rt-thread-official/bsp/thead-smart/drivers/ck_usart.c

1142 lines
29 KiB
C

/*
* Copyright (C) 2017-2019 Alibaba Group Holding Limited
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-08-20 zx.chen CSI Source File for usart Driver
*/
#include <csi_config.h>
#include <stdbool.h>
#include <string.h>
#include <drv_irq.h>
#include <drv_usart.h>
#include <ck_usart.h>
#include <soc.h>
#include <csi_core.h>
#define ERR_USART(errno) (CSI_DRV_ERRNO_USART_BASE | errno)
/*
* setting config may be accessed when the USART is not
* busy(USR[0]=0) and the DLAB bit(LCR[7]) is set.
*/
#define WAIT_USART_IDLE(addr)\
do { \
int32_t timecount = 0; \
while ((addr->USR & USR_UART_BUSY) && (timecount < UART_BUSY_TIMEOUT)) {\
timecount++;\
}\
if (timecount >= UART_BUSY_TIMEOUT) {\
return ERR_USART(DRV_ERROR_TIMEOUT);\
} \
} while(0)
#define USART_NULL_PARAM_CHK(para) HANDLE_PARAM_CHK(para, ERR_USART(DRV_ERROR_PARAMETER))
typedef struct
{
uint32_t base;
uint32_t irq;
usart_event_cb_t cb_event; ///< Event callback
uint32_t rx_total_num;
uint32_t tx_total_num;
uint8_t *rx_buf;
uint8_t *tx_buf;
volatile uint32_t rx_cnt;
volatile uint32_t tx_cnt;
volatile uint32_t tx_busy;
volatile uint32_t rx_busy;
uint32_t last_tx_num;
uint32_t last_rx_num;
int32_t idx;
} ck_usart_priv_t;
extern int32_t target_usart_init(int32_t idx, uint32_t *base, uint32_t *irq, void **handler);
static ck_usart_priv_t usart_instance[CONFIG_USART_NUM];
static const usart_capabilities_t usart_capabilities =
{
.asynchronous = 1, /* supports USART (Asynchronous) mode */
.synchronous_master = 0, /* supports Synchronous Master mode */
.synchronous_slave = 0, /* supports Synchronous Slave mode */
.single_wire = 0, /* supports USART Single-wire mode */
.event_tx_complete = 1, /* Transmit completed event */
.event_rx_timeout = 0, /* Signal receive character timeout event */
};
/**
\brief set the bautrate of usart.
\param[in] addr usart base to operate.
\return error code
*/
int32_t csi_usart_config_baudrate(usart_handle_t handle, uint32_t baud)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
WAIT_USART_IDLE(addr);
/* baudrate=(seriak clock freq)/(16*divisor); algorithm :rounding*/
uint32_t divisor = ((drv_get_usart_freq(usart_priv->idx) * 10) / baud) >> 4;
if ((divisor % 10) >= 5)
{
divisor = (divisor / 10) + 1;
} else
{
divisor = divisor / 10;
}
addr->LCR |= LCR_SET_DLAB;
/* DLL and DLH is lower 8-bits and higher 8-bits of divisor.*/
addr->DLL = divisor & 0xff;
addr->DLH = (divisor >> 8) & 0xff;
/*
* The DLAB must be cleared after the baudrate is setted
* to access other registers.
*/
addr->LCR &= (~LCR_SET_DLAB);
return 0;
}
/**
\brief config usart mode.
\param[in] handle usart handle to operate.
\param[in] mode \ref usart_mode_e
\return error code
*/
int32_t csi_usart_config_mode(usart_handle_t handle, usart_mode_e mode)
{
USART_NULL_PARAM_CHK(handle);
if (mode == USART_MODE_ASYNCHRONOUS)
{
return 0;
}
return ERR_USART(USART_ERROR_MODE);
}
/**
\brief config usart parity.
\param[in] handle usart handle to operate.
