612 lines
19 KiB
Markdown
612 lines
19 KiB
Markdown
# GD32 RISC-V系列 BSP 制作教程
|
||
|
||
## 1. BSP 框架介绍
|
||
|
||
BSP 框架结构如下图所示:
|
||
|
||
![BSP 框架图](./figures/frame.png)
|
||
|
||
GD32的BSP架构主要分为三个部分:libraries、tools和具体的Boards,其中libraries包含了GD32的通用库,包括每个系列的Firmware Library以及适配RT-Thread的drivers;tools是生成工程的Python脚本工具;另外就是Boards文件,当然这里的Boards有很多,我这里值列举了GD32VF103V_EVAL。
|
||
|
||
## 2. 知识准备
|
||
|
||
制作一个 BSP 的过程就是构建一个新系统的过程,因此想要制作出好用的 BSP,要对 RT-Thread 系统的构建过程有一定了解,需要的知识准备如下所示:
|
||
|
||
- 掌握 GD32 RISC-V系列 BSP 的使用方法
|
||
|
||
了解 BSP 的使用方法,可以阅读 [BSP 说明文档](../README.md) 中使用教程表格内的文档。
|
||
|
||
- 了解 RISC-V系列MCU的基本架构与特征
|
||
|
||
- 了解 Scons 工程构建方法
|
||
|
||
RT-Thread 使用 Scons 作为系统的构建工具,因此了解 Scons 的常用命令对制作新 BSP 是基本要求。
|
||
|
||
- 了解设备驱动框架
|
||
|
||
在 RT-Thread 系统中,应用程序通过设备驱动框架来操作硬件,因此了解设备驱动框架,对添加 BSP 驱动是很重要的。
|
||
|
||
- 了解 Kconfig 语法
|
||
|
||
RT-Thread 系统通过 menuconfig 的方式进行配置,而 menuconfig 中的选项是由 Kconfig 文件决定的,因此想要对 RT-Thread 系统进行配置,需要对 kconfig 语法有一定了解。
|
||
|
||
## 3. BSP移植
|
||
|
||
### 3.1 GCC环境准备
|
||
|
||
RISC-V系列MCU使用的工具链是xPack GNU RISC-V Embedded GCC。
|
||
|
||
在配置交叉编译工具链之前,需要下载得到GCC工具链的安装包,然后解压即可,也可配置环境变量。
|
||
|
||
[GCC工具链下载地址](https://github.com/xpack-dev-tools/riscv-none-embed-gcc-xpack/releases/)
|
||
|
||
![GCC](./figures/gcc.png)
|
||
|
||
根据自己的主机选择相应的版本,下载完成解压即可。
|
||
|
||
|
||
|
||
### 3.2 BSP工程制作
|
||
|
||
**1.构建基础工程**
|
||
首先看看RT-Thread代码仓库中已有很多BSP,而我要移植的是RISC-V内核。这里参考GD32 ARM工程。最终目录如下:
|
||
```
|
||
risc-v
|
||
docs # 说明文档
|
||
gd32vf103v-eval # 具体BSP
|
||
libraries # 库文件
|
||
gd32_drivers
|
||
GD32VF103_Firmware_Library # GD官方固件库
|
||
tools
|
||
OpenOCD # OpenOCD 下载调试工具
|
||
README.md
|
||
```
|
||
**2.修改BSP构建脚本**
|
||
bsp/gd32/risc-v/gd32vf103v-eval/SConstruct修改后的内容如下:
|
||
```python
|
||
import os
|
||
import sys
|
||
import rtconfig
|
||
|
||
if os.getenv('RTT_ROOT'):
|
||
RTT_ROOT = os.getenv('RTT_ROOT')
|
||
else:
|
||
RTT_ROOT = os.path.normpath(os.getcwd() + '/../../../..')
