rt-thread-official/bsp/efm32/drv_usart.c

1658 lines
47 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2010-12-22 onelife Initial creation for EFM32
* 2011-01-17 onelife Merge with serial.c
* 2011-05-06 onelife Add sync mode (SPI) support
* 2011-06-14 onelife Fix a bug of TX by DMA
* 2011-06-16 onelife Modify init function for EFM32 library v2.0.0
* upgrading
* 2011-07-07 onelife Modify write function to avoid sleep in ISR
* 2011-07-26 onelife Add lock (semaphore) to prevent simultaneously
* access
* 2011-11-29 onelife Modify init function for EFM32 library v2.2.2
* upgrading
* 2011-12-09 onelife Add giant gecko support
* 2011-12-09 onelife Add UART module support
* 2011-12-20 onelife Add 9-bit SPI mode support
* 2011-12-20 onelife Change SPI write format (same as SPI read)
* 2011-12-20 onelife Change USART status format
* 2011-12-27 onelife Utilize "USART_PRESENT", "USART_COUNT",
* "UART_PRESENT" and "UART_COUNT"
* 2012-05-16 onelife Fix a bug in rt_hw_usart_init()
*/
/***************************************************************************//**
* @addtogroup efm32
* @{
******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "board.h"
#include "hdl_interrupt.h"
#include "drv_usart.h"
#if (defined(RT_USING_USART0) || defined(RT_USING_USART1) || \
defined(RT_USING_USART2) || defined(RT_USING_UART0) || \
defined(RT_USING_UART1))
#if ((defined(RT_USING_USART0) || defined(RT_USING_USART1) || \
defined(RT_USING_USART2)) && !defined(USART_PRESENT))
#error "USART module is not available"
#endif
#if ((defined(RT_USING_UART0) || defined(RT_USING_UART1)) && \
!defined(UART_PRESENT))
#error "UART module is not available"
#endif
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
#ifdef RT_USART_DEBUG
#define usart_debug(format,args...) rt_kprintf(format, ##args)
#else
#define usart_debug(format,args...)
#endif
/* Private variables ---------------------------------------------------------*/
#ifdef RT_USING_USART0
#if (RT_USING_USART0 >= EFM32_USART_LOCATION_COUNT)
#error "Wrong location number"
#endif
struct rt_device usart0_device;
static struct rt_semaphore usart0_lock;
#endif
#ifdef RT_USING_USART1
#if (USART_COUNT <= 1)
#error "Wrong unit number"
#endif
#if (RT_USING_USART1 >= EFM32_USART_LOCATION_COUNT)
#error "Wrong location number"
#endif
struct rt_device usart1_device;
static struct rt_semaphore usart1_lock;
#endif
#ifdef RT_USING_USART2
#if (USART_COUNT <= 2)
#error "Wrong unit number"
#endif
#if (RT_USING_USART2 >= EFM32_USART_LOCATION_COUNT)
#error "Wrong location number"
#endif
struct rt_device usart2_device;
static struct rt_semaphore usart2_lock;
#endif
#ifdef RT_USING_UART0
#if (RT_USING_UART0 >= EFM32_UART_LOCATION_COUNT)
#error "Wrong location number"
#endif
struct rt_device uart0_device;
static struct rt_semaphore uart0_lock;
#endif
#ifdef RT_USING_UART1
#if (UART_COUNT <= 1)
#error "Wrong unit number"
#endif
#if (RT_USING_UART1 >= EFM32_UART_LOCATION_COUNT)
#error "Wrong location number"
#endif
struct rt_device uart1_device;
static struct rt_semaphore uart1_lock;
#endif
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/***************************************************************************//**
* @brief
* Initialize USART device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @return
* Error code
******************************************************************************/
static rt_err_t rt_usart_init (rt_device_t dev)
{
struct efm32_usart_device_t *usart;
usart = (struct efm32_usart_device_t *)(dev->user_data);
if (!(dev->flag & RT_DEVICE_FLAG_ACTIVATED))
{
if (dev->flag & RT_DEVICE_FLAG_DMA_TX)
{
struct efm32_usart_dma_mode_t *dma_tx;
dma_tx = (struct efm32_usart_dma_mode_t *)(usart->tx_mode);
usart->state |= USART_STATE_RX_BUSY;
}
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
struct efm32_usart_int_mode_t *int_rx;
int_rx = (struct efm32_usart_int_mode_t *)(usart->rx_mode);
int_rx->data_ptr = RT_NULL;
}
/* Enable USART */
USART_Enable(usart->usart_device, usartEnable);
dev->flag |= RT_DEVICE_FLAG_ACTIVATED;
}
return RT_EOK;
}
/***************************************************************************//**
* @brief
* Open USART device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] oflag
* Device open flag
*
* @return
* Error code
******************************************************************************/
static rt_err_t rt_usart_open(rt_device_t dev, rt_uint16_t oflag)
{
RT_ASSERT(dev != RT_NULL);
struct efm32_usart_device_t *usart;
usart = (struct efm32_usart_device_t *)(dev->user_data);
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
IRQn_Type rxIrq;
//if (usart->state & USART_STATE_CONSOLE)
{ /* Allocate new RX buffer */
struct efm32_usart_int_mode_t *int_mode;
int_mode = (struct efm32_usart_int_mode_t *)(usart->rx_mode);