\param[in] parity \ref usart_parity_e
\return error code
*/
int32_t csi_usart_config_parity(usart_handle_t handle, usart_parity_e parity)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
WAIT_USART_IDLE(addr);
switch (parity)
{
case USART_PARITY_NONE:
/*CLear the PEN bit(LCR[3]) to disable parity.*/
addr->LCR &= (~LCR_PARITY_ENABLE);
break;
case USART_PARITY_ODD:
/* Set PEN and clear EPS(LCR[4]) to set the ODD parity. */
addr->LCR |= LCR_PARITY_ENABLE;
addr->LCR &= LCR_PARITY_ODD;
break;
case USART_PARITY_EVEN:
/* Set PEN and EPS(LCR[4]) to set the EVEN parity.*/
addr->LCR |= LCR_PARITY_ENABLE;
addr->LCR |= LCR_PARITY_EVEN;
break;
default:
return ERR_USART(USART_ERROR_PARITY);
}
return 0;
}
/**
\brief config usart stop bit number.
\param[in] handle usart handle to operate.
\param[in] stopbits \ref usart_stop_bits_e
\return error code
*/
int32_t csi_usart_config_stopbits(usart_handle_t handle, usart_stop_bits_e stopbit)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
WAIT_USART_IDLE(addr);
switch (stopbit)
{
case USART_STOP_BITS_1:
/* Clear the STOP bit to set 1 stop bit*/
addr->LCR &= LCR_STOP_BIT1;
break;
case USART_STOP_BITS_2:
/*
* If the STOP bit is set "1",we'd gotten 1.5 stop
* bits when DLS(LCR[1:0]) is zero, else 2 stop bits.
*/
addr->LCR |= LCR_STOP_BIT2;
break;
default:
return ERR_USART(USART_ERROR_STOP_BITS);
}
return 0;
}
/**
\brief config usart data length.
\param[in] handle usart handle to operate.
\param[in] databits \ref usart_data_bits_e
\return error code
*/
int32_t csi_usart_config_databits(usart_handle_t handle, usart_data_bits_e databits)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
WAIT_USART_IDLE(addr);
/* The word size decides by the DLS bits(LCR[1:0]), and the
* corresponding relationship between them is:
* DLS word size
* 00 -- 5 bits
* 01 -- 6 bits
* 10 -- 7 bits
* 11 -- 8 bits
*/
switch (databits)
{
case USART_DATA_BITS_5:
addr->LCR &= LCR_WORD_SIZE_5;
break;
case USART_DATA_BITS_6:
addr->LCR &= 0xfd;
addr->LCR |= LCR_WORD_SIZE_6;
break;
case USART_DATA_BITS_7:
addr->LCR &= 0xfe;
addr->LCR |= LCR_WORD_SIZE_7;
break;
case USART_DATA_BITS_8:
addr->LCR |= LCR_WORD_SIZE_8;
break;
default:
return ERR_USART(USART_ERROR_DATA_BITS);
}
return 0;
}
int32_t ck_usart_set_int_flag(usart_handle_t handle,uint32_t flag)
{
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
addr->IER |= flag;
return 0;
}
int32_t ck_usart_clr_int_flag(usart_handle_t handle,uint32_t flag)
{
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
addr->IER &= ~flag;
return 0;
}
/**
\brief get character in query mode.
\param[in] instance usart instance to operate.
\param[in] the pointer to the recieve charater.
\return error code
*/
int32_t csi_usart_getchar(usart_handle_t handle, uint8_t *ch)
{
USART_NULL_PARAM_CHK(handle);
USART_NULL_PARAM_CHK(ch);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
while (!(addr->LSR & LSR_DATA_READY));
*ch = addr->RBR;
return 0;
}
/**
\brief get character in query mode.
\param[in] instance usart instance to operate.
\param[in] the pointer to the recieve charater.
\return error code
*/
int csi_uart_getchar(usart_handle_t handle)
{
volatile int ch;
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
ch = -1;
if (addr->LSR & LSR_DATA_READY)
{
ch = addr->RBR & 0xff;
}
return ch;
}
/**
\brief transmit character in query mode.
\param[in] instance usart instance to operate.