|
||
|
||
sys.path = sys.path + [os.path.join(RTT_ROOT, 'tools')]
|
||
try:
|
||
from building import *
|
||
except:
|
||
print('Cannot found RT-Thread root directory, please check RTT_ROOT')
|
||
print(RTT_ROOT)
|
||
exit(-1)
|
||
|
||
TARGET = 'rtthread.' + rtconfig.TARGET_EXT
|
||
|
||
DefaultEnvironment(tools=[])
|
||
env = Environment(tools = ['mingw'],
|
||
AS = rtconfig.AS, ASFLAGS = rtconfig.AFLAGS,
|
||
CC = rtconfig.CC, CCFLAGS = rtconfig.CFLAGS,
|
||
AR = rtconfig.AR, ARFLAGS = '-rc',
|
||
CXX = rtconfig.CXX, CXXFLAGS = rtconfig.CXXFLAGS,
|
||
LINK = rtconfig.LINK, LINKFLAGS = rtconfig.LFLAGS)
|
||
env.PrependENVPath('PATH', rtconfig.EXEC_PATH)
|
||
env['ASCOM'] = env['ASPPCOM']
|
||
|
||
Export('RTT_ROOT')
|
||
Export('rtconfig')
|
||
|
||
SDK_ROOT = os.path.abspath('./')
|
||
|
||
if os.path.exists(SDK_ROOT + '/libraries'):
|
||
libraries_path_prefix = SDK_ROOT + '/libraries'
|
||
else:
|
||
libraries_path_prefix = os.path.dirname(SDK_ROOT) + '/libraries'
|
||
|
||
SDK_LIB = libraries_path_prefix
|
||
Export('SDK_LIB')
|
||
|
||
# prepare building environment
|
||
# objs = PrepareBuilding(env, RTT_ROOT, has_libcpu=False)
|
||
objs = PrepareBuilding(env, RTT_ROOT)
|
||
|
||
gd32_library = 'GD32VF103_Firmware_Library'
|
||
rtconfig.BSP_LIBRARY_TYPE = gd32_library
|
||
|
||
# include libraries
|
||
objs.extend(SConscript(os.path.join(libraries_path_prefix, gd32_library, 'SConscript')))
|
||
|
||
# include drivers
|
||
objs.extend(SConscript(os.path.join(libraries_path_prefix, 'gd32_drivers', 'SConscript')))
|
||
|
||
# make a building
|
||
DoBuilding(TARGET, objs)
|
||
```
|
||
该文件用于链接所有的依赖文件,并调用make进行编译。该文件主要修改固件库的路径。
|
||
|
||
bsp/gd32/risc-v/gd32vf103v-eval/rtconfig.py修改后的内容如下:
|
||
```python
|
||
import os
|
||
|
||
# toolchains options
|
||
ARCH='risc-v'
|
||
CPU='bumblebee'
|
||
CROSS_TOOL='gcc'
|
||
|
||
# bsp lib config
|
||
BSP_LIBRARY_TYPE = None
|
||
|
||
if os.getenv('RTT_CC'):
|
||
CROSS_TOOL = os.getenv('RTT_CC')
|
||
if os.getenv('RTT_ROOT'):
|
||
RTT_ROOT = os.getenv('RTT_ROOT')
|
||
|
||
# cross_tool provides the cross compiler
|
||
# EXEC_PATH is the compiler execute path, for example, CodeSourcery, Keil MDK, IAR
|
||
if CROSS_TOOL == 'gcc':
|
||
PLATFORM = 'gcc'
|
||
EXEC_PATH = EXEC_PATH = r'D:/gcc/xpack-riscv-none-embed-gcc-10.2.0-1.2/bin'
|
||
else:
|
||
print('Please make sure your toolchains is GNU GCC!')