if ((int_mode->data_ptr = rt_malloc(USART_RX_BUFFER_SIZE)) == RT_NULL)
{
usart_debug("USART%d err: no mem for RX BUF\n", usart->unit);
return -RT_ENOMEM;
}
rt_memset(int_mode->data_ptr, 0, USART_RX_BUFFER_SIZE);
int_mode->data_size = USART_RX_BUFFER_SIZE;
int_mode->read_index = 0;
int_mode->save_index = 0;
}
/* Enable RX interrupt */
#if defined(UART_PRESENT)
if (usart->state & USART_STATE_ASYNC_ONLY)
{
usart->usart_device->IEN = UART_IEN_RXDATAV;
}
else
#endif
{
usart->usart_device->IEN = USART_IEN_RXDATAV;
}
/* Enable IRQ */
switch (usart->unit)
{
case 0:
#if defined(UART_PRESENT)
if (usart->state & USART_STATE_ASYNC_ONLY)
{
rxIrq = UART0_RX_IRQn;
}
else
#endif
{
rxIrq = USART0_RX_IRQn;
}
break;
#if ((defined(USART_PRESENT) && (USART_COUNT > 1)) || \
(defined(UART_PRESENT) && (UART_COUNT > 1)))
case 1:
#if (defined(UART_PRESENT) && (UART_COUNT > 1))
if (usart->state & USART_STATE_ASYNC_ONLY)
{
rxIrq = UART1_RX_IRQn;
}
else
#endif
{
rxIrq = USART1_RX_IRQn;
}
break;
#endif
#if ((defined(USART_PRESENT) && (USART_COUNT > 2)) || \
(defined(UART_PRESENT) && (UART_COUNT > 2)))
case 2:
#if (defined(UART_PRESENT) && (UART_COUNT > 2))
if (usart->state & USART_STATE_ASYNC_ONLY)
{
rxIrq = UART2_RX_IRQn;
}
else
#endif
{
rxIrq = USART2_RX_IRQn;
}
break;
#endif
}
if (oflag != RT_DEVICE_OFLAG_WRONLY)
{
NVIC_ClearPendingIRQ(rxIrq);
NVIC_SetPriority(rxIrq, EFM32_IRQ_PRI_DEFAULT);
NVIC_EnableIRQ(rxIrq);
}
}
/* Clear Flag */
#if defined(UART_PRESENT)
if (usart->state & USART_STATE_ASYNC_ONLY)
{
usart->usart_device->IFC = _UART_IFC_MASK;
}
else
#endif
{
usart->usart_device->IFC = _USART_IFC_MASK;
}
if ((dev->flag & RT_DEVICE_FLAG_DMA_TX) && (oflag != RT_DEVICE_OFLAG_RDONLY))
{
/* DMA IRQ is enabled by DMA_Init() */
NVIC_SetPriority(DMA_IRQn, EFM32_IRQ_PRI_DEFAULT);
}
usart->counter++;
usart_debug("USART%d: Open with flag %x\n", usart->unit, oflag);
return RT_EOK;
}
/***************************************************************************//**
* @brief
* Close USART device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @return
* Error code
******************************************************************************/
static rt_err_t rt_usart_close(rt_device_t dev)
{
RT_ASSERT(dev != RT_NULL);
struct efm32_usart_device_t *usart;
usart = (struct efm32_usart_device_t *)(dev->user_data);
if (--usart->counter == 0)
{
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
struct efm32_usart_int_mode_t *int_rx;
int_rx = (struct efm32_usart_int_mode_t *)usart->rx_mode;
rt_free(int_rx->data_ptr);
int_rx->data_ptr = RT_NULL;
}
}
return RT_EOK;
}
/***************************************************************************//**
* @brief
* Read from USART device
*
* @details
*
* @note
* 9-bit SPI mode and SPI slave mode is untested
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] pos
* Offset
*
* @param[in] buffer
* Poniter to the buffer
*
* @param[in] size
* Buffer size in byte
*
* @return
* Number of read bytes
******************************************************************************/
static rt_ssize_t rt_usart_read (
rt_device_t dev,
rt_off_t pos,
void *buffer,
rt_size_t size)
{
rt_err_t err_code;
struct efm32_usart_device_t *usart;
rt_size_t read_len, len;
rt_uint8_t *ptr;
rt_uint32_t rx_flag, tx_flag, b8_flag;
usart = (struct efm32_usart_device_t *)(dev->user_data);
#if defined(UART_PRESENT)
if (usart->state & USART_STATE_ASYNC_ONLY)
{
rx_flag = UART_STATUS_RXDATAV;
tx_flag = UART_STATUS_TXBL;
b8_flag = UART_CTRL_BIT8DV;
}
else
#endif
{
rx_flag = USART_STATUS_RXDATAV;
tx_flag = USART_STATUS_TXBL;
b8_flag = USART_CTRL_BIT8DV;
}
/* Lock device */
if (rt_hw_interrupt_check())
{
err_code = rt_sem_take(usart->lock, RT_WAITING_NO);
}
else
{
err_code = rt_sem_take(usart->lock, RT_WAITING_FOREVER);
}
if (err_code != RT_EOK)
{
rt_set_errno(err_code);
return 0;
}
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
len = size;
ptr = buffer;
/* interrupt mode Rx */
while (len)
{
rt_base_t level;
struct efm32_usart_int_mode_t *int_rx;
int_rx = (struct efm32_usart_int_mode_t *)\
(((struct efm32_usart_device_t *)(dev->user_data))->rx_mode);
/* disable interrupt */
level = rt_hw_interrupt_disable();
if (int_rx->read_index != int_rx->save_index)
{
/* read a character */
*ptr++ = int_rx->data_ptr[int_rx->read_index];
len--;
/* move to next position */
int_rx->read_index ++;
if (int_rx->read_index >= USART_RX_BUFFER_SIZE)
{
int_rx->read_index = 0;
}
}
else
{
/* set error code */
err_code = -RT_EEMPTY;
/* enable interrupt */
rt_hw_interrupt_enable(level);
break;
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
read_len = (rt_uint32_t)ptr - (rt_uint32_t)buffer;
}
else
{
if (usart->state & USART_STATE_SYNC)
{
/* SPI read */
rt_uint8_t inst_len = *((rt_uint8_t *)buffer);
rt_uint8_t *inst_ptr = (rt_uint8_t *)(buffer + 1);