\param[in] ch the input charater
\return error code
*/
int32_t csi_usart_putchar(usart_handle_t handle, uint8_t ch)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
uint32_t timecount = 0;
while ((!(addr->LSR & DW_LSR_TRANS_EMPTY)))
{
timecount++;
if (timecount >= UART_BUSY_TIMEOUT)
{
return ERR_USART(DRV_ERROR_TIMEOUT);
}
}
addr->THR = ch;
return 0;
}
/**
\brief interrupt service function for transmitter holding register empty.
\param[in] usart_priv usart private to operate.
*/
void ck_usart_intr_threshold_empty(int32_t idx, ck_usart_priv_t *usart_priv)
{
if (usart_priv->tx_total_num == 0)
{
return;
}
volatile int i = 500;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
if (usart_priv->tx_cnt >= usart_priv->tx_total_num)
{
addr->IER &= (~IER_THRE_INT_ENABLE);
usart_priv->last_tx_num = usart_priv->tx_total_num;
/* fix hardware bug */
while (addr->USR & USR_UART_BUSY);
i = 500;
while (i--);
usart_priv->tx_cnt = 0;
usart_priv->tx_busy = 0;
usart_priv->tx_buf = NULL;
usart_priv->tx_total_num = 0;
if (usart_priv->cb_event)
{
usart_priv->cb_event(idx, USART_EVENT_SEND_COMPLETE);
}
} else
{
/* fix hardware bug */
while (addr->USR & USR_UART_BUSY);
i = 500;
while (i--);
addr->THR = *((uint8_t *)usart_priv->tx_buf);
usart_priv->tx_cnt++;
usart_priv->tx_buf++;
}
}
/**
\brief interrupt service function for receiver data available.
\param[in] usart_priv usart private to operate.
*/
static void ck_usart_intr_recv_data(int32_t idx, ck_usart_priv_t *usart_priv)
{
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
uint8_t data = addr->RBR;
*((uint8_t *)usart_priv->rx_buf) = data;
usart_priv->rx_cnt++;
usart_priv->rx_buf++;
if (usart_priv->rx_cnt >= usart_priv->rx_total_num)
{
usart_priv->last_rx_num = usart_priv->rx_total_num;
usart_priv->rx_cnt = 0;
usart_priv->rx_buf = NULL;
usart_priv->rx_busy = 0;
usart_priv->rx_total_num = 0;
if (usart_priv->cb_event)
{
usart_priv->cb_event(idx, USART_EVENT_RECEIVE_COMPLETE);
}
}
}
/**
\brief interrupt service function for receiver line.
\param[in] usart_priv usart private to operate.
*/
static void ck_usart_intr_recv_line(int32_t idx, ck_usart_priv_t *usart_priv)
{
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
uint32_t lsr_stat = addr->LSR;
addr->IER &= (~IER_THRE_INT_ENABLE);
uint32_t timecount = 0;
while (addr->LSR & 0x1)
{
addr->RBR;
timecount++;
if (timecount >= UART_BUSY_TIMEOUT)
{
if (usart_priv->cb_event)
{
usart_priv->cb_event(idx, USART_EVENT_RX_TIMEOUT);
}
return;
}
}
/** Break Interrupt bit. This is used to indicate the detection of a
* break sequence on the serial input data.
*/
if (lsr_stat & DW_LSR_BI)
{
if (usart_priv->cb_event)
{
usart_priv->cb_event(idx, USART_EVENT_RX_BREAK);
}
return;
}
/** Framing Error bit. This is used to indicate the occurrence of a
* framing error in the receiver. A framing error occurs when the receiver
* does not detect a valid STOP bit in the received data.
*/
if (lsr_stat & DW_LSR_FE)
{
if (usart_priv->cb_event)
{
usart_priv->cb_event(idx, USART_EVENT_RX_FRAMING_ERROR);
}
return;
}
/** Framing Error bit. This is used to indicate the occurrence of a
* framing error in the receiver. A framing error occurs when the
* receiver does not detect a valid STOP bit in the received data.
*/
if (lsr_stat & DW_LSR_PE)
{
if (usart_priv->cb_event)
{
usart_priv->cb_event(idx, USART_EVENT_RX_PARITY_ERROR);
}
return;
}
/** Overrun error bit. This is used to indicate the occurrence of an overrun error.