|
||
exit(0)
|
||
|
||
if os.getenv('RTT_EXEC_PATH'):
|
||
EXEC_PATH = os.getenv('RTT_EXEC_PATH')
|
||
|
||
CORE = 'risc-v'
|
||
BUILD = 'debug'
|
||
MAP_FILE = 'rtthread.map'
|
||
LINK_FILE = '../libraries/GD32VF103_Firmware_Library/RISCV/env_Eclipse/GD32VF103xB.lds'
|
||
|
||
if PLATFORM == 'gcc':
|
||
# toolchains
|
||
PREFIX = 'riscv-none-embed-'
|
||
CC = PREFIX + 'gcc'
|
||
AS = PREFIX + 'gcc'
|
||
AR = PREFIX + 'ar'
|
||
CXX = PREFIX + 'g++'
|
||
LINK = PREFIX + 'gcc'
|
||
TARGET_EXT = 'elf'
|
||
SIZE = PREFIX + 'size'
|
||
OBJDUMP = PREFIX + 'objdump'
|
||
OBJCPY = PREFIX + 'objcopy'
|
||
|
||
DEVICE = ' -march=rv32imac -mabi=ilp32 -DUSE_PLIC -DUSE_M_TIME -DNO_INIT -mcmodel=medany -msmall-data-limit=8 -L. -nostartfiles -lc '
|
||
CFLAGS = DEVICE
|
||
CFLAGS += ' -save-temps=obj'
|
||
AFLAGS = '-c'+ DEVICE + ' -x assembler-with-cpp'
|
||
AFLAGS += ' -Iplatform -Ilibraries/RISCV/include -Ilibraries/RISCV/env_Eclipse'
|
||
LFLAGS = DEVICE
|
||
LFLAGS += ' -Wl,--gc-sections,-cref,-Map=' + MAP_FILE
|
||
LFLAGS += ' -T ' + LINK_FILE
|
||
LFLAGS += ' -Wl,-wrap=memset'
|
||
|
||
CPATH = ''
|
||
LPATH = ''
|
||
|
||
if BUILD == 'debug':
|
||
CFLAGS += ' -O0 -g3'
|
||
AFLAGS += ' -g3'
|
||
else:
|
||
CFLAGS += ' -O2'
|
||
|
||
CXXFLAGS = CFLAGS
|
||
|
||
POST_ACTION = OBJCPY + ' -O binary $TARGET rtthread.bin\n' + SIZE + ' $TARGET \n'
|
||
|
||
def dist_handle(BSP_ROOT, dist_dir):
|
||
import sys
|
||
cwd_path = os.getcwd()
|
||
sys.path.append(os.path.join(os.path.dirname(BSP_ROOT), 'tools'))
|
||
from sdk_dist import dist_do_building
|
||
dist_do_building(BSP_ROOT, dist_dir)
|
||
```
|
||
该文件编译参数,主要关注链接脚本和交叉编译工具链,工具链的地址需要根据实际的地址修改,gd32vf103v-eval开发板使用的芯片是GD32VF103VB,因此其链接脚本是GD32VF103xB.lds。
|
||
|
||
**3.修改board文件夹**
|
||
(1) 修改bsp/gd32/risc-v/gd32vf103v-eval/board/Kconfig文件
|
||
|
||
修改后内容如下:
|
||
```
|
||
menu "Hardware Drivers Config"
|
||
|
||
config SOC_SERIES_GD32VF103V
|
||
bool
|
||
default y
|
||
|
||
config SOC_GD32VF103V
|
||
bool
|
||
select SOC_SERIES_GD32VF103V
|
||
select RT_USING_COMPONENTS_INIT
|
||
select RT_USING_USER_MAIN
|
||
default y
|
||
|
||
menu "Onboard Peripheral Drivers"
|
||
|
||
endmenu
|
||
|
||
menu "On-chip Peripheral Drivers"
|
||
|
||
config BSP_USING_GPIO
|
||
bool "Enable GPIO"
|
||
select RT_USING_PIN
|
||
default y
|
||
|
||