rt_uint8_t *rx_buf = *((rt_uint8_t **)(buffer + inst_len + 1));
rt_off_t i;
ptr = inst_ptr;
len = inst_len;
/* Write instructions */
if (len)
{
if (usart->state & USART_STATE_9BIT)
{
usart->usart_device->CTRL &= ~b8_flag;
}
while (len)
{
while (!(usart->usart_device->STATUS & tx_flag));
usart->usart_device->TXDATA = (rt_uint32_t)*(ptr++);
len--;
}
if (usart->state & USART_STATE_9BIT)
{
usart->usart_device->CTRL |= b8_flag;
}
}
/* Flushing RX */
usart->usart_device->CMD = USART_CMD_CLEARRX;
/* Skip some bytes if necessary */
for (i = 0; i < pos; i++)
{
/* dummy write */
while (!(usart->usart_device->STATUS & tx_flag));
usart->usart_device->TXDATA = (rt_uint32_t)0xff;
/* dummy read */
while (!(usart->usart_device->STATUS & rx_flag));
*((rt_uint32_t *)0x00) = usart->usart_device->RXDATA;
}
ptr = rx_buf;
len = size;
/* Read data */
while (len)
{
/* dummy write */
while (!(usart->usart_device->STATUS & tx_flag));
usart->usart_device->TXDATA = (rt_uint32_t)0xff;
/* read a byte of data */
while (!(usart->usart_device->STATUS & rx_flag));
*(ptr++) = usart->usart_device->RXDATA & 0xff;
len--;
}
}
else
{
ptr = buffer;
len = size;
/* polling mode */
while (len)
{
while (usart->usart_device->STATUS & rx_flag)
{
*(ptr++) = usart->usart_device->RXDATA & 0xff;
}
len--;
}
}
read_len = size - len;
}
/* Unlock device */
rt_sem_release(usart->lock);
/* set error code */
rt_set_errno(err_code);
return read_len;
}
/***************************************************************************//**
* @brief
* Write to USART device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] pos
* Offset
*
* @param[in] buffer
* Poniter to the buffer
*
* @param[in] size
* Buffer size in byte
*
* @return
* Number of written bytes
******************************************************************************/
static rt_ssize_t rt_usart_write (
rt_device_t dev,
rt_off_t pos,
const void* buffer,
rt_size_t size)
{
rt_err_t err_code;
struct efm32_usart_device_t* usart = (struct efm32_usart_device_t*)(dev->user_data);
rt_size_t read_len, len;
rt_uint8_t *ptr;
rt_size_t write_size = 0;
rt_uint32_t tx_flag, b8_flag;
#if defined(UART_PRESENT)
if (usart->state & USART_STATE_ASYNC_ONLY)
{
tx_flag = UART_STATUS_TXBL;
b8_flag = UART_CTRL_BIT8DV;
}
else
#endif
{
tx_flag = USART_STATUS_TXBL;
b8_flag = USART_CTRL_BIT8DV;
}
/* Lock device */
if (rt_hw_interrupt_check())
{
err_code = rt_sem_take(usart->lock, RT_WAITING_NO);
}
else
{
err_code = rt_sem_take(usart->lock, RT_WAITING_FOREVER);
}
if (err_code != RT_EOK)
{
rt_set_errno(err_code);
return 0;
}
if (usart->state & USART_STATE_SYNC)
{ /* SPI write */
rt_uint8_t inst_len = *((rt_uint8_t *)buffer);
rt_uint8_t *inst_ptr = (rt_uint8_t *)(buffer + 1);
rt_uint8_t *tx_buf = *((rt_uint8_t **)(buffer + inst_len + 1));
ptr = inst_ptr;
len = inst_len;
/* Write instructions */
if (len)
{
if (usart->state & USART_STATE_9BIT)
{
usart->usart_device->CTRL &= ~b8_flag;
}
if ((dev->flag & RT_DEVICE_FLAG_DMA_TX) && (len > 2))
{ /* DMA mode Tx */
struct efm32_usart_dma_mode_t *dma_tx;
usart_debug("USART: DMA TX INS (%d)\n", len);
dma_tx = (struct efm32_usart_dma_mode_t *)(usart->tx_mode);
dma_tx->data_ptr = (rt_uint32_t *)ptr;
dma_tx->data_size = len;
usart->state |= USART_STATE_TX_BUSY;
DMA_ActivateBasic(
dma_tx->dma_channel,
true,
false,
(void *)&(usart->usart_device->TXDATA),
(void *)ptr,
(rt_uint32_t)(len - 1));
/* Wait, otherwise the TX buffer is overwrite */
// TODO: This function blocks the process => goto low power mode?
// if (usart->state & USART_STATE_CONSOLE)
// {
while(usart->state & USART_STATE_TX_BUSY);
// }
// else
// {
// while(usart->state & USART_STATE_TX_BUSY)
// {
// rt_thread_delay(USART_WAIT_TIME_TX);
// }
// }
}
else
{ /* polling mode */
usart_debug("USART: Polling TX INS (%d)\n", len);
while (len)
{
while (!(usart->usart_device->STATUS & tx_flag));
usart->usart_device->TXDATA = (rt_uint32_t)*(ptr++);
len--;
}
}
if (usart->state & USART_STATE_9BIT)
{
usart->usart_device->CTRL |= b8_flag;
}
}
ptr = tx_buf;
}
else
{
ptr = (rt_uint8_t *)buffer;
}
len = size;
/* Write data */
if (dev->flag & RT_DEVICE_FLAG_STREAM)
{
if (*(ptr + len - 1) == '\n')
{
*(ptr + len - 1) = '\r';
*(ptr + len++) = '\n';
*(ptr + len) = 0;
}
}
if ((dev->flag & RT_DEVICE_FLAG_DMA_TX) && (len > 2))
{ /* DMA mode Tx */
struct efm32_usart_dma_mode_t *dma_tx;
usart_debug("USART: DMA TX data (%d)\n", len);
dma_tx = (struct efm32_usart_dma_mode_t *)(usart->tx_mode);
dma_tx->data_ptr = (rt_uint32_t *)ptr;
dma_tx->data_size = len;
usart->state |= USART_STATE_TX_BUSY;
DMA_ActivateBasic(
dma_tx->dma_channel,
true,
false,
(void *)&(usart->usart_device->TXDATA),
(void *)ptr,
(rt_uint32_t)(len - 1));
/* Wait, otherwise the TX buffer is overwrite */
// TODO: This function blocks the process => goto low power mode?
