rt-thread-official/bsp/hpmicro/libraries/drivers/drv_enet.c

624 lines
21 KiB
C

/*
* Copyright (c) 2021-2024 HPMicro
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Change Logs:
* Date Author Notes
* 2022-01-11 HPMicro First version
* 2022-07-10 HPMicro Driver optimization for multiple instances
*/
#include <rtdevice.h>
#ifdef BSP_USING_ETH
#include <rtdbg.h>
#include "drv_enet.h"
#include "hpm_otp_drv.h"
#ifdef BSP_USING_ETH0
ATTR_PLACE_AT_NONCACHEABLE_WITH_ALIGNMENT(ENET_SOC_DESC_ADDR_ALIGNMENT)
__RW enet_rx_desc_t enet0_dma_rx_desc_tab[ENET0_RX_BUFF_COUNT]; /* Ethernet0 Rx DMA Descriptor */
ATTR_PLACE_AT_NONCACHEABLE_WITH_ALIGNMENT(ENET_SOC_DESC_ADDR_ALIGNMENT)
__RW enet_tx_desc_t enet0_dma_tx_desc_tab[ENET0_TX_BUFF_COUNT]; /* Ethernet0 Tx DMA Descriptor */
ATTR_PLACE_AT_WITH_ALIGNMENT(".fast_ram", ENET_SOC_BUFF_ADDR_ALIGNMENT)
__RW uint8_t enet0_rx_buff[ENET0_RX_BUFF_COUNT][ENET0_RX_BUFF_SIZE]; /* Ethernet0 Receive Buffer */
ATTR_PLACE_AT_WITH_ALIGNMENT(".fast_ram", ENET_SOC_BUFF_ADDR_ALIGNMENT)
__RW uint8_t enet0_tx_buff[ENET0_TX_BUFF_COUNT][ENET0_TX_BUFF_SIZE]; /* Ethernet0 Transmit Buffer */
struct eth_device eth0_dev;
static enet_device enet0_dev;
static enet_buff_config_t enet0_rx_buff_cfg = {.buffer = (uint32_t)enet0_rx_buff,
.count = ENET0_RX_BUFF_COUNT,
.size = ENET0_RX_BUFF_SIZE
};
static enet_buff_config_t enet0_tx_buff_cfg = {.buffer = (uint32_t)enet0_tx_buff,
.count = ENET0_TX_BUFF_COUNT,
.size = ENET0_TX_BUFF_SIZE
};
#if __USE_ENET_PTP
static enet_ptp_ts_update_t ptp_timestamp0 = {0, 0};
static enet_ptp_config_t ptp_config0 = {.timestamp_rollover_mode = enet_ts_dig_rollover_control,
.update_method = enet_ptp_time_fine_update,
.addend = 0xffffffff,
};
#endif
static hpm_enet_t enet0 = {.name = "E0",
.base = HPM_ENET0,
.irq_num = IRQn_ENET0,
.inf = BOARD_ENET0_INF,
.eth_dev = &eth0_dev,
.enet_dev = &enet0_dev,
.rx_buff_cfg = &enet0_rx_buff_cfg,
.tx_buff_cfg = &enet0_tx_buff_cfg,
.dma_rx_desc_tab = enet0_dma_rx_desc_tab,
.dma_tx_desc_tab = enet0_dma_tx_desc_tab,
#if !BOARD_ENET0_INF
.int_refclk = BOARD_ENET0_INT_REF_CLK,
#else
.tx_delay = BOARD_ENET0_TX_DLY,
.rx_delay = BOARD_ENET0_RX_DLY,
#endif
#if __USE_ENET_PTP
.ptp_clk_src = BOARD_ENET0_PTP_CLOCK,
.ptp_config = &ptp_config0,
.ptp_timestamp = &ptp_timestamp0
#endif
};
#endif
mac_init_t mac_init[] = {
{MAC0_ADDR0, MAC0_ADDR1, MAC0_ADDR2, MAC0_ADDR3, MAC0_ADDR4, MAC0_ADDR5},
{MAC1_ADDR0, MAC1_ADDR1, MAC1_ADDR2, MAC1_ADDR3, MAC1_ADDR4, MAC1_ADDR5}
};
#ifdef BSP_USING_ETH1
ATTR_PLACE_AT_NONCACHEABLE_WITH_ALIGNMENT(ENET_SOC_DESC_ADDR_ALIGNMENT)
__RW enet_rx_desc_t enet1_dma_rx_desc_tab[ENET1_RX_BUFF_COUNT]; /* Ethernet1 Rx DMA Descriptor */
ATTR_PLACE_AT_NONCACHEABLE_WITH_ALIGNMENT(ENET_SOC_DESC_ADDR_ALIGNMENT)
__RW enet_tx_desc_t enet1_dma_tx_desc_tab[ENET1_TX_BUFF_COUNT]; /* Ethernet1 Tx DMA Descriptor */
ATTR_PLACE_AT_WITH_ALIGNMENT(".fast_ram", ENET_SOC_BUFF_ADDR_ALIGNMENT)