* This occurs if a new data character was received before the previous data was read.
*/
if (lsr_stat & DW_LSR_OE)
{
if (usart_priv->cb_event)
{
usart_priv->cb_event(idx, USART_EVENT_RX_OVERFLOW);
}
return;
}
}
/**
\brief interrupt service function for character timeout.
\param[in] usart_priv usart private to operate.
*/
static void ck_usart_intr_char_timeout(int32_t idx, ck_usart_priv_t *usart_priv)
{
if ((usart_priv->rx_total_num != 0) && (usart_priv->rx_buf != NULL))
{
ck_usart_intr_recv_data(idx, usart_priv);
return;
}
if (usart_priv->cb_event)
{
usart_priv->cb_event(idx, USART_EVENT_RECEIVED);
} else
{
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
uint32_t timecount = 0;
while (addr->LSR & 0x1)
{
addr->RBR;
timecount++;
if (timecount >= UART_BUSY_TIMEOUT)
{
if (usart_priv->cb_event)
{
usart_priv->cb_event(idx, USART_EVENT_RX_TIMEOUT);
}
return;
}
}
}
}
/**
\brief the interrupt service function.
\param[in] index of usart instance.
*/
void ck_usart_irqhandler(int32_t idx)
{
ck_usart_priv_t *usart_priv = &usart_instance[idx];
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
uint8_t intr_state = addr->IIR & 0xf;
switch (intr_state)
{
case DW_IIR_THR_EMPTY: /* interrupt source:transmitter holding register empty */
ck_usart_intr_threshold_empty(idx, usart_priv);
break;
case DW_IIR_RECV_DATA: /* interrupt source:receiver data available or receiver fifo trigger level reached */
ck_usart_intr_char_timeout(idx, usart_priv);
//ck_usart_intr_recv_data(idx, usart_priv);
break;
case DW_IIR_RECV_LINE:
ck_usart_intr_recv_line(idx, usart_priv);
break;
case DW_IIR_CHAR_TIMEOUT:
ck_usart_intr_char_timeout(idx, usart_priv);
break;
default:
break;
}
}
/**
\brief Get driver capabilities.
\param[in] idx usart index
\return \ref usart_capabilities_t
*/
usart_capabilities_t csi_usart_get_capabilities(int32_t idx)
{
if (idx < 0 || idx >= CONFIG_USART_NUM)
{
usart_capabilities_t ret;
memset(&ret, 0, sizeof(usart_capabilities_t));
return ret;
}
return usart_capabilities;
}
/**
\brief Initialize USART Interface. 1. Initializes the resources needed for the USART interface 2.registers event callback function
\param[in] idx usart index
\param[in] cb_event Pointer to \ref usart_event_cb_t
\return return usart handle if success
*/
usart_handle_t csi_usart_initialize(int32_t idx, usart_event_cb_t cb_event)
{
uint32_t base = 0u;
uint32_t irq = 0u;
void *handler;
int32_t ret = target_usart_init(idx, &base, &irq, &handler);
if (ret < 0 || ret >= CONFIG_USART_NUM)
{
return NULL;
}
ck_usart_priv_t *usart_priv = &usart_instance[idx];
usart_priv->base = base;
usart_priv->irq = irq;
usart_priv->cb_event = cb_event;
usart_priv->idx = idx;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
/* enable received data available */
addr->IER = IER_RDA_INT_ENABLE | IIR_RECV_LINE_ENABLE;
drv_irq_register(usart_priv->irq, handler);
drv_irq_enable(usart_priv->irq);
return usart_priv;
}
/**
\brief De-initialize UART Interface. stops operation and releases the software resources used by the interface
\param[in] handle usart handle to operate.
\return error code
*/
int32_t csi_usart_uninitialize(usart_handle_t handle)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
drv_irq_disable(usart_priv->irq);
drv_irq_unregister(usart_priv->irq);
usart_priv->cb_event = NULL;
return 0;
}
/**
\brief config usart mode.