// if (usart->state & USART_STATE_CONSOLE)
// {
while(usart->state & USART_STATE_TX_BUSY);
// }
// else
// {
// while(usart->state & USART_STATE_TX_BUSY)
// {
// rt_thread_delay(USART_WAIT_TIME_TX);
// }
// }
write_size = size;
}
else
{ /* polling mode */
usart_debug("USART: Polling TX data (%d)\n", len);
while (len)
{
while (!(usart->usart_device->STATUS & tx_flag));
usart->usart_device->TXDATA = (rt_uint32_t)*(ptr++);
len--;
}
write_size = size - len;
}
/* Unlock device */
rt_sem_release(usart->lock);
/* set error code */
rt_set_errno(err_code);
return write_size;
}
/***************************************************************************//**
* @brief
* Configure USART device
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
*
* @param[in] cmd
* IIC control command
*
* @param[in] args
* Arguments
*
* @return
* Error code
******************************************************************************/
static rt_err_t rt_usart_control (
rt_device_t dev,
rt_uint8_t cmd,
void *args)
{
RT_ASSERT(dev != RT_NULL);
rt_err_t err_code;
struct efm32_usart_device_t *usart;
usart = (struct efm32_usart_device_t *)(dev->user_data);
/* Lock device */
if (rt_hw_interrupt_check())
{
err_code = rt_sem_take(usart->lock, RT_WAITING_NO);
}
else
{
err_code = rt_sem_take(usart->lock, RT_WAITING_FOREVER);
}
if (err_code != RT_EOK)
{
return err_code;
}
switch (cmd)
{
case RT_DEVICE_CTRL_SUSPEND:
/* Suspend device */
dev->flag |= RT_DEVICE_FLAG_SUSPENDED;
USART_Enable(usart->usart_device, usartDisable);
break;
case RT_DEVICE_CTRL_RESUME:
/* Resume device */
dev->flag &= ~RT_DEVICE_FLAG_SUSPENDED;
USART_Enable(usart->usart_device, usartEnable);
break;
case RT_DEVICE_CTRL_USART_RBUFFER:
/* Set RX buffer */
{
struct efm32_usart_int_mode_t *int_rx;
rt_uint8_t size;
int_rx = (struct efm32_usart_int_mode_t *)(usart->rx_mode);
size = (rt_uint8_t)((rt_uint32_t)args & 0xFFUL);
/* Free previous RX buffer */
if (int_rx->data_ptr != RT_NULL)
{
if (size == 0)
{ /* Free RX buffer */
rt_free(int_rx->data_ptr);
int_rx->data_ptr = RT_NULL;
}
else if (size != int_rx->data_size)
{
/* Re-allocate RX buffer */
if ((int_rx->data_ptr = rt_realloc(int_rx->data_ptr, size)) \
== RT_NULL)
{
usart_debug("USART%d err: no mem for RX BUF\n", usart->unit);
err_code = -RT_ENOMEM;
break;
}
// TODO: Is the following line necessary?
//rt_memset(int_rx->data_ptr, 0, size);
}
}
else
{
/* Allocate new RX buffer */
if ((int_rx->data_ptr = rt_malloc(size)) == RT_NULL)
{
usart_debug("USART%d err: no mem for RX BUF\n", usart->unit);
err_code = -RT_ENOMEM;
break;
}
}
int_rx->data_size = size;
int_rx->read_index = 0;
int_rx->save_index = 0;
}
break;
}
/* Unlock device */
rt_sem_release(usart->lock);
return err_code;
}
/***************************************************************************//**
* @brief
* USART RX data valid interrupt handler
*
* @details
*
* @note
* 9-bit SPI mode has not implemented yet and SPI slave mode is untested
*
* @param[in] dev
* Pointer to device descriptor
******************************************************************************/
void rt_hw_usart_rx_isr(rt_device_t dev)
{
struct efm32_usart_device_t *usart;
struct efm32_usart_int_mode_t *int_rx;
rt_uint32_t flag;
/* interrupt mode receive */
RT_ASSERT(dev->flag & RT_DEVICE_FLAG_INT_RX);
usart = (struct efm32_usart_device_t *)(dev->user_data);
int_rx = (struct efm32_usart_int_mode_t *)(usart->rx_mode);
RT_ASSERT(int_rx->data_ptr != RT_NULL);
#if defined(UART_PRESENT)
if (usart->state & USART_STATE_ASYNC_ONLY)
{
flag = UART_STATUS_RXDATAV;
}
else
#endif
{
flag = USART_STATUS_RXDATAV;
}
/* Set status */
usart->state |= USART_STATE_RX_BUSY;
/* save into rx buffer */
while (usart->usart_device->STATUS & flag)
{
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* save character */
int_rx->data_ptr[int_rx->save_index] = \
(rt_uint8_t)(usart->usart_device->RXDATA & 0xFFUL);
int_rx->save_index ++;
if (int_rx->save_index >= USART_RX_BUFFER_SIZE)
int_rx->save_index = 0;
/* if the next position is read index, discard this 'read char' */
if (int_rx->save_index == int_rx->read_index)
{
int_rx->read_index ++;
if (int_rx->read_index >= USART_RX_BUFFER_SIZE)
{
int_rx->read_index = 0;
}
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
}
/* invoke callback */
if (dev->rx_indicate != RT_NULL)
{
rt_size_t rx_length;
/* get rx length */
rx_length = int_rx->read_index > int_rx->save_index ?