__RW uint8_t enet1_rx_buff[ENET1_RX_BUFF_COUNT][ENET1_RX_BUFF_SIZE]; /* Ethernet1 Receive Buffer */
ATTR_PLACE_AT_WITH_ALIGNMENT(".fast_ram", ENET_SOC_BUFF_ADDR_ALIGNMENT)
__RW uint8_t enet1_tx_buff[ENET1_TX_BUFF_COUNT][ENET1_TX_BUFF_SIZE]; /* Ethernet1 Transmit Buffer */
struct eth_device eth1_dev;
static enet_device enet1_dev;
static enet_buff_config_t enet1_rx_buff_cfg = {.buffer = (uint32_t)enet1_rx_buff,
.count = ENET1_RX_BUFF_COUNT,
.size = ENET1_RX_BUFF_SIZE
};
static enet_buff_config_t enet1_tx_buff_cfg = {.buffer = (uint32_t)enet1_tx_buff,
.count = ENET1_TX_BUFF_COUNT,
.size = ENET1_TX_BUFF_SIZE
};
#if __USE_ENET_PTP
static enet_ptp_ts_update_t ptp_timestamp1 = {0, 0};
static enet_ptp_config_t ptp_config1 = {.timestamp_rollover_mode = enet_ts_dig_rollover_control,
.update_method = enet_ptp_time_fine_update,
.addend = 0xffffffff,
};
#endif
static hpm_enet_t enet1 = {.name = "E1",
.base = HPM_ENET1,
.irq_num = IRQn_ENET1,
.inf = BOARD_ENET1_INF,
.eth_dev = &eth1_dev,
.enet_dev = &enet1_dev,
.rx_buff_cfg = &enet1_rx_buff_cfg,
.tx_buff_cfg = &enet1_tx_buff_cfg,
.dma_rx_desc_tab = enet1_dma_rx_desc_tab,
.dma_tx_desc_tab = enet1_dma_tx_desc_tab,
#if !BOARD_ENET1_INF
.int_refclk = BOARD_ENET1_INT_REF_CLK,
#else
.tx_delay = BOARD_ENET1_TX_DLY,
.rx_delay = BOARD_ENET1_RX_DLY,
#endif
#if __USE_ENET_PTP
.ptp_clk_src = BOARD_ENET1_PTP_CLOCK,
.ptp_config = &ptp_config1,
.ptp_timestamp = &ptp_timestamp1
#endif
};
#endif
static hpm_enet_t *s_geths[] = {
#ifdef BSP_USING_ETH0
&enet0,
#endif
#ifdef BSP_USING_ETH1
&enet1
#endif
};
ATTR_WEAK uint8_t enet_get_mac_address(ENET_Type *ptr, uint8_t *mac)
{
uint32_t macl, mach;
uint8_t i;
i = (ptr == HPM_ENET0) ? 0 : 1;
if (mac == NULL) {
return ENET_MAC_ADDR_PARA_ERROR;
}
/* load mac address from OTP MAC area */
if (i == 0) {
macl = otp_read_from_shadow(OTP_SOC_MAC0_IDX);
mach = otp_read_from_shadow(OTP_SOC_MAC0_IDX + 1);
mac[0] = (macl >> 0) & 0xff;
mac[1] = (macl >> 8) & 0xff;
mac[2] = (macl >> 16) & 0xff;
mac[3] = (macl >> 24) & 0xff;
mac[4] = (mach >> 0) & 0xff;
mac[5] = (mach >> 8) & 0xff;
} else {
macl = otp_read_from_shadow(OTP_SOC_MAC0_IDX + 1);
mach = otp_read_from_shadow(OTP_SOC_MAC0_IDX + 2);
mac[0] = (macl >> 16) & 0xff;
mac[1] = (macl >> 24) & 0xff;
mac[2] = (mach >> 0) & 0xff;
mac[3] = (mach >> 8) & 0xff;
mac[4] = (mach >> 16) & 0xff;
mac[5] = (mach >> 24) & 0xff;
}
if (!IS_MAC_INVALID(mac)) {
return ENET_MAC_ADDR_FROM_OTP_MAC;
}
/* load MAC address from MACRO definitions */
memcpy(mac, &mac_init[i], ENET_MAC);
return ENET_MAC_ADDR_FROM_MACRO;
}
static rt_err_t hpm_enet_init(enet_device *init)
{
if (init->media_interface == enet_inf_rmii)
{
/* Initialize reference clock */
board_init_enet_rmii_reference_clock(init->instance, init->int_refclk);
}
#if ENET_SOC_RGMII_EN
/* Set RGMII clock delay */
