct can_configure *cfg)
{
struct apm32_can *drv_can;
rt_uint32_t baud_index;
RT_ASSERT(can);
RT_ASSERT(cfg);
drv_can = (struct apm32_can *)can->parent.user_data;
RT_ASSERT(drv_can);
/* init can gpio and enable can clock */
extern void apm32_msp_can_init(void *Instance);
apm32_msp_can_init(drv_can->CANx);
CAN_ConfigStructInit(&drv_can->can_init);
drv_can->can_init.autoBusOffManage = ENABLE;
drv_can->can_init.autoWakeUpMode = DISABLE;
drv_can->can_init.nonAutoRetran = DISABLE;
drv_can->can_init.rxFIFOLockMode = DISABLE;
drv_can->can_init.txFIFOPriority = ENABLE;
/* can mode config */
switch (cfg->mode)
{
case RT_CAN_MODE_NORMAL:
drv_can->can_init.mode = CAN_MODE_NORMAL;
break;
case RT_CAN_MODE_LISTEN:
drv_can->can_init.mode = CAN_MODE_SILENT;
break;
case RT_CAN_MODE_LOOPBACK:
drv_can->can_init.mode = CAN_MODE_LOOPBACK;
break;
case RT_CAN_MODE_LOOPBACKANLISTEN:
drv_can->can_init.mode = CAN_MODE_SILENT_LOOPBACK;
break;
default:
drv_can->can_init.mode = CAN_MODE_NORMAL;
break;
}
/* can baud config */
baud_index = get_can_baud_index(cfg->baud_rate);
drv_can->can_init.syncJumpWidth = can_baud_rate_tab[baud_index].syncJumpWidth;
drv_can->can_init.timeSegment1 = can_baud_rate_tab[baud_index].timeSegment1;
drv_can->can_init.timeSegment2 = can_baud_rate_tab[baud_index].timeSegment2;
drv_can->can_init.prescaler = can_baud_rate_tab[baud_index].prescaler;
/* init can */
if (CAN_Config(drv_can->CANx, &drv_can->can_init) != SUCCESS)
{
LOG_D("Can init error");
return -RT_ERROR;
}
/* default filter config */
#if defined(SOC_SERIES_APM32F4) || defined(APM32F10X_CL)
CAN_ConfigFilter(&drv_can->FilterConfig);
#else
CAN_ConfigFilter(drv_can->CANx, &drv_can->FilterConfig);
#endif
return RT_EOK;
}
static rt_err_t apm32_can_control(struct rt_can_device *can, int cmd, void *arg)
{
rt_uint32_t argval;
struct apm32_can *drv_can;
struct rt_can_filter_config *filter_cfg;
RT_ASSERT(can != RT_NULL);
drv_can = (struct apm32_can *)can->parent.user_data;
RT_ASSERT(drv_can != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
if (CAN1 == drv_can->CANx)
{
NVIC_DisableIRQRequest(CAN1_RX0_IRQn);
NVIC_DisableIRQRequest(CAN1_RX1_IRQn);
}
#ifdef BSP_USING_CAN2
if (CAN2 == drv_can->CANx)
{
NVIC_DisableIRQRequest(CAN2_RX0_IRQn);
NVIC_DisableIRQRequest(CAN2_RX1_IRQn);
}
#endif
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F0MP);
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F0FULL);
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F0OVR);
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F1MP);
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F1FULL);
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_F1OVR);
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
if (CAN1 == drv_can->CANx)
{
NVIC_DisableIRQRequest(CAN1_TX_IRQn);
}
#ifdef BSP_USING_CAN2
if (CAN2 == drv_can->CANx)
{
NVIC_DisableIRQRequest(CAN2_TX_IRQn);
}
#endif
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_TXME);
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
if (CAN1 == drv_can->CANx)
{
NVIC_DisableIRQRequest(CAN1_SCE_IRQn);
}
#ifdef BSP_USING_CAN2
if (CAN2 == drv_can->CANx)
{
NVIC_DisableIRQRequest(CAN2_SCE_IRQn);
}
#endif
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_ERRW);
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_ERRP);