USART_RX_BUFFER_SIZE - int_rx->read_index + int_rx->save_index : \
int_rx->save_index - int_rx->read_index;
dev->rx_indicate(dev, rx_length);
}
}
/***************************************************************************//**
* @brief
* DMA for USART TX interrupt handler
*
* @details
*
* @note
*
* @param[in] dev
* Pointer to device descriptor
******************************************************************************/
void rt_hw_usart_dma_tx_isr(rt_device_t dev)
{
/* DMA mode receive */
struct efm32_usart_device_t *usart;
struct efm32_usart_dma_mode_t *dma_tx;
RT_ASSERT(dev->flag & RT_DEVICE_FLAG_DMA_TX);
usart = (struct efm32_usart_device_t *)(dev->user_data);
dma_tx = (struct efm32_usart_dma_mode_t *)(usart->tx_mode);
/* invoke call to notify tx complete */
if (dev->tx_complete != RT_NULL)
{
dev->tx_complete(dev, dma_tx->data_ptr);
}
/* Set status */
usart->state &= ~(rt_uint32_t)USART_STATE_TX_BUSY;
}
/***************************************************************************//**
* @brief
* Register USART device
*
* @details
*
* @note
*
* @param[in] device
* Pointer to device descriptor
*
* @param[in] name
* Device name
*
* @param[in] flag
* Configuration flags
*
* @param[in] usart
* Pointer to USART device descriptor
*
* @return
* Error code
******************************************************************************/
rt_err_t rt_hw_usart_register(
rt_device_t device,
const char *name,
rt_uint32_t flag,
struct efm32_usart_device_t *usart)
{
RT_ASSERT(device != RT_NULL);
if ((flag & RT_DEVICE_FLAG_DMA_RX) ||
(flag & RT_DEVICE_FLAG_INT_TX))
{
RT_ASSERT(0);
}
if (usart->state & USART_STATE_SYNC)
{
device->type = RT_Device_Class_SPIBUS;
}
else
{
device->type = RT_Device_Class_Char;
}
device->rx_indicate = RT_NULL;
device->tx_complete = RT_NULL;
device->init = rt_usart_init;
device->open = rt_usart_open;
device->close = rt_usart_close;
device->read = rt_usart_read;
device->write = rt_usart_write;
device->control = rt_usart_control;
device->user_data = usart;
/* register a character device */
return rt_device_register(device, name, RT_DEVICE_FLAG_RDWR | flag);
}
/***************************************************************************//**
* @brief
* Initialize the specified USART unit
*
* @details
*
* @note
*
* @param[in] device
* Pointer to device descriptor
*
* @param[in] unitNumber
* Unit number
*
* @param[in] location
* Pin location number
*
* @param[in] flag
* Configuration flag
*
* @param[in] dmaChannel
* DMA channel number for TX
*
* @param[in] console
* Indicate if using as console
*
* @return
* Pointer to USART device
******************************************************************************/
static struct efm32_usart_device_t *rt_hw_usart_unit_init(
rt_device_t device,
rt_uint8_t unitNumber,
rt_uint8_t location,
rt_uint32_t flag,
rt_uint32_t dmaChannel,
rt_uint8_t config)
{
struct efm32_usart_device_t *usart;
struct efm32_usart_dma_mode_t *dma_mode;
DMA_CB_TypeDef *callback;
CMU_Clock_TypeDef usartClock;
rt_uint32_t txDmaSelect;
GPIO_Port_TypeDef port_tx, port_rx, port_clk, port_cs;
rt_uint32_t pin_tx, pin_rx, pin_clk, pin_cs;
efm32_irq_hook_init_t hook;
do
{
/* Allocate device */
usart = rt_malloc(sizeof(struct efm32_usart_device_t));
if (usart == RT_NULL)
{
usart_debug("USART%d err: no mem\n", usart->unit);
break;
}
usart->counter = 0;
usart->unit = unitNumber;
usart->state = config;
usart->tx_mode = RT_NULL;
usart->rx_mode = RT_NULL;
/* Allocate TX */
dma_mode = RT_NULL;
if (flag & RT_DEVICE_FLAG_DMA_TX)
{
usart->tx_mode = dma_mode = rt_malloc(sizeof(struct efm32_usart_dma_mode_t));
if (dma_mode == RT_NULL)
{
usart_debug("USART%d err: no mem for DMA TX\n", usart->unit);
break;
}
dma_mode->dma_channel = dmaChannel;
}
/* Allocate RX */
if (flag & RT_DEVICE_FLAG_INT_RX)
{
usart->rx_mode = rt_malloc(sizeof(struct efm32_usart_int_mode_t));
if (usart->rx_mode == RT_NULL)
{
usart_debug("USART%d err: no mem for INT RX\n", usart->unit);
break;
}
}
/* Initialization */
#if defined(UART_PRESENT)
if ((!(config & USART_STATE_ASYNC_ONLY) && (unitNumber >= USART_COUNT)) || \