menuconfig BSP_USING_UART
|
||
bool "Enable UART"
|
||
default y
|
||
select RT_USING_SERIAL
|
||
if BSP_USING_UART
|
||
config BSP_USING_UART0
|
||
bool "Enable UART0"
|
||
default y
|
||
|
||
config BSP_UART0_RX_USING_DMA
|
||
bool "Enable UART0 RX DMA"
|
||
depends on BSP_USING_UART0
|
||
select RT_SERIAL_USING_DMA
|
||
default n
|
||
|
||
config BSP_USING_UART1
|
||
bool "Enable UART1"
|
||
default n
|
||
|
||
config BSP_UART1_RX_USING_DMA
|
||
bool "Enable UART1 RX DMA"
|
||
depends on BSP_USING_UART1
|
||
select RT_SERIAL_USING_DMA
|
||
default n
|
||
|
||
config BSP_USING_UART2
|
||
bool "Enable UART2"
|
||
default n
|
||
|
||
config BSP_UART2_RX_USING_DMA
|
||
bool "Enable UART2 RX DMA"
|
||
depends on BSP_USING_UART2
|
||
select RT_SERIAL_USING_DMA
|
||
default n
|
||
|
||
config BSP_USING_UART3
|
||
bool "Enable UART3"
|
||
default n
|
||
|
||
config BSP_UART3_RX_USING_DMA
|
||
bool "Enable UART3 RX DMA"
|
||
depends on BSP_USING_UART3
|
||
select RT_SERIAL_USING_DMA
|
||
default n
|
||
|
||
config BSP_USING_UART4
|
||
bool "Enable UART4"
|
||
default n
|
||
|
||
config BSP_UART4_RX_USING_DMA
|
||
bool "Enable UART4 RX DMA"
|
||
depends on BSP_USING_UART4
|
||
select RT_SERIAL_USING_DMA
|
||
default n
|
||
endif
|
||
|
||
menuconfig BSP_USING_SPI
|
||
bool "Enable SPI BUS"
|
||
default n
|
||
select RT_USING_SPI
|
||
if BSP_USING_SPI
|
||
config BSP_USING_SPI1
|
||
bool "Enable SPI1 BUS"
|
||
default n
|
||
|
||
config BSP_SPI1_TX_USING_DMA
|
||
bool "Enable SPI1 TX DMA"
|
||
depends on BSP_USING_SPI1
|
||
default n
|
||
|
||
config BSP_SPI1_RX_USING_DMA
|
||
bool "Enable SPI1 RX DMA"
|
||
depends on BSP_USING_SPI1
|
||
select BSP_SPI1_TX_USING_DMA
|
||
default n
|
||
endif
|
||
|
||
menuconfig BSP_USING_I2C1
|
||
bool "Enable I2C1 BUS (software simulation)"
|
||
default n
|
||
select RT_USING_I2C
|
||
select RT_USING_I2C_BITOPS
|
||
select RT_USING_PIN
|
||
if BSP_USING_I2C1
|
||
config BSP_I2C1_SCL_PIN
|
||
int "i2c1 scl pin number"
|
||
range 1 216
|
||
default 24
|
||
config BSP_I2C1_SDA_PIN
|
||
int "I2C1 sda pin number"
|
||
range 1 216
|
||
default 25
|
||
endif
|
||
|
||
menuconfig BSP_USING_ADC
|
||
bool "Enable ADC"
|
||
default n
|
||
select RT_USING_ADC
|
||
if BSP_USING_ADC
|
||
config BSP_USING_ADC0
|
||
bool "Enable ADC0"
|
||
default n
|
||
|
||