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_BOF);
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_LEC);
CAN_DisableInterrupt(drv_can->CANx, CAN_INT_ERR);
}
break;
case RT_DEVICE_CTRL_SET_INT:
argval = (rt_uint32_t) arg;
if (argval == RT_DEVICE_FLAG_INT_RX)
{
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F0MP);
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F0FULL);
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F0OVR);
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F1MP);
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F1FULL);
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_F1OVR);
if (CAN1 == drv_can->CANx)
{
NVIC_EnableIRQRequest(CAN1_RX0_IRQn, 1, 0);
NVIC_EnableIRQRequest(CAN1_RX1_IRQn, 1, 0);
}
#ifdef BSP_USING_CAN2
if (CAN2 == drv_can->CANx)
{
NVIC_EnableIRQRequest(CAN2_RX0_IRQn, 1, 0);
NVIC_EnableIRQRequest(CAN2_RX1_IRQn, 1, 0);
}
#endif
}
else if (argval == RT_DEVICE_FLAG_INT_TX)
{
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_TXME);
if (CAN1 == drv_can->CANx)
{
NVIC_EnableIRQRequest(CAN1_TX_IRQn, 1, 0);
}
#ifdef BSP_USING_CAN2
if (CAN2 == drv_can->CANx)
{
NVIC_EnableIRQRequest(CAN2_TX_IRQn, 1, 0);
}
#endif
}
else if (argval == RT_DEVICE_CAN_INT_ERR)
{
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_ERRW);
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_ERRP);
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_BOF);
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_LEC);
CAN_EnableInterrupt(drv_can->CANx, CAN_INT_ERR);
if (CAN1 == drv_can->CANx)
{
NVIC_EnableIRQRequest(CAN1_SCE_IRQn, 1, 0);
}
#ifdef BSP_USING_CAN2
if (CAN2 == drv_can->CANx)
{
NVIC_EnableIRQRequest(CAN2_SCE_IRQn, 1, 0);
}
#endif
}
break;
case RT_CAN_CMD_SET_FILTER:
{
rt_uint32_t id_h = 0;
rt_uint32_t id_l = 0;
rt_uint32_t mask_h = 0;
rt_uint32_t mask_l = 0;
rt_uint32_t mask_l_tail = 0; //CAN_FxR2 bit [2:0]
if (RT_NULL == arg)
{
/* default filter config */
#if defined(SOC_SERIES_APM32F4) || defined(APM32F10X_CL)
CAN_ConfigFilter(&drv_can->FilterConfig);
#else
CAN_ConfigFilter(drv_can->CANx, &drv_can->FilterConfig);
#endif
}
else
{
filter_cfg = (struct rt_can_filter_config *)arg;
/* get default filter */
for (int i = 0; i < filter_cfg->count; i++)
{
if (filter_cfg->items[i].hdr_bank == -1)
{
/* use default filter bank settings */
if (rt_strcmp(drv_can->name, "can1") == 0)
{
/* can1 banks 0~13 */
drv_can->FilterConfig.filterNumber = i;
}
else if (rt_strcmp(drv_can->name, "can2") == 0)
{
/* can2 banks 14~27 */
drv_can->FilterConfig.filterNumber = i + 14;
}
}
else
{
/* use user-defined filter bank settings */
drv_can->FilterConfig.filterNumber = filter_cfg->items[i].hdr_bank;
}
/**
* ID | CAN_FxR1[31:24] | CAN_FxR1[23:16] | CAN_FxR1[15:8] | CAN_FxR1[7:0] |
* MASK | CAN_FxR2[31:24] | CAN_FxR2[23:16] | CAN_FxR2[15:8] | CAN_FxR2[7:0] |
* STD ID | STID[10:3] | STDID[2:0] |<- 21bit ->|
* EXT ID | EXTID[28:21] | EXTID[20:13] | EXTID[12:5] | EXTID[4:0] IDE RTR 0|
* @note the 32bit STD ID must << 21 to fill CAN_FxR1[31:21] and EXT ID must << 3,
* -> but the id bit of struct rt_can_filter_item is 29,
* -> so STD id << 18 and EXT id Don't need << 3, when get the high 16bit.
* -> FilterIdHigh : (((STDid << 18) or (EXT id)) >> 13) & 0xFFFF,
* -> FilterIdLow: ((STDid << 18) or (EXT id << 3)) & 0xFFFF.