((config & USART_STATE_ASYNC_ONLY) && (unitNumber >= UART_COUNT)))
#else
if (unitNumber >= USART_COUNT)
#endif
{
break;
}
switch (unitNumber)
{
case 0:
#if defined(UART_PRESENT)
if (config & USART_STATE_ASYNC_ONLY)
{
usart->usart_device = UART0;
usartClock = (CMU_Clock_TypeDef)cmuClock_UART0;
txDmaSelect = DMAREQ_UART0_TXBL;
port_tx = AF_UART0_TX_PORT(location);
pin_tx = AF_UART0_TX_PIN(location);
port_rx = AF_UART0_RX_PORT(location);
pin_rx = AF_UART0_RX_PIN(location);
}
else
#endif
{
usart->usart_device = USART0;
usartClock = (CMU_Clock_TypeDef)cmuClock_USART0;
txDmaSelect = DMAREQ_USART0_TXBL;
port_tx = AF_USART0_TX_PORT(location);
pin_tx = AF_USART0_TX_PIN(location);
port_rx = AF_USART0_RX_PORT(location);
pin_rx = AF_USART0_RX_PIN(location);
port_clk = AF_USART0_CLK_PORT(location);
pin_clk = AF_USART0_CLK_PIN(location);
port_cs = AF_USART0_CS_PORT(location);
pin_cs = AF_USART0_CS_PIN(location);
}
break;
#if ((defined(USART_PRESENT) && (USART_COUNT > 1)) || \
(defined(UART_PRESENT) && (UART_COUNT > 1)))
case 1:
#if (defined(UART_PRESENT) && (UART_COUNT > 1))
if (config & USART_STATE_ASYNC_ONLY)
{
usart->usart_device = UART1;
usartClock = (CMU_Clock_TypeDef)cmuClock_UART1;
txDmaSelect = DMAREQ_UART1_TXBL;
port_tx = AF_UART1_TX_PORT(location);
pin_tx = AF_UART1_TX_PIN(location);
port_rx = AF_UART1_RX_PORT(location);
pin_rx = AF_UART1_RX_PIN(location);
}
else
#endif
{
usart->usart_device = USART1;
usartClock = (CMU_Clock_TypeDef)cmuClock_USART1;
txDmaSelect = DMAREQ_USART1_TXBL;
port_tx = AF_USART1_TX_PORT(location);
pin_tx = AF_USART1_TX_PIN(location);
port_rx = AF_USART1_RX_PORT(location);
pin_rx = AF_USART1_RX_PIN(location);
port_clk = AF_USART1_CLK_PORT(location);
pin_clk = AF_USART1_CLK_PIN(location);
port_cs = AF_USART1_CS_PORT(location);
pin_cs = AF_USART1_CS_PIN(location);
}
break;
#endif
#if ((defined(USART_PRESENT) && (USART_COUNT > 2)) || \
(defined(UART_PRESENT) && (UART_COUNT > 2)))
case 2:
#if (defined(UART_PRESENT) && (UART_COUNT > 2))
if (config & USART_STATE_ASYNC_ONLY)
{
usart->usart_device = UART2;
usartClock = (CMU_Clock_TypeDef)cmuClock_UART2;
txDmaSelect = DMAREQ_UART2_TXBL;
port_tx = AF_UART2_TX_PORT(location);
pin_tx = AF_UART2_TX_PIN(location);
port_rx = AF_UART2_RX_PORT(location);
pin_rx = AF_UART2_RX_PIN(location);
}
else
#endif
{
usart->usart_device = USART2;
usartClock = (CMU_Clock_TypeDef)cmuClock_USART2;
txDmaSelect = DMAREQ_USART2_TXBL;
port_tx = AF_USART2_TX_PORT(location);
pin_tx = AF_USART2_TX_PIN(location);
port_rx = AF_USART2_RX_PORT(location);
pin_rx = AF_USART2_RX_PIN(location);
port_clk = AF_USART2_CLK_PORT(location);
pin_clk = AF_USART2_CLK_PIN(location);
port_cs = AF_USART2_CS_PORT(location);
pin_cs = AF_USART2_CS_PIN(location);
}
break;
#endif
default:
break;
}
/* Enable USART clock */
CMU_ClockEnable(usartClock, true);
/* Config GPIO */
GPIO_PinModeSet(
port_tx,
pin_tx,
gpioModePushPull,
0);
GPIO_PinModeSet(
port_rx,
pin_rx,
gpioModeInputPull,
1);
if (config & USART_STATE_SYNC)
{
GPIO_PinModeSet(
port_clk,
pin_clk,
gpioModePushPull,
0);
}
if (config & USART_STATE_AUTOCS)
{
GPIO_PinModeSet(
port_cs,
pin_cs,
gpioModePushPull,
1);
}
/* Config interrupt and NVIC */
if (flag & RT_DEVICE_FLAG_INT_RX)
{
hook.type = efm32_irq_type_usart;
hook.unit = unitNumber * 2 + 1;
#if defined(UART_PRESENT)
if (config & USART_STATE_ASYNC_ONLY)
{
hook.unit += USART_COUNT * 2;
}
#endif
hook.cbFunc = rt_hw_usart_rx_isr;
hook.userPtr = device;
efm32_irq_hook_register(&hook);
}
/* Config DMA */
if (flag & RT_DEVICE_FLAG_DMA_TX)
{
DMA_CfgChannel_TypeDef chnlCfg;
DMA_CfgDescr_TypeDef descrCfg;
hook.type = efm32_irq_type_dma;
hook.unit = dmaChannel;
hook.cbFunc = rt_hw_usart_dma_tx_isr;
hook.userPtr = device;
efm32_irq_hook_register(&hook);
callback = (DMA_CB_TypeDef *)rt_malloc(sizeof(DMA_CB_TypeDef));
if (callback == RT_NULL)
{
usart_debug("USART%d err: no mem for callback\n", usart->unit);
break;
}
callback->cbFunc = DMA_IRQHandler_All;
callback->userPtr = RT_NULL;
callback->primary = 0;
/* Setting up DMA channel */
chnlCfg.highPri = false; /* Can't use with peripherals */