if (init->media_interface == enet_inf_rgmii)
{
enet_rgmii_enable_clock(init->instance);
enet_rgmii_set_clock_delay(init->instance, init->tx_delay, init->rx_delay);
}
#endif
/* Get the default interrupt config */
enet_get_default_interrupt_config(init->instance, &init->int_config);
/* Initialize eth controller */
enet_controller_init(init->instance, init->media_interface, &init->desc, &init->mac_config, &init->int_config);
/* Disable LPI interrupt */
enet_disable_lpi_interrupt(init->instance);
#if __USE_ENET_PTP
/* initialize PTP Clock */
board_init_enet_ptp_clock(init->instance);
/* initialize Ethernet PTP Module */
init->ptp_config.ssinc = ENET_ONE_SEC_IN_NANOSEC / clock_get_frequency(init->ptp_clk_src);
enet_init_ptp(init->instance, &init->ptp_config);
/* set the initial timestamp */
enet_set_ptp_timestamp(init->instance, &init->ptp_timestamp);
#endif
/* enable irq */
intc_m_enable_irq(init->irq_number);
return RT_EOK;
}
static rt_err_t rt_hpm_eth_init(rt_device_t dev)
{
uint8_t mac[ENET_MAC];
enet_device *enet_dev = (enet_device *)dev->user_data;
/* Initialize GPIOs */
board_init_enet_pins(enet_dev->instance);
/* Reset an enet PHY */
board_reset_enet_phy(enet_dev->instance);
/* Get MAC address */
enet_get_mac_address(enet_dev->instance, mac);
/* Set mac0 address */
enet_dev->mac_config.mac_addr_high[0] = mac[5] << 8 | mac[4];
enet_dev->mac_config.mac_addr_low[0] = mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0];
enet_dev->mac_config.valid_max_count = 1;
/* Initialize MAC and DMA */
if (hpm_enet_init(enet_dev) == 0)
{
LOG_D("Ethernet control initialize successfully\n");
return RT_EOK;
}
else
{
LOG_D("Ethernet control initialize unsuccessfully\n");
return -RT_ERROR;
}
}
static rt_err_t rt_hpm_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_hpm_eth_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_ssize_t rt_hpm_eth_read(rt_device_t dev, rt_off_t pos, void * buffer, rt_size_t size)
{
return 0;
}
static rt_ssize_t rt_hpm_eth_write(rt_device_t dev, rt_off_t pos, const void * buffer, rt_size_t size)
{
return 0;
}
static rt_err_t rt_hpm_eth_control(rt_device_t dev, int cmd, void * args)
{
uint8_t *mac = (uint8_t *)args;
enet_device *enet_dev = (enet_device *)dev->user_data;
switch (cmd)
{
case NIOCTL_GADDR:
if (args != NULL)
{
enet_get_mac_address(enet_dev->instance, (uint8_t *)mac);
SMEMCPY(args, mac, ENET_MAC);
}
else
{
return -RT_ERROR;
}
break;
default:
break;
}
return RT_EOK;
}
static rt_err_t rt_hpm_eth_tx(rt_device_t dev, struct pbuf * p)
{
rt_err_t ret = RT_ERROR;
uint32_t status;
enet_device *enet_dev = (enet_device *)dev->user_data;
uint32_t tx_buff_size = enet_dev->desc.tx_buff_cfg.size;
struct pbuf *q;
uint8_t *buffer;
__IO enet_tx_desc_t *dma_tx_desc;
uint32_t frame_length = 0;
uint32_t buffer_offset = 0;
uint32_t bytes_left_to_copy = 0;
uint32_t payload_offset = 0;