\param[in] handle usart handle to operate.
\param[in] baud baud rate
\param[in] mode \ref usart_mode_e
\param[in] parity \ref usart_parity_e
\param[in] stopbits \ref usart_stop_bits_e
\param[in] bits \ref usart_data_bits_e
\return error code
*/
int32_t csi_usart_config(usart_handle_t handle,
uint32_t baud,
usart_mode_e mode,
usart_parity_e parity,
usart_stop_bits_e stopbits,
usart_data_bits_e bits)
{
int32_t ret;
/* control the data_bit of the usart*/
ret = csi_usart_config_baudrate(handle, baud);
if (ret < 0)
{
return ret;
}
/* control mode of the usart*/
ret = csi_usart_config_mode(handle, mode);
if (ret < 0)
{
return ret;
}
/* control the parity of the usart*/
ret = csi_usart_config_parity(handle, parity);
if (ret < 0)
{
return ret;
}
/* control the stopbit of the usart*/
ret = csi_usart_config_stopbits(handle, stopbits);
if (ret < 0)
{
return ret;
}
ret = csi_usart_config_databits(handle, bits);
if (ret < 0)
{
return ret;
}
return 0;
}
/**
\brief Start sending data to UART transmitter,(received data is ignored).
The function is non-blocking,UART_EVENT_TRANSFER_COMPLETE is signaled when transfer completes.
csi_usart_get_status can indicates if transmission is still in progress or pending
\param[in] handle usart handle to operate.
\param[in] data Pointer to buffer with data to send to UART transmitter. data_type is : uint8_t for 1..8 data bits, uint16_t for 9..16 data bits,uint32_t for 17..32 data bits,
\param[in] num Number of data items to send
\return error code
*/
int32_t csi_usart_send(usart_handle_t handle, const void *data, uint32_t num)
{
USART_NULL_PARAM_CHK(handle);
USART_NULL_PARAM_CHK(data);
if (num == 0)
{
return ERR_USART(DRV_ERROR_PARAMETER);
}
ck_usart_priv_t *usart_priv = handle;
usart_priv->tx_buf = (uint8_t *)data;
usart_priv->tx_total_num = num;
usart_priv->tx_cnt = 0;
usart_priv->tx_busy = 1;
usart_priv->last_tx_num = 0;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
ck_usart_intr_threshold_empty(usart_priv->idx, usart_priv);
/* enable the interrupt*/
addr->IER |= IER_THRE_INT_ENABLE;
return 0;
}
/**
\brief Abort Send data to UART transmitter
\param[in] handle usart handle to operate.
\return error code
*/
int32_t csi_usart_abort_send(usart_handle_t handle)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
addr->IER &= (~IER_THRE_INT_ENABLE);
usart_priv->tx_cnt = usart_priv->tx_total_num;
usart_priv->tx_cnt = 0;
usart_priv->tx_busy = 0;
usart_priv->tx_buf = NULL;
usart_priv->tx_total_num = 0;
return 0;
}
/**
\brief Start receiving data from UART receiver.transmits the default value as specified by csi_usart_set_default_tx_value
\param[in] handle usart handle to operate.
\param[out] data Pointer to buffer for data to receive from UART receiver
\param[in] num Number of data items to receive
\return error code
*/
int32_t csi_usart_receive(usart_handle_t handle, void *data, uint32_t num)
{
USART_NULL_PARAM_CHK(handle);
USART_NULL_PARAM_CHK(data);
ck_usart_priv_t *usart_priv = handle;
usart_priv->rx_buf = (uint8_t *)data; // Save receive buffer usart
usart_priv->rx_total_num = num; // Save number of data to be received
usart_priv->rx_cnt = 0;
usart_priv->rx_busy = 1;
usart_priv->last_rx_num = 0;
return 0;
}
/**
\brief query data from UART receiver FIFO.
\param[in] handle usart handle to operate.