* @note the mask bit of struct rt_can_filter_item is 32,
* -> FilterMaskIdHigh: (((STD mask << 21) or (EXT mask <<3)) >> 16) & 0xFFFF
* -> FilterMaskIdLow: ((STD mask << 21) or (EXT mask <<3)) & 0xFFFF
*/
if (filter_cfg->items[i].mode == CAN_FILTER_MODE_IDMASK)
{
/* make sure the CAN_FxR1[2:0](IDE RTR) work */
mask_l_tail = 0x06;
drv_can->FilterConfig.filterMode = CAN_FILTER_MODE_IDMASK;
}
else if (filter_cfg->items[i].mode == CAN_FILTER_MODE_IDLIST)
{
/* same as CAN_FxR1 */
mask_l_tail = (filter_cfg->items[i].ide << 2) | (filter_cfg->items[i].rtr << 1);
drv_can->FilterConfig.filterMode = CAN_FILTER_MODE_IDLIST;
}
if (filter_cfg->items[i].ide == RT_CAN_STDID)
{
id_h = ((filter_cfg->items[i].id << 18) >> 13) & 0xFFFF;
id_l = ((filter_cfg->items[i].id << 18) |
(filter_cfg->items[i].ide << 2) |
(filter_cfg->items[i].rtr << 1)) & 0xFFFF;
mask_h = ((filter_cfg->items[i].mask << 21) >> 16) & 0xFFFF;
mask_l = ((filter_cfg->items[i].mask << 21) | mask_l_tail) & 0xFFFF;
}
else if (filter_cfg->items[i].ide == RT_CAN_EXTID)
{
id_h = (filter_cfg->items[i].id >> 13) & 0xFFFF;
id_l = ((filter_cfg->items[i].id << 3) |
(filter_cfg->items[i].ide << 2) |
(filter_cfg->items[i].rtr << 1)) & 0xFFFF;
mask_h = ((filter_cfg->items[i].mask << 3) >> 16) & 0xFFFF;
mask_l = ((filter_cfg->items[i].mask << 3) | mask_l_tail) & 0xFFFF;
}
drv_can->FilterConfig.filterIdHigh = id_h;
drv_can->FilterConfig.filterIdLow = id_l;
drv_can->FilterConfig.filterMaskIdHigh = mask_h;
drv_can->FilterConfig.filterMaskIdLow = mask_l;
drv_can->FilterConfig.filterFIFO = CAN_FILTER_FIFO_0;
drv_can->FilterConfig.filterScale = CAN_FILTER_SCALE_32BIT;
drv_can->FilterConfig.filterActivation = ENABLE;
/* Filter conf */
#if defined(SOC_SERIES_APM32F4) || defined(APM32F10X_CL)
CAN_ConfigFilter(&drv_can->FilterConfig);
#else
CAN_ConfigFilter(drv_can->CANx, &drv_can->FilterConfig);
#endif
}
}
break;
}
case RT_CAN_CMD_SET_MODE:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_NORMAL &&
argval != RT_CAN_MODE_LISTEN &&
argval != RT_CAN_MODE_LOOPBACK &&
argval != RT_CAN_MODE_LOOPBACKANLISTEN)
{
return -RT_ERROR;
}
if (argval != drv_can->device.config.mode)
{
drv_can->device.config.mode = argval;
return apm32_can_config(&drv_can->device, &drv_can->device.config);
}
break;
case RT_CAN_CMD_SET_BAUD:
argval = (rt_uint32_t) arg;
if (argval != CAN1MBaud &&
argval != CAN800kBaud &&
argval != CAN500kBaud &&
argval != CAN250kBaud &&
argval != CAN125kBaud &&
argval != CAN100kBaud &&
argval != CAN50kBaud &&
argval != CAN20kBaud &&
argval != CAN10kBaud)
{
return -RT_ERROR;
}
if (argval != drv_can->device.config.baud_rate)
{
drv_can->device.config.baud_rate = argval;
return apm32_can_config(&drv_can->device, &drv_can->device.config);
}
break;
case RT_CAN_CMD_SET_PRIV:
argval = (rt_uint32_t) arg;
if (argval != RT_CAN_MODE_PRIV &&
argval != RT_CAN_MODE_NOPRIV)
{
return -RT_ERROR;
}
if (argval != drv_can->device.config.privmode)
{
drv_can->device.config.privmode = argval;
return apm32_can_config(&drv_can->device, &drv_can->device.config);
}
break;
case RT_CAN_CMD_GET_STATUS:
{
rt_uint32_t errtype;
errtype = drv_can->CANx->ERRSTS;
drv_can->device.status.rcverrcnt = errtype >> 24;
drv_can->device.status.snderrcnt = (errtype >> 16 & 0xFF);
drv_can->device.status.lasterrtype = errtype & 0x70;
drv_can->device.status.errcode = errtype & 0x07;
rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status));
}
break;
}
return RT_EOK;
}
static int can_send_rtmsg(CAN_T *CANx, struct rt_can_msg *pmsg, uint32_t mailbox_index)
{
CAN_TxMessage_T CAN_TxMessage = {0};
CAN_TxMessage_T *TxMessage = &CAN_TxMessage;
if (RT_CAN_STDID == pmsg->ide)
{
TxMessage->typeID = CAN_TYPEID_STD;
