rt-thread-official/examples/utest/testcases/kernel/sched_timed_sem_tc.c

150 lines
3.5 KiB
C

/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2024-01-25 Shell init ver.
*/
#define __RT_KERNEL_SOURCE__
#include <rtthread.h>
#include <stdlib.h>
#include "utest.h"
#define TEST_SECONDS 10
#define TEST_LOOP_TICKS (TEST_SECONDS * RT_TICK_PER_SECOND)
#define TEST_PROGRESS_COUNTS (36)
#define TEST_PROGRESS_ON (TEST_LOOP_TICKS*2/TEST_PROGRESS_COUNTS)
static struct rt_semaphore _thr_exit_sem;
static struct rt_semaphore _ipc_sem;
static rt_atomic_t _progress_counter;
static rt_base_t _timedout_failed_times = 0;
/**
* Test on timedout IPC with racing condition where timedout routine and producer
* thread may race to wakeup sleeper.
*
* This test will fork 2 thread, one producer and one consumer. The producer will
* looping and trigger the IPC on the edge of new tick arrives. The consumer will
* wait on IPC with a timedout of 1 tick.
*/
static void _wait_until_edge(void)
{
rt_tick_t entry_level, current;
rt_base_t random_latency;
entry_level = rt_tick_get();
do
{
current = rt_tick_get();
}
while (current == entry_level);
/* give a random latency for test */
random_latency = rand();
entry_level = current;
for (size_t i = 0; i < random_latency; i++)
{
current = rt_tick_get();
if (current != entry_level)
break;
}
}
static void _producer_entry(void *param)
{
for (size_t i = 0; i < TEST_LOOP_TICKS; i++)
{
_wait_until_edge();
rt_sem_release(&_ipc_sem);
if (rt_atomic_add(&_progress_counter, 1) % TEST_PROGRESS_ON == 0)
uassert_true(1);
}
rt_sem_release(&_thr_exit_sem);
return;
}
static void _consumer_entry(void *param)
{
int error;
for (size_t i = 0; i < TEST_LOOP_TICKS; i++)
{
error = rt_sem_take_interruptible(&_ipc_sem, 1);
if (error == -RT_ETIMEOUT)
{
_timedout_failed_times++;
}
else
{
if (error != RT_EOK)
uassert_true(0);
}
if (rt_atomic_add(&_progress_counter, 1) % TEST_PROGRESS_ON == 0)
uassert_true(1);
}
rt_sem_release(&_thr_exit_sem);
return;
}
static void timed_sem_tc(void)
{
rt_thread_t prod = rt_thread_create(
"prod",
_producer_entry,
(void *)0,
UTEST_THR_STACK_SIZE,
UTEST_THR_PRIORITY + 1,
4);
rt_thread_t cons = rt_thread_create(
"cons",
_consumer_entry,
(void *)0,
UTEST_THR_STACK_SIZE,
UTEST_THR_PRIORITY + 1,
100);
rt_thread_startup(prod);
rt_thread_startup(cons);
for (size_t i = 0; i < 2; i++)
{
rt_sem_take(&_thr_exit_sem, RT_WAITING_FOREVER);
}
/* Summary */
LOG_I("Total failed times: %ld(in %d)\n", _timedout_failed_times, TEST_LOOP_TICKS);
}
static rt_err_t utest_tc_init(void)
{
int *pseed = rt_malloc(sizeof(int));
srand(*(int *)pseed);
rt_free(pseed);
rt_sem_init(&_ipc_sem, "ipc", 0, RT_IPC_FLAG_PRIO);
rt_sem_init(&_thr_exit_sem, "test", 0, RT_IPC_FLAG_PRIO);
return RT_EOK;
}
static rt_err_t utest_tc_cleanup(void)
{
rt_sem_detach(&_ipc_sem);
rt_sem_detach(&_thr_exit_sem);
return RT_EOK;
}
static void testcase(void)
{
UTEST_UNIT_RUN(timed_sem_tc);
}
UTEST_TC_EXPORT(testcase, "testcases.kernel.scheduler.timed_sem", utest_tc_init, utest_tc_cleanup, TEST_SECONDS * 2);