rt-thread-official/bsp/k210/drivers/drv_spi.c

302 lines
9.0 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2019-03-18 ZYH first version
*/
#include <rtthread.h>
#include <rtdevice.h>
#ifdef RT_USING_SPI
#include "drv_spi.h"
#include <drv_io_config.h>
#include <spi.h>
#include "dmalock.h"
#include <sysctl.h>
#include <gpiohs.h>
#include <string.h>
#include "utils.h"
#define DRV_SPI_DEVICE(spi_bus) (struct drv_spi_bus *)(spi_bus)
#define MAX_CLOCK (40000000UL)
struct drv_spi_bus
{
struct rt_spi_bus parent;
spi_device_num_t spi_instance;
dmac_channel_number_t dma_send_channel;
dmac_channel_number_t dma_recv_channel;
struct rt_completion dma_completion;
};
struct drv_cs
{
int cs_index;
int cs_pin;
};
static volatile spi_t *const spi_instance[4] =
{
(volatile spi_t *)SPI0_BASE_ADDR,
(volatile spi_t *)SPI1_BASE_ADDR,
(volatile spi_t *)SPI_SLAVE_BASE_ADDR,
(volatile spi_t *)SPI3_BASE_ADDR
};
static rt_err_t drv_spi_configure(struct rt_spi_device *device,
struct rt_spi_configuration *configuration)
{
rt_err_t ret = RT_EOK;
int freq = 0;
struct drv_spi_bus *bus = DRV_SPI_DEVICE(device->bus);
struct drv_cs * cs = (struct drv_cs *)device->parent.user_data;
RT_ASSERT(bus != RT_NULL);
gpiohs_set_drive_mode(cs->cs_pin, GPIO_DM_OUTPUT);
gpiohs_set_pin(cs->cs_pin, GPIO_PV_HIGH);
#ifdef BSP_USING_SPI1_AS_QSPI
/* Todo:QSPI*/
#else
spi_init(bus->spi_instance, configuration->mode & RT_SPI_MODE_3, SPI_FF_STANDARD, configuration->data_width, 0);
#endif
freq = spi_set_clk_rate(bus->spi_instance, configuration->max_hz > MAX_CLOCK ? MAX_CLOCK : configuration->max_hz);
rt_kprintf("set spi freq %d\n", freq);
return ret;
}
void __spi_set_tmod(uint8_t spi_num, uint32_t tmod)
{
RT_ASSERT(spi_num < SPI_DEVICE_MAX);
volatile spi_t *spi_handle = spi[spi_num];
uint8_t tmod_offset = 0;
switch(spi_num)
{
case 0:
case 1:
case 2:
tmod_offset = 8;
break;
case 3:
default:
tmod_offset = 10;
break;
}
set_bit(&spi_handle->ctrlr0, 3 << tmod_offset, tmod << tmod_offset);
}
int dma_irq_callback(void *ctx)
{
struct rt_completion * cmp = ctx;
if(cmp)
{
rt_completion_done(cmp);
}
}
static rt_uint32_t drv_spi_xfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
struct drv_spi_bus *bus = DRV_SPI_DEVICE(device->bus);
struct drv_cs * cs = (struct drv_cs *)device->parent.user_data;
struct rt_spi_configuration *cfg = &device->config;
uint32_t * tx_buff = RT_NULL;
uint32_t * rx_buff = RT_NULL;
int i;
rt_ubase_t dummy = 0xFFFFFFFFU;
if(cfg->data_width != 8)
{
return 0;
}
RT_ASSERT(bus != RT_NULL);
if(message->cs_take)
{
gpiohs_set_pin(cs->cs_pin, GPIO_PV_LOW);
}
if(message->length)
{
bus->dma_send_channel = DMAC_CHANNEL_MAX;
bus->dma_recv_channel = DMAC_CHANNEL_MAX;
rt_completion_init(&bus->dma_completion);
if(message->recv_buf)
{
dmalock_sync_take(&bus->dma_recv_channel, RT_WAITING_FOREVER);
sysctl_dma_select(bus->dma_recv_channel, SYSCTL_DMA_SELECT_SSI0_RX_REQ + bus->spi_instance * 2);
rx_buff = rt_calloc(message->length * 4, 1);
if(!rx_buff)
{
goto transfer_done;
}
}
if(message->send_buf)
{
dmalock_sync_take(&bus->dma_send_channel, RT_WAITING_FOREVER);
sysctl_dma_select(bus->dma_send_channel, SYSCTL_DMA_SELECT_SSI0_TX_REQ + bus->spi_instance * 2);
tx_buff = rt_malloc(message->length * 4);
if(!tx_buff)
{
goto transfer_done;
}
for(i = 0; i < message->length; i++)
{
tx_buff[i] = ((uint8_t *)message->send_buf)[i];
}
}
if(message->send_buf && message->recv_buf)
{
dmac_irq_register(bus->dma_recv_channel, dma_irq_callback, &bus->dma_completion, 1);
__spi_set_tmod(bus->spi_instance, SPI_TMOD_TRANS_RECV);
spi_instance[bus->spi_instance]->dmacr = 0x3;
spi_instance[bus->spi_instance]->ssienr = 0x01;