TxMessage->stdID = pmsg->id;
}
else
{
TxMessage->typeID = CAN_TYPEID_EXT;
TxMessage->extID = pmsg->id;
}
if (RT_CAN_DTR == pmsg->rtr)
{
TxMessage->remoteTxReq = CAN_RTXR_DATA;
}
else
{
TxMessage->remoteTxReq = CAN_RTXR_REMOTE;
}
/* Set up the Id */
CANx->sTxMailBox[mailbox_index].TXMID &= 0x00000001;
if (TxMessage->typeID == CAN_TYPEID_STD)
{
CANx->sTxMailBox[mailbox_index].TXMID |= (TxMessage->stdID << 21) | (TxMessage->remoteTxReq);
}
else
{
CANx->sTxMailBox[mailbox_index].TXMID |= (TxMessage->extID << 3) | (TxMessage->typeID) | (TxMessage->remoteTxReq);
}
/* Set up the TXDLEN */
TxMessage->dataLengthCode = pmsg->len & 0x0FU;
CANx->sTxMailBox[mailbox_index].TXDLEN &= (uint32_t)0xFFFFFFF0;
CANx->sTxMailBox[mailbox_index].TXDLEN |= TxMessage->dataLengthCode;
/* Set up the data field */
CANx->sTxMailBox[mailbox_index].TXMDH = (((uint32_t)pmsg->data[7] << 24) |
((uint32_t)pmsg->data[6] << 16) |
((uint32_t)pmsg->data[5] << 8) |
((uint32_t)pmsg->data[4]));
CANx->sTxMailBox[mailbox_index].TXMDL = (((uint32_t)pmsg->data[3] << 24) |
((uint32_t)pmsg->data[2] << 16) |
((uint32_t)pmsg->data[1] << 8) |
((uint32_t)pmsg->data[0]));
/* Request transmission */
CANx->sTxMailBox[mailbox_index].TXMID |= 0x00000001;
return RT_EOK;
}
static int apm32_can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num)
{
struct apm32_can *drv_can;
RT_ASSERT(can != RT_NULL);
RT_ASSERT(buf != RT_NULL);
drv_can = (struct apm32_can *)can->parent.user_data;
RT_ASSERT(drv_can != RT_NULL);
/* Select one empty transmit mailbox */
switch (box_num)
{
case CAN_TX_MAILBIX_0:
if ((drv_can->CANx->TXSTS & 0x04000000) != 0x04000000)
{
/* Return function status */
return -RT_ERROR;
}
break;
case CAN_TX_MAILBIX_1:
if ((drv_can->CANx->TXSTS & 0x08000000) != 0x08000000)
{
/* Return function status */
return -RT_ERROR;
}
break;
case CAN_TX_MAILBIX_2:
if ((drv_can->CANx->TXSTS & 0x10000000) != 0x10000000)
{
/* Return function status */
return -RT_ERROR;
}
break;
default:
RT_ASSERT(0);
break;
}
/* Start send msg */
return can_send_rtmsg(drv_can->CANx, ((struct rt_can_msg *)buf), box_num);
}
static int apm32_can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo)
{
struct apm32_can *drv_can;
struct rt_can_msg *pmsg;
CAN_RxMessage_T RxMessage = {0};
RT_ASSERT(can);
drv_can = (struct apm32_can *)can->parent.user_data;
pmsg = (struct rt_can_msg *) buf;
CAN_RxMessage(drv_can->CANx, (CAN_RX_FIFO_T)fifo, &RxMessage);
/* get data */
pmsg->data[0] = RxMessage.data[0];
pmsg->data[1] = RxMessage.data[1];
pmsg->data[2] = RxMessage.data[2];
pmsg->data[3] = RxMessage.data[3];
pmsg->data[4] = RxMessage.data[4];
pmsg->data[5] = RxMessage.data[5];
pmsg->data[6] = RxMessage.data[6];
pmsg->data[7] = RxMessage.data[7];
/* get id */
if (CAN_TYPEID_STD == RxMessage.typeID)
{
pmsg->ide = RT_CAN_STDID;
pmsg->id = RxMessage.stdID;
}
else
{
pmsg->ide = RT_CAN_EXTID;
pmsg->id = RxMessage.extID;
}
/* get type */
if (CAN_RTXR_DATA == RxMessage.remoteTxReq)
{
pmsg->rtr = RT_CAN_DTR;
}
else
{
pmsg->rtr = RT_CAN_RTR;
}
/*get rxfifo = CAN_RX_FIFO0/CAN_RX_FIFO1*/
pmsg->rxfifo = fifo;
/* get len */
pmsg->len = RxMessage.dataLengthCode;
/* get hdr_index */
if (drv_can->CANx == CAN1)
{
pmsg->hdr_index = RxMessage.filterMatchIndex;
}
#ifdef CAN2
else if (drv_can->CANx == CAN2)
{
pmsg->hdr_index = RxMessage.filterMatchIndex;
}
#endif
return RT_EOK;
}
static const struct rt_can_ops _can_ops =
{
apm32_can_config,
apm32_can_control,
apm32_can_sendmsg,
apm32_can_recvmsg,
};
static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo)
{
struct apm32_can *drv_can;
RT_ASSERT(can != RT_NULL);
drv_can = (struct apm32_can *)can->parent.user_data;