config BSP_USING_ADC1
|
||
bool "Enable ADC1"
|
||
default n
|
||
|
||
config BSP_USING_ADC2
|
||
bool "Enable ADC2"
|
||
default n
|
||
endif
|
||
|
||
menuconfig BSP_USING_TIM
|
||
bool "Enable timer"
|
||
default n
|
||
select RT_USING_HWTIMER
|
||
if BSP_USING_TIM
|
||
config BSP_USING_TIM10
|
||
bool "Enable TIM10"
|
||
default n
|
||
|
||
config BSP_USING_TIM11
|
||
bool "Enable TIM11"
|
||
default n
|
||
|
||
config BSP_USING_TIM12
|
||
bool "Enable TIM13"
|
||
default n
|
||
endif
|
||
|
||
menuconfig BSP_USING_ONCHIP_RTC
|
||
bool "Enable RTC"
|
||
select RT_USING_RTC
|
||
default n
|
||
if BSP_USING_ONCHIP_RTC
|
||
choice
|
||
prompt "Select clock source"
|
||
default BSP_RTC_USING_LSE
|
||
|
||
config BSP_RTC_USING_LSE
|
||
bool "RTC USING LSE"
|
||
|
||
config BSP_RTC_USING_LSI
|
||
bool "RTC USING LSI"
|
||
endchoice
|
||
endif
|
||
|
||
config BSP_USING_WDT
|
||
bool "Enable Watchdog Timer"
|
||
select RT_USING_WDT
|
||
default n
|
||
|
||
source "../libraries/gd32_drivers/Kconfig"
|
||
|
||
endmenu
|
||
|
||
menu "Board extended module Drivers"
|
||
|
||
endmenu
|
||
|
||
endmenu
|
||
```
|
||
这个文件就是配置板子驱动的,这里可根据实际需求添加。
|
||
|
||
(2) 修改bsp/gd32/risc-v/gd32vf103v-eval/board/SConscript文件
|
||
修改后内容如下:
|
||
```python
|
||
import os
|
||
import rtconfig
|
||
from building import *
|
||
|
||
Import('SDK_LIB')
|
||
|
||
cwd = GetCurrentDir()
|
||
|
||
# add general drivers
|
||
src = Split('''
|
||
board.c
|
||
''')
|
||
|
||
path = [cwd]
|
||
|
||
startup_path_prefix = SDK_LIB
|
||
|
||
if rtconfig.PLATFORM in ['gcc']:
|
||
src += [startup_path_prefix + '/GD32VF103_Firmware_Library/RISCV/env_Eclipse/start.S']
|
||
src += [startup_path_prefix + '/GD32VF103_Firmware_Library/RISCV/env_Eclipse/entry.S']
|
||
|
||
CPPDEFINES = ['GD32VF103V_EVAL']
|
||
group = DefineGroup('Drivers', src, depend = [''], CPPPATH = path, CPPDEFINES = CPPDEFINES)
|
||
|
||
|
||
Return('group')
|
||
```
|
||
该文件主要添加board文件夹的.c文件和头文件路径。另外根据开发环境选择相应的汇编文件,和前面的libraries的SConscript语法是一样,文件的结构都是类似的,这里就没有注释了。
|
||
|
||
到这里,基本所有的依赖脚本都配置完成了。
|
||
|
||
**4.固件库修改**
|
||
(1) 修改bsp/gd32/risc-v/libraries/GD32VF103_Firmware_Library/RISCV/env_Eclipse/start.S
|
||
GCC 环境下的启动是由 entry() 函数调用的启动函数 rt_thread_startup(),所以需要修改启动文的C语言入口。
|
||
|
||
![start](./figures/start.png)
|
||
|
||
|
||