\param[out] data Pointer to buffer for data to receive from UART receiver
\param[in] num Number of data items to receive
\return receive fifo data num
*/
int32_t csi_usart_receive_query(usart_handle_t handle, void *data, uint32_t num)
{
USART_NULL_PARAM_CHK(handle);
USART_NULL_PARAM_CHK(data);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
int32_t recv_num = 0;
uint8_t *dest = (uint8_t *)data;
while (addr->LSR & 0x1)
{
*dest++ = addr->RBR;
recv_num++;
if (recv_num >= num)
{
break;
}
}
return recv_num;
}
/**
\brief Abort Receive data from UART receiver
\param[in] handle usart handle to operate.
\return error code
*/
int32_t csi_usart_abort_receive(usart_handle_t handle)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
usart_priv->rx_cnt = usart_priv->rx_total_num;
return 0;
}
/**
\brief Start sending/receiving data to/from UART transmitter/receiver.
\param[in] handle usart handle to operate.
\param[in] data_out Pointer to buffer with data to send to USART transmitter
\param[out] data_in Pointer to buffer for data to receive from USART receiver
\param[in] num Number of data items to transfer
\return error code
*/
int32_t csi_usart_transfer(usart_handle_t handle, const void *data_out, void *data_in, uint32_t num)
{
USART_NULL_PARAM_CHK(handle);
return ERR_USART(DRV_ERROR_UNSUPPORTED);
}
/**
\brief abort sending/receiving data to/from USART transmitter/receiver.
\param[in] handle usart handle to operate.
\return error code
*/
int32_t csi_usart_abort_transfer(usart_handle_t handle)
{
USART_NULL_PARAM_CHK(handle);
return ERR_USART(DRV_ERROR_UNSUPPORTED);
}
/**
\brief Get USART status.
\param[in] handle usart handle to operate.
\return USART status \ref usart_status_t
*/
usart_status_t csi_usart_get_status(usart_handle_t handle)
{
usart_status_t usart_status;
memset(&usart_status, 0, sizeof(usart_status_t));
if (handle == NULL)
{
return usart_status;
}
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
uint32_t line_status_reg = addr->LSR;
usart_status.tx_busy = usart_priv->tx_busy;
usart_status.rx_busy = usart_priv->rx_busy;
if (line_status_reg & DW_LSR_BI)
{
usart_status.rx_break = 1;
}
if (line_status_reg & DW_LSR_FE)
{
usart_status.rx_framing_error = 1;
}
if (line_status_reg & DW_LSR_PE)
{
usart_status.rx_parity_error = 1;
}
usart_status.tx_enable = 1;
usart_status.rx_enable = 1;
return usart_status;
}
/**
\brief control the transmit.
\param[in] handle usart handle to operate.
\param[in] 1 - enable the transmitter. 0 - disable the transmitter
\return error code
*/
int32_t csi_usart_control_tx(usart_handle_t handle, uint32_t enable)
{
USART_NULL_PARAM_CHK(handle);
return 0;
}
/**
\brief control the receive.
\param[in] handle usart handle to operate.
\param[in] 1 - enable the receiver. 0 - disable the receiver
\return error code
*/
int32_t csi_usart_control_rx(usart_handle_t handle, uint32_t enable)
{
USART_NULL_PARAM_CHK(handle);
return 0;
}
/**
\brief control the break.
\param[in] handle usart handle to operate.
\param[in] 1- Enable continuous Break transmission,0 - disable continuous Break transmission
\return error code
*/
int32_t csi_usart_control_break(usart_handle_t handle, uint32_t enable)
{
USART_NULL_PARAM_CHK(handle);
return ERR_USART(DRV_ERROR_UNSUPPORTED);
}
/**
\brief flush receive/send data.
\param[in] handle usart handle to operate.
\param[in] type \ref usart_flush_type_e.
\return error code
*/
int32_t csi_usart_flush(usart_handle_t handle, usart_flush_type_e type)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
uint32_t timecount = 0;
if (type == USART_FLUSH_WRITE) {
while ((!(addr->LSR & DW_LSR_TEMT)))
{
timecount++;
if (timecount >= UART_BUSY_TIMEOUT)
{
return ERR_USART(DRV_ERROR_TIMEOUT);
}
}
} else if (type == USART_FLUSH_READ)
{
while (addr->LSR & 0x1) {
timecount++;
if (timecount >= UART_BUSY_TIMEOUT)
{
return ERR_USART(DRV_ERROR_TIMEOUT);
}
}
} else
{
return ERR_USART(DRV_ERROR_PARAMETER);
}
return 0;
}
/**
\brief set interrupt mode.