chnlCfg.enableInt = true; /* Interrupt for callback function */
chnlCfg.select = txDmaSelect;
chnlCfg.cb = callback;
DMA_CfgChannel(dmaChannel, &chnlCfg);
/* Setting up DMA channel descriptor */
descrCfg.dstInc = dmaDataIncNone;
descrCfg.srcInc = dmaDataInc1;
descrCfg.size = dmaDataSize1;
descrCfg.arbRate = dmaArbitrate1;
descrCfg.hprot = 0;
DMA_CfgDescr(dmaChannel, true, &descrCfg);
}
/* Init specified USART unit */
if (config & USART_STATE_SYNC)
{
USART_InitSync_TypeDef init_sync = USART_INITSYNC_DEFAULT;
init_sync.enable = usartEnable;
init_sync.refFreq = 0;
init_sync.baudrate = SPI_BAUDRATE;
if (config & USART_STATE_9BIT)
{
init_sync.databits = usartDatabits9;
}
else
{
init_sync.databits = usartDatabits8;
}
if (config & USART_STATE_MASTER)
{
init_sync.master = true;
}
else
{
init_sync.master = false;
}
init_sync.msbf = true;
switch (USART_CLK_MODE_GET(config))
{
case 0:
init_sync.clockMode = usartClockMode0;
break;
case 1:
init_sync.clockMode = usartClockMode1;
break;
case 2:
init_sync.clockMode = usartClockMode2;
break;
case 3:
init_sync.clockMode = usartClockMode3;
break;
}
USART_InitSync(usart->usart_device, &init_sync);
}
else
{
USART_InitAsync_TypeDef init_async = USART_INITASYNC_DEFAULT;
init_async.enable = usartEnable;
init_async.refFreq = 0;
init_async.baudrate = UART_BAUDRATE;
init_async.oversampling = USART_CTRL_OVS_X4;
init_async.databits = USART_FRAME_DATABITS_EIGHT;
init_async.parity = USART_FRAME_PARITY_NONE;
init_async.stopbits = USART_FRAME_STOPBITS_ONE;
USART_InitAsync(usart->usart_device, &init_async);
}
/* Enable RX and TX pins and set location */
usart->usart_device->ROUTE = USART_ROUTE_RXPEN | USART_ROUTE_TXPEN | \
(location << _USART_ROUTE_LOCATION_SHIFT);
if (config & USART_STATE_SYNC)
{
usart->usart_device->ROUTE |= USART_ROUTE_CLKPEN;
}
if (config & USART_STATE_AUTOCS)
{
usart->usart_device->ROUTE |= USART_ROUTE_CSPEN;
if (config & USART_STATE_MASTER)
{
usart->usart_device->CTRL |= USART_CTRL_AUTOCS;
}
}
/* Clear RX/TX buffers */
usart->usart_device->CMD = USART_CMD_CLEARRX | USART_CMD_CLEARTX;
return usart;
} while(0);
if (usart->rx_mode)
{
rt_free(usart->rx_mode);
}
if (usart->tx_mode)
{
rt_free(usart->tx_mode);
}
if (usart)
{
rt_free(usart);
}
if (callback)
{
rt_free(callback);
}
#if defined(UART_PRESENT)
if (config & USART_STATE_ASYNC_ONLY)
{
usart_debug("UART%d err: init failed!\n", unitNumber);
}
else
#endif
{
usart_debug("USART%d err: init failed!\n", unitNumber);
}
return RT_NULL;
}
/***************************************************************************//**
* @brief
* Initialize all USART module related hardware and register USART device to
* kernel
*
* @details
*
* @note
******************************************************************************/
void rt_hw_usart_init(void)
{
struct efm32_usart_device_t *usart;
rt_uint32_t flag;
rt_uint8_t config;
do
{
#if (defined(USART_PRESENT) && defined(RT_USING_USART0))
config = 0x00;
flag = RT_DEVICE_FLAG_RDWR;
#ifdef RT_USART0_SYNC_MODE
config |= USART_STATE_SYNC;
config |= (RT_USART0_SYNC_MODE & SYNC_SETTING_MASK) << SYNC_SETTING_SHIFT;
#if (!((RT_USART0_SYNC_MODE << SYNC_SETTING_SHIFT) & USART_STATE_MASTER))
flag |= RT_DEVICE_FLAG_INT_RX;
#endif
#else
flag |= RT_DEVICE_FLAG_INT_RX;
#endif
#if (RT_CONSOLE_DEVICE == EFM_USART0)
config |= USART_STATE_CONSOLE;
flag |= RT_DEVICE_FLAG_STREAM;
#endif
#ifdef RT_USART0_USING_DMA
RT_ASSERT(RT_USART0_USING_DMA < DMA_CHAN_COUNT);
flag |= RT_DEVICE_FLAG_DMA_TX;
#else
#define RT_USART0_USING_DMA EFM32_NO_DMA
#endif
/* Initialize and Register usart0 */
if ((usart = rt_hw_usart_unit_init(
&usart0_device,
0,
RT_USING_USART0,
flag,
RT_USART0_USING_DMA,
config)) != RT_NULL)
{
rt_hw_usart_register(&usart0_device, RT_USART0_NAME, flag, usart);
}
else
{
break;
}
/* Initialize lock for usart0 */
usart->lock = &usart0_lock;
if (rt_sem_init(usart->lock, RT_USART0_NAME, 1, RT_IPC_FLAG_FIFO) != RT_EOK)
{
break;
}
#endif
#if (defined(USART_PRESENT) && (USART_COUNT > 1) && defined(RT_USING_USART1))
config = 0x00;
flag = RT_DEVICE_FLAG_RDWR;
#ifdef RT_USART1_SYNC_MODE