(2) 修改bsp/gd32/risc-v/libraries/GD32VF103_Firmware_Library/RISCV/env_Eclipse/GD32VF103xB.lds
|
||
GD32VF103xB.lds文件需要新增RT-Thread堆栈的位置,否则无法正常运转,新增代码如下:
|
||
```
|
||
/* section information for finsh shell */
|
||
. = ALIGN(4);
|
||
__fsymtab_start = .;
|
||
KEEP(*(FSymTab))
|
||
__fsymtab_end = .;
|
||
. = ALIGN(4);
|
||
__vsymtab_start = .;
|
||
KEEP(*(VSymTab))
|
||
__vsymtab_end = .;
|
||
. = ALIGN(4);
|
||
|
||
/* section information for initial. */
|
||
. = ALIGN(4);
|
||
__rt_init_start = .;
|
||
KEEP(*(SORT(.rti_fn*)))
|
||
__rt_init_end = .;
|
||
. = ALIGN(4);
|
||
|
||
/* section information for modules */
|
||
. = ALIGN(4);
|
||
__rtmsymtab_start = .;
|
||
KEEP(*(RTMSymTab))
|
||
__rtmsymtab_end = .;
|
||
```
|
||
|
||
![GD32VF103xB](./figures/GD32VF103xB.png)
|
||
|
||
**5.驱动修改**
|
||
一个基本的BSP中,串口是必不可少的,所以还需要编写串口驱动,这里使用的串口0作为调试串口。
|
||
|
||
板子上还有LED灯,主要编写GPIO驱动即可。
|
||
|
||
关于串口和LED的驱动可以查看源码,这里就不贴出来了。
|
||
|
||
**6.应用开发**
|
||
笔者在applications的main.c中添加LED的应用代码,
|
||
|
||
```c
|
||
#include <stdio.h>
|
||
#include <rtthread.h>
|
||
#include <rtdevice.h>
|
||
#include <board.h>
|
||
|
||
/* defined the LED1 pin: PC0 */
|
||
#define LED1_PIN GET_PIN(C, 0)
|
||
|
||
int main(void)
|
||
{
|
||
int count = 1;
|
||
|
||
/* set LED1 pin mode to output */
|
||
rt_pin_mode(LED1_PIN, PIN_MODE_OUTPUT);
|
||
|
||
while (count++)
|
||
{
|
||
rt_pin_write(LED1_PIN, PIN_HIGH);
|
||
rt_thread_mdelay(500);
|
||
rt_pin_write(LED1_PIN, PIN_LOW);
|
||
rt_thread_mdelay(500);
|
||
}
|
||
|
||
return RT_EOK;
|
||
}
|
||
```
|
||
|
||
当然,这需要GPIO驱动的支持。
|
||
|
||
**7.使用ENV编译工程**
|
||
在env中执行:scons
|
||
|
||
![scons ](./figures/scons.png)
|
||
|
||
编译成功打印信息如下:
|
||
|
||
![scons_success](./figures/scons_success.png)
|
||
|
||
**8.使用VS Code开发GD32**
|
||
在env中执行:scons --target=vsc
|
||
|
||
![vsc](./figures/vsc.png)
|
||
|
||
这样就可方便使用VSCode开发GD32了,当然,这里只是生成了c_cpp_properties.json,要想使用VS Code下载代码还需要更多的配置,下一节讲解。
|
||
|
||
### 3.3固件下载
|
||
前面使用ENV成功编译GD32VF103V-SEVAL的固件,那么接下来就是下载环节,下载方式很多,笔者这里讲解使用OpenOCD工具下载。
|
||
|
||
OpenOCD是用于对RISC-V进行下载仿真的软件工具,是一个开源软件包。当然啦,要想使用OpenOCD下载固件,需要GD-Link或者J-Link的支持。OpenOCD软件包已经放在bsp/gd32/risc-v/tools,只需要简单配置就可以,笔者这里使用VS Code开发。
|
||
|
||
**1.新建bsp/gd32/risc-v/gd32vf103v-eval/.vscode/tasks.json**
|
||
|
||
tasks.json的作用就是配置工程的编译、下载等工作。如果没有则需要创建tasks.json文件,内容如下:
|
||
```json
|
||
{
|
||