enet_tx_desc_t *tx_desc_list_cur = enet_dev->desc.tx_desc_list_cur;
dma_tx_desc = tx_desc_list_cur;
buffer = (uint8_t *)(dma_tx_desc->tdes2_bm.buffer1);
buffer_offset = 0;
rt_tick_t t_start;
/* copy frame from pbufs to driver buffers */
for (q = p; q != NULL; q = q->next)
{
/* Get bytes in current lwIP buffer */
bytes_left_to_copy = q->len;
payload_offset = 0;
/* Check if the length of data to copy is bigger than Tx buffer size*/
while ((bytes_left_to_copy + buffer_offset) > tx_buff_size)
{
/* check DMA own status within timeout */
t_start = rt_tick_get();
while (dma_tx_desc->tdes0_bm.own)
{
if (rt_tick_get() - t_start > RT_TICK_PER_SECOND / 100)
{
return ERR_TIMEOUT;
}
}
/* Copy data to Tx buffer*/
SMEMCPY((uint8_t *)((uint8_t *)buffer + buffer_offset),
(uint8_t *)((uint8_t *)q->payload + payload_offset),
tx_buff_size - buffer_offset);
/* Point to next descriptor */
dma_tx_desc = (enet_tx_desc_t *)(dma_tx_desc->tdes3_bm.next_desc);
/* Check if the buffer is available */
if (dma_tx_desc->tdes0_bm.own != 0)
{
LOG_E("DMA tx desc buffer is not valid\n");
return ERR_BUF;
}
buffer = (uint8_t *)(dma_tx_desc->tdes2_bm.buffer1);
bytes_left_to_copy = bytes_left_to_copy - (tx_buff_size - buffer_offset);
payload_offset = payload_offset + (tx_buff_size - buffer_offset);
frame_length = frame_length + (tx_buff_size - buffer_offset);
buffer_offset = 0;
}
/* check DMA own status within timeout */
t_start = rt_tick_get();
while (dma_tx_desc->tdes0_bm.own)
{
if (rt_tick_get() - t_start > RT_TICK_PER_SECOND / 100)
{
return ERR_TIMEOUT;
}
}
/* Copy the remaining bytes */
buffer = (void *)sys_address_to_core_local_mem(0, (uint32_t)buffer);
SMEMCPY((uint8_t *)((uint8_t *)buffer + buffer_offset),
(uint8_t *)((uint8_t *)q->payload + payload_offset),
bytes_left_to_copy);
buffer_offset = buffer_offset + bytes_left_to_copy;
frame_length = frame_length + bytes_left_to_copy;
}
/* Prepare transmit descriptors to give to DMA */
LOG_D("The length of the transmitted frame: %d\n", frame_length);
frame_length += 4;
status = enet_prepare_transmission_descriptors(enet_dev->instance, &enet_dev->desc.tx_desc_list_cur, frame_length, enet_dev->desc.tx_buff_cfg.size);
if (status != ENET_SUCCESS)
{
LOG_E("Ethernet controller transmit unsuccessfully: %d\n", status);
}
return ERR_OK;
}
static struct pbuf *rt_hpm_eth_rx(rt_device_t dev)
{
struct pbuf *p = NULL, *q = NULL;
enet_device *enet_dev = (enet_device *)dev->user_data;
uint32_t rx_buff_size = enet_dev->desc.rx_buff_cfg.size;
uint16_t len = 0;
uint8_t *buffer;
enet_frame_t frame = {0, 0, 0};
enet_rx_desc_t *dma_rx_desc;
uint32_t buffer_offset = 0;
uint32_t payload_offset = 0;
uint32_t bytes_left_to_copy = 0;
uint32_t i = 0;
/* Get a received frame */
frame = enet_get_received_frame_interrupt(&enet_dev->desc.rx_desc_list_cur,
&enet_dev->desc.rx_frame_info,
enet_dev->desc.rx_buff_cfg.count);