config |= USART_STATE_SYNC;
config |= (RT_USART1_SYNC_MODE & SYNC_SETTING_MASK) << SYNC_SETTING_SHIFT;
#if (!((RT_USART1_SYNC_MODE << SYNC_SETTING_SHIFT) & USART_STATE_MASTER))
flag |= RT_DEVICE_FLAG_INT_RX;
#endif
#else
flag |= RT_DEVICE_FLAG_INT_RX;
#endif
#if (RT_CONSOLE_DEVICE == EFM_USART1)
config |= USART_STATE_CONSOLE;
flag |= RT_DEVICE_FLAG_STREAM;
#endif
#ifdef RT_USART1_USING_DMA
RT_ASSERT(RT_USART1_USING_DMA < DMA_CHAN_COUNT);
flag |= RT_DEVICE_FLAG_DMA_TX;
#else
#define RT_USART1_USING_DMA EFM32_NO_DMA
#endif
/* Initialize and Register usart1 */
if ((usart = rt_hw_usart_unit_init(
&usart1_device,
1,
RT_USING_USART1,
flag,
RT_USART1_USING_DMA,
config)) != RT_NULL)
{
rt_hw_usart_register(&usart1_device, RT_USART1_NAME, flag, usart);
}
else
{
break;
}
/* Initialize lock for usart1 */
usart->lock = &usart1_lock;
if (rt_sem_init(usart->lock, RT_USART1_NAME, 1, RT_IPC_FLAG_FIFO) != RT_EOK)
{
break;
}
#endif
#if (defined(USART_PRESENT) && (USART_COUNT > 2) && defined(RT_USING_USART2))
config = 0x00;
flag = RT_DEVICE_FLAG_RDWR;
#ifdef RT_USART2_SYNC_MODE
config |= USART_STATE_SYNC;
config |= (RT_USART2_SYNC_MODE & SYNC_SETTING_MASK) << SYNC_SETTING_SHIFT;
#if (!((RT_USART2_SYNC_MODE << SYNC_SETTING_SHIFT) & USART_STATE_MASTER))
flag |= RT_DEVICE_FLAG_INT_RX;
#endif
#else
flag |= RT_DEVICE_FLAG_INT_RX;
#endif
#if (RT_CONSOLE_DEVICE == EFM_USART2)
config |= USART_STATE_CONSOLE;
flag |= RT_DEVICE_FLAG_STREAM;
#endif
#ifdef RT_USART2_USING_DMA
RT_ASSERT(RT_USART2_USING_DMA < DMA_CHAN_COUNT);
flag |= RT_DEVICE_FLAG_DMA_TX;
#else
#define RT_USART2_USING_DMA EFM32_NO_DMA
#endif
/* Initialize and Register usart2 */
if ((usart = rt_hw_usart_unit_init(
&usart2_device,
2,
RT_USING_USART2,
flag,
RT_USART2_USING_DMA,
config)) != RT_NULL)
{
rt_hw_usart_register(&usart2_device, RT_USART2_NAME, flag, usart);
}
else
{
break;
}
/* Initialize lock for usart2 */
usart->lock = &usart2_lock;
if (rt_sem_init(usart->lock, RT_USART2_NAME, 1, RT_IPC_FLAG_FIFO) != RT_EOK)
{
break;
}
#endif
#if (defined(UART_PRESENT) && defined(RT_USING_UART0))
config = USART_STATE_ASYNC_ONLY;
flag = RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX;
#if (RT_CONSOLE_DEVICE == EFM_UART0)
config |= USART_STATE_CONSOLE;
flag |= RT_DEVICE_FLAG_STREAM;
#endif
#ifdef RT_UART0_USING_DMA
RT_ASSERT(RT_UART0_USING_DMA < DMA_CHAN_COUNT);
flag |= RT_DEVICE_FLAG_DMA_TX;
#else
#define RT_UART0_USING_DMA EFM32_NO_DMA
#endif
/* Initialize and Register uart0 */
if ((usart = rt_hw_usart_unit_init(
&uart0_device,
0,
RT_USING_UART0,
flag,
RT_UART0_USING_DMA,
config)) != RT_NULL)
{
rt_hw_usart_register(&uart0_device, RT_UART0_NAME, flag, usart);
}
else
{
break;
}
/* Initialize lock for uart0 */
usart->lock = &uart0_lock;
if (rt_sem_init(usart->lock, RT_UART0_NAME, 1, RT_IPC_FLAG_FIFO) != RT_EOK)
{
break;
}
#endif
#if (defined(UART_PRESENT) && (UART_COUNT > 1) && defined(RT_USING_UART1))
config = USART_STATE_ASYNC_ONLY;
flag = RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX;
#if (RT_CONSOLE_DEVICE == EFM_UART1)
config |= USART_STATE_CONSOLE;
flag |= RT_DEVICE_FLAG_STREAM;
#endif
#ifdef RT_UART1_USING_DMA
RT_ASSERT(RT_UART1_USING_DMA < DMA_CHAN_COUNT);
flag |= RT_DEVICE_FLAG_DMA_TX;
#else
#define RT_UART1_USING_DMA EFM32_NO_DMA
#endif
/* Initialize and Register uart1 */
if ((usart = rt_hw_usart_unit_init(
&uart1_device,
1,
RT_USING_UART1,
flag,
RT_UART1_USING_DMA,
config)) != RT_NULL)
{
rt_hw_usart_register(&uart1_device, RT_UART1_NAME, flag, usart);
}
else
{
break;
}
/* Initialize lock for uart1 */
usart->lock = &uart1_lock;
if (rt_sem_init(usart->lock, RT_UART1_NAME, 1, RT_IPC_FLAG_FIFO) != RT_EOK)
{
break;
}
#endif
usart_debug("USART: H/W init OK!\n");
return;
} while (0);
rt_kprintf("USART: H/W init failed!\n");
}
#endif /* (defined(RT_USING_USART0) || defined(RT_USING_USART1) || \
defined(RT_USING_USART2) || defined(RT_USING_UART0) || \
defined(RT_USING_UART1)) */
/***************************************************************************//**
* @}
******************************************************************************/