dmac_set_single_mode(bus->dma_recv_channel, (void *)(&spi_instance[bus->spi_instance]->dr[0]), rx_buff, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT,
DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, message->length);
dmac_set_single_mode(bus->dma_send_channel, tx_buff, (void *)(&spi_instance[bus->spi_instance]->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, message->length);
}
else if(message->send_buf)
{
dmac_irq_register(bus->dma_send_channel, dma_irq_callback, &bus->dma_completion, 1);
__spi_set_tmod(bus->spi_instance, SPI_TMOD_TRANS);
spi_instance[bus->spi_instance]->dmacr = 0x2;
spi_instance[bus->spi_instance]->ssienr = 0x01;
dmac_set_single_mode(bus->dma_send_channel, tx_buff, (void *)(&spi_instance[bus->spi_instance]->dr[0]), DMAC_ADDR_INCREMENT, DMAC_ADDR_NOCHANGE,
DMAC_MSIZE_4, DMAC_TRANS_WIDTH_32, message->length);
}
else if(message->recv_buf)
{
dmac_irq_register(bus->dma_recv_channel, dma_irq_callback, &bus->dma_completion, 1);
__spi_set_tmod(bus->spi_instance, SPI_TMOD_RECV);
spi_instance[bus->spi_instance]->ctrlr1 = message->length - 1;
spi_instance[bus->spi_instance]->dmacr = 0x1;
spi_instance[bus->spi_instance]->ssienr = 0x01;
spi_instance[bus->spi_instance]->dr[0] = 0xFF;
dmac_set_single_mode(bus->dma_recv_channel, (void *)(&spi_instance[bus->spi_instance]->dr[0]), rx_buff, DMAC_ADDR_NOCHANGE, DMAC_ADDR_INCREMENT,
DMAC_MSIZE_1, DMAC_TRANS_WIDTH_32, message->length);
}
else
{
goto transfer_done;
}
spi_instance[bus->spi_instance]->ser = 1U << cs->cs_index;
rt_completion_wait(&bus->dma_completion, RT_WAITING_FOREVER);
if(message->recv_buf)
dmac_irq_unregister(bus->dma_recv_channel);
else
dmac_irq_unregister(bus->dma_send_channel);
// wait until all data has been transmitted
while ((spi_instance[bus->spi_instance]->sr & 0x05) != 0x04)
;
spi_instance[bus->spi_instance]->ser = 0x00;
spi_instance[bus->spi_instance]->ssienr = 0x00;
if(message->recv_buf)
{
for(i = 0; i < message->length; i++)
{
((uint8_t *)message->recv_buf)[i] = (uint8_t)rx_buff[i];
}
}
transfer_done:
dmalock_release(bus->dma_send_channel);
dmalock_release(bus->dma_recv_channel);
if(tx_buff)
{
rt_free(tx_buff);
}
if(rx_buff)
{
rt_free(rx_buff);
}
}
if(message->cs_release)
{
gpiohs_set_pin(cs->cs_pin, GPIO_PV_HIGH);
}
return message->length;
}
const static struct rt_spi_ops drv_spi_ops =
{
drv_spi_configure,
drv_spi_xfer
};
int rt_hw_spi_init(void)
{
rt_err_t ret = RT_EOK;
#ifdef BSP_USING_SPI1
{
static struct drv_spi_bus spi_bus1;
spi_bus1.spi_instance = SPI_DEVICE_1;
ret = rt_spi_bus_register(&spi_bus1.parent, "spi1", &drv_spi_ops);
#ifdef BSP_SPI1_USING_SS0
{
static struct rt_spi_device spi_device10;
static struct drv_cs cs10 =
{
.cs_index = SPI_CHIP_SELECT_0,
.cs_pin = SPI1_CS0_PIN
};
rt_spi_bus_attach_device(&spi_device10, "spi10", "spi1", (void *)&cs10);
}
#endif
#ifdef BSP_SPI1_USING_SS1
{
static struct rt_spi_device spi_device11;
static struct drv_cs cs11 =
{
.cs_index = SPI_CHIP_SELECT_1,
.cs_pin = SPI1_CS1_PIN
};
rt_spi_bus_attach_device(&spi_device11, "spi11", "spi1", (void *)&cs11);
}
#endif
#ifdef BSP_SPI1_USING_SS2
{
static struct rt_spi_device spi_device12;
static struct drv_cs cs12 =
{
.cs_index = SPI_CHIP_SELECT_2,
.cs_pin = SPI1_CS2_PIN
};
rt_spi_bus_attach_device(&spi_device12, "spi12", "spi1", (void *)&cs12);
}
#endif
#ifdef BSP_SPI1_USING_SS3
{
static struct rt_spi_device spi_device13;
static struct drv_cs cs13 =
{
.cs_index = SPI_CHIP_SELECT_2,
.cs_pin = SPI1_CS2_PIN
};
rt_spi_bus_attach_device(&spi_device13, "spi13", "spi1", (void *)&cs13);
}
#endif
}
#endif
return ret;
}
INIT_DEVICE_EXPORT(rt_hw_spi_init);
#endif