RT_ASSERT(drv_can != RT_NULL);
switch (fifo)
{
case CAN_RX_FIFO_0:
/* save to user list */
if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F0MP) && CAN_PendingMessage(drv_can->CANx, CAN_RX_FIFO_0))
{
rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
}
/* Check FULL flag for FIFO0 */
if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F0FULL))
{
/* Clear FIFO0 FULL Flag */
CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_F0FULL);
}
/* Check Overrun flag for FIFO0 */
if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F0OVR))
{
/* Clear FIFO0 Overrun Flag */
CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_F0OVR);
rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
}
break;
case CAN_RX_FIFO_1:
/* save to user list */
if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F1MP) && CAN_PendingMessage(drv_can->CANx, CAN_RX_FIFO_1))
{
rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8);
}
/* Check FULL flag for FIFO1 */
if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F1FULL))
{
/* Clear FIFO1 FULL Flag */
CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_F1FULL);
}
/* Check Overrun flag for FIFO1 */
if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_F1OVR))
{
/* Clear FIFO1 Overrun Flag */
CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_F1OVR);
rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8);
}
break;
}
}
static void _can_sce_isr(struct rt_can_device *can)
{
struct apm32_can *drv_can;
RT_ASSERT(can != RT_NULL);
drv_can = (struct apm32_can *)can->parent.user_data;
RT_ASSERT(drv_can != RT_NULL);
rt_uint32_t errtype = drv_can->CANx->ERRSTS;
switch ((errtype & 0x70) >> 4)
{
case RT_CAN_BUS_BIT_PAD_ERR:
can->status.bitpaderrcnt++;
break;
case RT_CAN_BUS_FORMAT_ERR:
can->status.formaterrcnt++;
break;
case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */
can->status.ackerrcnt++;
if (!READ_BIT(drv_can->CANx->TXSTS, 0x00000002))
{
rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 0 << 8);
}
else if (!READ_BIT(drv_can->CANx->TXSTS, 0x00000200))
{
rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 1 << 8);
}
else if (!READ_BIT(drv_can->CANx->TXSTS, 0x00020000))
{
rt_hw_can_isr(can, RT_CAN_EVENT_TX_FAIL | 2 << 8);
}
break;
case RT_CAN_BUS_IMPLICIT_BIT_ERR:
case RT_CAN_BUS_EXPLICIT_BIT_ERR:
can->status.biterrcnt++;
break;
case RT_CAN_BUS_CRC_ERR:
can->status.crcerrcnt++;
break;
}
can->status.lasterrtype = errtype & 0x70;
can->status.rcverrcnt = errtype >> 24;
can->status.snderrcnt = (errtype >> 16 & 0xFF);
can->status.errcode = errtype & 0x07;
/* clear error interrupt flag */
CAN_ClearIntFlag(drv_can->CANx, CAN_INT_ERR);
}
static void _can_tx_isr(struct rt_can_device *can)
{
struct apm32_can *drv_can;
RT_ASSERT(can != RT_NULL);
drv_can = (struct apm32_can *)can->parent.user_data;
RT_ASSERT(drv_can != RT_NULL);
if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_REQC0))
{
rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | (0x00 << 8));
CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_REQC0);
}
if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_REQC1))
{
rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | (0x01 << 8));
CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_REQC1);
}
if (CAN_ReadStatusFlag(drv_can->CANx, CAN_FLAG_REQC2))
{
rt_hw_can_isr(can, RT_CAN_EVENT_TX_DONE | (0x02 << 8));
CAN_ClearStatusFlag(drv_can->CANx, CAN_FLAG_REQC2);
}
}
#ifdef BSP_USING_CAN1
/**
* @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt
*/
void CAN1_TX_IRQHandler(void)
{
rt_interrupt_enter();
_can_tx_isr(&drv_can1.device);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 RX0 interrupts.