\param[in] handle usart handle to operate.
\param[in] type \ref usart_intr_type_e.
\param[in] flag 0-OFF, 1-ON.
\return error code
*/
int32_t csi_usart_set_interrupt(usart_handle_t handle, usart_intr_type_e type, int32_t flag)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
ck_usart_reg_t *addr = (ck_usart_reg_t *)(usart_priv->base);
switch (type)
{
case USART_INTR_WRITE:
if (flag == 0)
{
addr->IER &= ~IER_THRE_INT_ENABLE;
} else if (flag == 1)
{
addr->IER |= IER_THRE_INT_ENABLE;
} else
{
return ERR_USART(DRV_ERROR_PARAMETER);
}
break;
case USART_INTR_READ:
if (flag == 0)
{
addr->IER &= ~IER_RDA_INT_ENABLE;
} else if (flag == 1)
{
addr->IER |= IER_RDA_INT_ENABLE;
} else
{
return ERR_USART(DRV_ERROR_PARAMETER);
}
break;
default:
return ERR_USART(DRV_ERROR_PARAMETER);
}
return 0;
}
/**
\brief Get usart send data count.
\param[in] handle usart handle to operate.
\return number of currently transmitted data bytes
*/
uint32_t csi_usart_get_tx_count(usart_handle_t handle)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
if (usart_priv->tx_busy)
{
return usart_priv->tx_cnt;
} else
{
return usart_priv->last_tx_num;
}
}
/**
\brief Get usart receive data count.
\param[in] handle usart handle to operate.
\return number of currently received data bytes
*/
uint32_t csi_usart_get_rx_count(usart_handle_t handle)
{
USART_NULL_PARAM_CHK(handle);
ck_usart_priv_t *usart_priv = handle;
if (usart_priv->rx_busy)
{
return usart_priv->rx_cnt;
} else
{
return usart_priv->last_rx_num;
}
}
/**
\brief control usart power.
\param[in] handle usart handle to operate.
\param[in] state power state.\ref csi_power_stat_e.
\return error code
*/
int32_t csi_usart_power_control(usart_handle_t handle, csi_power_stat_e state)
{
USART_NULL_PARAM_CHK(handle);
return ERR_USART(DRV_ERROR_UNSUPPORTED);
}
/**
\brief config usart flow control type.
\param[in] handle usart handle to operate.
\param[in] flowctrl_type flow control type.\ref usart_flowctrl_type_e.
\return error code
*/
int32_t csi_usart_config_flowctrl(usart_handle_t handle,
usart_flowctrl_type_e flowctrl_type)
{
USART_NULL_PARAM_CHK(handle);
switch (flowctrl_type)
{
case USART_FLOWCTRL_CTS:
return ERR_USART(DRV_ERROR_UNSUPPORTED);
case USART_FLOWCTRL_RTS:
return ERR_USART(DRV_ERROR_UNSUPPORTED);
case USART_FLOWCTRL_CTS_RTS:
return ERR_USART(DRV_ERROR_UNSUPPORTED);
break;
case USART_FLOWCTRL_NONE:
return ERR_USART(DRV_ERROR_UNSUPPORTED);
break;
default:
return ERR_USART(DRV_ERROR_UNSUPPORTED);
}
return 0;
}
/**
\brief config usart clock Polarity and Phase.
\param[in] handle usart handle to operate.
\param[in] cpol Clock Polarity.\ref usart_cpol_e.
\param[in] cpha Clock Phase.\ref usart_cpha_e.
\return error code
*/
int32_t csi_usart_config_clock(usart_handle_t handle, usart_cpol_e cpol, usart_cpha_e cpha)
{
USART_NULL_PARAM_CHK(handle);
return ERR_USART(DRV_ERROR_UNSUPPORTED);
}