/* Obtain the size of the packet and put it into the "len" variable. */
len = frame.length;
buffer = (uint8_t *)frame.buffer;
LOG_D("The current received frame length : %d\n", len);
if (len > 0)
{
/* allocate a pbuf chain of pbufs from the Lwip buffer pool */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
if (p != NULL)
{
dma_rx_desc = frame.rx_desc;
buffer_offset = 0;
for (q = p; q != NULL; q = q->next)
{
bytes_left_to_copy = q->len;
payload_offset = 0;
/* Check if the length of bytes to copy in current pbuf is bigger than Rx buffer size*/
while ((bytes_left_to_copy + buffer_offset) > rx_buff_size)
{
/* Copy data to pbuf */
SMEMCPY((uint8_t *)((uint8_t *)q->payload + payload_offset), (uint8_t *)((uint8_t *)buffer + buffer_offset), (rx_buff_size - buffer_offset));
/* Point to next descriptor */
dma_rx_desc = (enet_rx_desc_t *)(dma_rx_desc->rdes3_bm.next_desc);
buffer = (uint8_t *)(dma_rx_desc->rdes2_bm.buffer1);
bytes_left_to_copy = bytes_left_to_copy - (rx_buff_size - buffer_offset);
payload_offset = payload_offset + (rx_buff_size - buffer_offset);
buffer_offset = 0;
}
/* Copy remaining data in pbuf */
q->payload = (void *)sys_address_to_core_local_mem(0, (uint32_t)buffer);
buffer_offset = buffer_offset + bytes_left_to_copy;
}
}
/* Release descriptors to DMA */
/* Point to first descriptor */
dma_rx_desc = frame.rx_desc;
/* Set Own bit in Rx descriptors: gives the buffers back to DMA */
for (i = 0; i < enet_dev->desc.rx_frame_info.seg_count; i++)
{
dma_rx_desc->rdes0_bm.own = 1;
dma_rx_desc = (enet_rx_desc_t*)(dma_rx_desc->rdes3_bm.next_desc);
}
/* Clear Segment_Count */
enet_dev->desc.rx_frame_info.seg_count = 0;
}
/* Resume Rx Process */
if (ENET_DMA_STATUS_RU_GET(enet_dev->instance->DMA_STATUS))
{
enet_dev->instance->DMA_STATUS = ENET_DMA_STATUS_RU_MASK;
enet_dev->instance->DMA_RX_POLL_DEMAND = 1;
}
return p;
}
static void eth_rx_callback(struct eth_device* dev)
{
rt_err_t result;
result = eth_device_ready(dev);
if (result != RT_EOK)
{
LOG_I("Receive callback error = %d\n", result);
}
}
void isr_enet(hpm_enet_t *obj)
{
uint32_t status;
status = obj->base->DMA_STATUS;
if (ENET_DMA_STATUS_GLPII_GET(status)) {
obj->base->LPI_CSR;
}
if (ENET_DMA_STATUS_RI_GET(status)) {
obj->base->DMA_STATUS |= ENET_DMA_STATUS_RI_SET(ENET_DMA_STATUS_RI_GET(status));
eth_rx_callback(obj->eth_dev);
}
}
#ifdef BSP_USING_ETH0
void isr_enet0(void)
{
isr_enet(&enet0);
}
SDK_DECLARE_EXT_ISR_M(IRQn_ENET0, isr_enet0)
#endif
#ifdef BSP_USING_ETH1
void isr_enet1(void)
{
isr_enet(&enet1);
}
SDK_DECLARE_EXT_ISR_M(IRQn_ENET1, isr_enet1)
#endif
int rt_hw_eth_init(void)
{
rt_err_t err = RT_ERROR;
for (uint32_t i = 0; i < ARRAY_SIZE(s_geths); i++)
{
/* Clear memory */
memset((uint8_t *)s_geths[i]->dma_rx_desc_tab, 0x00, sizeof(enet_rx_desc_t) * s_geths[i]->rx_buff_cfg->count);
memset((uint8_t *)s_geths[i]->dma_tx_desc_tab, 0x00, sizeof(enet_tx_desc_t) * s_geths[i]->tx_buff_cfg->count);