*/
void CAN1_RX0_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can1.device, CAN_RX_FIFO0);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 RX1 interrupts.
*/
void CAN1_RX1_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can1.device, CAN_RX_FIFO1);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN1 SCE interrupts.
*/
void CAN1_SCE_IRQHandler(void)
{
rt_interrupt_enter();
_can_sce_isr(&drv_can1.device);
rt_interrupt_leave();
}
#endif /* BSP_USING_CAN1 */
#ifdef BSP_USING_CAN2
/**
* @brief This function handles CAN2 TX interrupts.
*/
void CAN2_TX_IRQHandler(void)
{
rt_interrupt_enter();
_can_tx_isr(&drv_can2.device);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 RX0 interrupts.
*/
void CAN2_RX0_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can2.device, CAN_RX_FIFO0);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 RX1 interrupts.
*/
void CAN2_RX1_IRQHandler(void)
{
rt_interrupt_enter();
_can_rx_isr(&drv_can2.device, CAN_RX_FIFO1);
rt_interrupt_leave();
}
/**
* @brief This function handles CAN2 SCE interrupts.
*/
void CAN2_SCE_IRQHandler(void)
{
rt_interrupt_enter();
_can_sce_isr(&drv_can2.device);
rt_interrupt_leave();
}
#endif /* BSP_USING_CAN2 */
int rt_hw_can_init(void)
{
struct can_configure config = CANDEFAULTCONFIG;
config.privmode = RT_CAN_MODE_NOPRIV;
config.ticks = 50;
#ifdef RT_CAN_USING_HDR
config.maxhdr = 14;
#if defined(CAN2) && (defined(APM32F10X_CL) || defined(SOC_SERIES_APM32F4))
config.maxhdr = 28;
#endif
#endif
/* config default filter */
CAN_FilterConfig_T filterConf = {0};
filterConf.filterNumber = 0;
filterConf.filterIdHigh = 0x0000;
filterConf.filterIdLow = 0x0000;
filterConf.filterMaskIdHigh = 0x0000;
filterConf.filterMaskIdLow = 0x0000;
filterConf.filterFIFO = CAN_FILTER_FIFO_0;
filterConf.filterMode = CAN_FILTER_MODE_IDMASK;
filterConf.filterScale = CAN_FILTER_SCALE_32BIT;
filterConf.filterActivation = ENABLE;
#ifdef BSP_USING_CAN1
filterConf.filterNumber = 0;
drv_can1.FilterConfig = filterConf;
drv_can1.device.config = config;
/* register CAN1 device */
rt_hw_can_register(&drv_can1.device, drv_can1.name, &_can_ops, &drv_can1);
#endif /* BSP_USING_CAN1 */
#ifdef BSP_USING_CAN2
#if defined(APM32F10X_HD) || defined(APM32E10X_HD) || defined(APM32S10X_MD)
filterConf.filterNumber = 0;
#elif defined(APM32F10X_CL) || defined(SOC_SERIES_APM32F4)
filterConf.filterNumber = 14;
#else
filterConf.filterNumber = 0;
#endif
drv_can2.FilterConfig = filterConf;
drv_can2.device.config = config;
/* register CAN2 device */
rt_hw_can_register(&drv_can2.device, drv_can2.name, &_can_ops, &drv_can2);
#endif /* BSP_USING_CAN2 */
return 0;
}
INIT_BOARD_EXPORT(rt_hw_can_init);
#endif /* defined(BSP_USING_CAN1) || defined(BSP_USING_CAN2) */
#endif /*RT_USING_CAN*/