"version": "2.0.0",
|
||
"tasks": [
|
||
{
|
||
"label": "download",
|
||
"type": "shell",
|
||
"command": "../tools/OpenOCD/bin/openocd.exe",
|
||
"args": [
|
||
"-f",
|
||
"../tools/interface/openocd_gdlink_riscv.cfg",
|
||
"-c",
|
||
"program rtthread.elf exit"
|
||
]
|
||
}
|
||
]
|
||
}
|
||
```
|
||
这个文件创建了一个任务,任务名为download,用于在线下载固件。
|
||
选择“终端->运行任务…”
|
||
|
||
![svc_run_task](./figures/svc_run_task.png)
|
||
|
||
选择task中配置的命令download。
|
||
|
||
![svc_download](./figures/svc_download.png)
|
||
|
||
稍等片刻,即可下载成功。
|
||
|
||
![svc_download_success](./figures/svc_download_success.png)
|
||
|
||
|
||
固件下载成后,接上串口0,打印信息如下:
|
||
|
||
![run](./figures/run.png)
|
||
|
||
同时LED会不断闪烁。
|
||
|
||
|
||
## 4. 规范
|
||
|
||
本章节介绍 RT-Thread GD32 系列 BSP 制作与提交时应当遵守的规范 。开发人员在 BSP 制作完成后,可以根据本规范提出的检查点对制作的 BSP 进行检查,确保 BSP 在提交前有较高的质量 。
|
||
|
||
### 4.1 BSP 制作规范
|
||
|
||
GD32 BSP 的制作规范主要分为 3 个方面:工程配置,ENV 配置和 IDE 配置。在已有的 GD32 系列 BSP 的模板中,已经根据下列规范对模板进行配置。在制作新 BSP 的过程中,拷贝模板进行修改时,需要注意的是不要修改这些默认的配置。BSP 制作完成后,需要对新制作的 BSP 进行功能测试,功能正常后再进行代码提交。
|
||
|
||
下面将详细介绍 BSP 的制作规范。
|
||
|
||
#### 4.1.1 工程配置
|
||
|
||
- 遵从RT-Thread 编码规范,代码注释风格统一
|
||
- main 函数功能保持一致
|
||
- 如果有 LED 的话,main 函数里**只放一个** LED 1HZ 闪烁的程序
|
||
- 在 `rt_hw_board_init` 中需要完成堆的初始化:调用 `rt_system_heap_init`
|
||
- 默认只初始化 GPIO 驱动和 FinSH 对应的串口驱动,不使用 DMA
|
||
- 当使能板载外设驱动时,应做到不需要修改代码就能编译下载使用
|
||
- 提交前应检查 GCC/IAR 编译器直接编译或者重新生成后编译是否成功
|
||
- 使用 `dist` 命令对 BSP 进行发布,检查使用 `dist` 命令生成的工程是否可以正常使用
|
||
|
||
#### 4.1.2 ENV 配置
|
||
|
||
- 系统心跳统一设置为 1000(宏:RT_TICK_PER_SECOND)
|
||
- BSP 中需要打开调试选项中的断言(宏:RT_USING_DEBUG)
|
||
- 系统空闲线程栈大小统一设置为 256(宏:IDLE_THREAD_STACK_SIZE)
|
||
- 开启组件自动初始化(宏:RT_USING_COMPONENTS_INIT)
|
||
- 需要开启 user main 选项(宏:RT_USING_USER_MAIN)
|
||
- 默认关闭 libc(宏:RT_USING_LIBC)
|
||
- FinSH 默认只使用 MSH 模式(宏:FINSH_USING_MSH_ONLY)
|
||
|
||
### 4.2 BSP 提交规范
|
||
|
||
- 提交前请认真修改 BSP 的 README.md 文件,README.md 文件的外设支持表单只填写 BSP 支持的外设,可参考其他 BSP 填写。查看文档[《GD32系列驱动介绍》](./GD32 RISC-V系列驱动介绍.md)了解驱动分类。
|
||
- 提交 BSP 分为 2 个阶段提交:
|
||
- 第一阶段:基础 BSP 包括串口驱动和 GPIO 驱动,能运行 FinSH 控制台。完成IAR 和 GCC 编译器支持。 BSP 的 README.md 文件需要填写第二阶段要完成的驱动。
|
||
- 第二阶段:完成板载外设驱动支持,所有板载外设使用 menuconfig 配置后就能直接使用。若开发板没有板载外设,则此阶段可以不用完成。不同的驱动要分开提交,方便 review 和合并。
|
||
- 只提交 BSP 必要的文件,删除无关的中间文件,能够提交的文件请对照其他 BSP。
|
||
- 提交前要对 BSP 进行编译测试,确保在不同编译器下编译正常
|
||
- 提交前要对 BSP 进行功能测试,确保 BSP 的在提交前符合工程配置章节中的要求 |