memset((uint8_t *)s_geths[i]->rx_buff_cfg->buffer, 0x00, sizeof(s_geths[i]->rx_buff_cfg->size));
memset((uint8_t *)s_geths[i]->tx_buff_cfg->buffer, 0x00, sizeof(s_geths[i]->tx_buff_cfg->size));
/* Set list heads */
s_geths[i]->enet_dev->desc.tx_desc_list_head = (enet_tx_desc_t *)core_local_mem_to_sys_address(BOARD_RUNNING_CORE, (uint32_t)s_geths[i]->dma_tx_desc_tab);
s_geths[i]->enet_dev->desc.rx_desc_list_head = (enet_rx_desc_t *)core_local_mem_to_sys_address(BOARD_RUNNING_CORE, (uint32_t)s_geths[i]->dma_rx_desc_tab);
s_geths[i]->enet_dev->desc.tx_buff_cfg.buffer = core_local_mem_to_sys_address(BOARD_RUNNING_CORE, s_geths[i]->tx_buff_cfg->buffer);
s_geths[i]->enet_dev->desc.tx_buff_cfg.count = s_geths[i]->tx_buff_cfg->count;
s_geths[i]->enet_dev->desc.tx_buff_cfg.size = s_geths[i]->tx_buff_cfg->size;
s_geths[i]->enet_dev->desc.rx_buff_cfg.buffer = core_local_mem_to_sys_address(BOARD_RUNNING_CORE, s_geths[i]->rx_buff_cfg->buffer);
s_geths[i]->enet_dev->desc.rx_buff_cfg.count = s_geths[i]->rx_buff_cfg->count;
s_geths[i]->enet_dev->desc.rx_buff_cfg.size = s_geths[i]->rx_buff_cfg->size;
/* Set DMA PBL */
s_geths[i]->enet_dev->mac_config.dma_pbl = board_get_enet_dma_pbl(s_geths[i]->base);
/* Set instance */
s_geths[i]->enet_dev->instance = s_geths[i]->base;
/* Set media interface */
s_geths[i]->enet_dev->media_interface = s_geths[i]->inf ? enet_inf_rgmii : enet_inf_rmii;
if (s_geths[i]->enet_dev->media_interface == enet_inf_rmii)
{
/* Set refclk */
s_geths[i]->enet_dev->int_refclk = s_geths[i]->int_refclk;
} else {
/* Set TX/RX delay */
s_geths[i]->enet_dev->tx_delay = s_geths[i]->tx_delay;
s_geths[i]->enet_dev->rx_delay = s_geths[i]->rx_delay;
}
#if __USE_ENET_PTP
/* Set PTP function */
s_geths[i]->enet_dev->ptp_clk_src = s_geths[i]->ptp_clk_src;
s_geths[i]->enet_dev->ptp_config = *s_geths[i]->ptp_config;
s_geths[i]->enet_dev->ptp_timestamp = *s_geths[i]->ptp_timestamp;
#endif
/* Set the irq number */
s_geths[i]->enet_dev->irq_number = s_geths[i]->irq_num;
/* Set the parent parameters */
s_geths[i]->eth_dev->parent.init = rt_hpm_eth_init;
s_geths[i]->eth_dev->parent.open = rt_hpm_eth_open;
s_geths[i]->eth_dev->parent.close = rt_hpm_eth_close;
s_geths[i]->eth_dev->parent.read = rt_hpm_eth_read;
s_geths[i]->eth_dev->parent.write = rt_hpm_eth_write;
s_geths[i]->eth_dev->parent.control = rt_hpm_eth_control;
s_geths[i]->eth_dev->parent.user_data = s_geths[i]->enet_dev;
s_geths[i]->eth_dev->eth_rx = rt_hpm_eth_rx;
s_geths[i]->eth_dev->eth_tx = rt_hpm_eth_tx;
err = eth_device_init(s_geths[i]->eth_dev, s_geths[i]->name);
if (RT_EOK == err)
{
LOG_D("Ethernet device %d initialize successfully!\n", i);
}
else
{
LOG_D("Ethernet device %d initialize unsuccessfully!\n");
return err;
}
}
return err;
}
INIT_DEVICE_EXPORT(rt_hw_eth_init);
#endif /* BSP_USING_ETH */