rt-thread-official/bsp/bouffalo_lab/libraries/rt_drivers/drv_sdh.c

690 lines
21 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-05-28 flyingcys the first version
*/
#include <rtdevice.h>
#include "board.h"
#ifdef RT_USING_DFS
#define LOG_TAG "drv.sdh"
#ifdef BSP_DRIVER_DEBUG
#define DBG_LEVEL DBG_LOG
#else
#define DBG_LEVEL DBG_INFO
#endif
#include <rtdbg.h>
#include <drivers/dev_mmcsd_core.h>
#include <drivers/dev_sdio.h>
#include "drv_sdh.h"
#if defined(BL808)
#include "bl808_common.h"
#include "bl808_glb.h"
#include "bl808_sdh.h"
#elif defined(BL606P)
#include "bl606p_common.h"
#include "bl606p_glb.h"
#include "bl606p_sdh.h"
#elif defined(BL616)
#include "bl616_common.h"
#include "bl616_glb.h"
#include "bl616_sdh.h"
#elif defined(BL628)
#include "bl628_common.h"
#include "bl628_glb.h"
#include "bl628_smih.h"
#endif
#include "bflb_mtimer.h"
#include "bflb_l1c.h"
#define SDIO_BUFF_SIZE 512
static uint8_t sdh_buffer[SDIO_BUFF_SIZE] __attribute__ ((aligned (8)));
#define SDIO_CMDTIMEOUT_MS (1000)
static uint32_t sdhClockInit = 100ul;
static uint32_t sdhClockSrc = 100ul;
static SDH_Cfg_Type SDH_Cfg_Type_Instance;
static SDH_DMA_Cfg_Type SDH_DMA_Cfg_TypeInstance;
/*causion: ADMA related variables must on OCRAM or shared ram*/
static __attribute__((aligned(32), section(".noncacheable"))) SDH_ADMA2_Desc_Type adma2Entries[16];
typedef enum {
SD_OK = 0,
SD_CMD_ERROR,
SD_DataCfg_ERROR,
SD_WAITING,
} SD_Error;
#ifdef BSP_USING_BL808
static void sdh_clock_init(void)
{
PERIPHERAL_CLOCK_SDH_ENABLE();
uint32_t tmp_val;
tmp_val = BL_RD_REG(PDS_BASE, PDS_CTL5);
uint32_t tmp_val2 = BL_GET_REG_BITS_VAL(tmp_val, PDS_CR_PDS_GPIO_KEEP_EN);
tmp_val2 &= ~(1 << 0);
tmp_val = BL_SET_REG_BITS_VAL(tmp_val, PDS_CR_PDS_GPIO_KEEP_EN, tmp_val2);
BL_WR_REG(PDS_BASE, PDS_CTL5, tmp_val);
GLB_AHB_MCU_Software_Reset(GLB_AHB_MCU_SW_SDH);
}
static void sdh_gpio_init(void)
{
struct bflb_device_s *gpio;
gpio = bflb_device_get_by_name("gpio");
bflb_gpio_init(gpio, GPIO_PIN_0, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
bflb_gpio_init(gpio, GPIO_PIN_1, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
bflb_gpio_init(gpio, GPIO_PIN_2, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
bflb_gpio_init(gpio, GPIO_PIN_3, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
bflb_gpio_init(gpio, GPIO_PIN_4, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
bflb_gpio_init(gpio, GPIO_PIN_5, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
}
#elif defined(BSP_USING_BL61X)
static void sdh_clock_init(void)
{
PERIPHERAL_CLOCK_SDH_ENABLE();
GLB_AHB_MCU_Software_Reset(GLB_AHB_MCU_SW_EXT_SDH);
}
static void sdh_gpio_init(void)
{
struct bflb_device_s *gpio;
gpio = bflb_device_get_by_name("gpio");
bflb_gpio_init(gpio, GPIO_PIN_10, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
bflb_gpio_init(gpio, GPIO_PIN_11, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
bflb_gpio_init(gpio, GPIO_PIN_12, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
bflb_gpio_init(gpio, GPIO_PIN_13, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
bflb_gpio_init(gpio, GPIO_PIN_14, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
bflb_gpio_init(gpio, GPIO_PIN_15, GPIO_FUNC_SDH | GPIO_ALTERNATE | GPIO_PULLUP | GPIO_SMT_EN | GPIO_DRV_2);
}
#else
#error "The Current Chip Does Not Support SDH!"
#endif
static void sdh_set_bus_width(SDH_Data_Bus_Width_Type width)
{
SDH_Cfg_Type_Instance.vlot18Enable = DISABLE;
SDH_Cfg_Type_Instance.highSpeed = ENABLE;
SDH_Cfg_Type_Instance.dataWidth = width;
SDH_Cfg_Type_Instance.volt = SDH_VOLTAGE_3P3V;
SDH_Cfg_Type_Instance.srcClock = sdhClockSrc;
SDH_Cfg_Type_Instance.busClock = sdhClockInit;
SDH_Ctrl_Init(&SDH_Cfg_Type_Instance);
}
static void sdio_host_init(void)
{
GLB_Set_SDH_CLK(ENABLE, GLB_SDH_CLK_WIFIPLL_96M, 7);
/* initialise SDH controller*/
SDH_Cfg_Type_Instance.vlot18Enable = DISABLE;
SDH_Cfg_Type_Instance.highSpeed = ENABLE;
SDH_Cfg_Type_Instance.dataWidth = SDH_DATA_BUS_WIDTH_1BIT;
SDH_Cfg_Type_Instance.volt = SDH_VOLTAGE_3P3V;
SDH_Cfg_Type_Instance.srcClock = sdhClockSrc;
SDH_Cfg_Type_Instance.busClock = sdhClockInit;
SDH_Ctrl_Init(&SDH_Cfg_Type_Instance);
/*setup timeout counter*/
SDH_Set_Timeout(0x0e);
}
static SDH_Resp_Type sdio_host_get_resp_type(struct rt_mmcsd_cmd *cmd)
{
SDH_Resp_Type respType;
switch (resp_type(cmd))
{
case RESP_NONE:
respType = SDH_RESP_NONE;
break;
case RESP_R1:
respType = SDH_RESP_R1;
break;
case RESP_R1B:
respType = SDH_RESP_R1B;
break;
case RESP_R2:
respType = SDH_RESP_R2;
break;
case RESP_R3:
respType = SDH_RESP_R3;
break;
case RESP_R4:
respType = SDH_RESP_R4;
break;
case RESP_R5:
respType = SDH_RESP_R5;
break;
case RESP_R6:
respType = SDH_RESP_R6;
break;
case RESP_R7:
respType = SDH_RESP_R7;
break;
default:
respType = SDH_RESP_NONE;
break;
}
return respType;
}
static rt_err_t sdio_host_send_command(SDH_CMD_Cfg_Type *SDH_CMD_Cfg_TypeInstance)
{
SD_Error sd_status;
uint32_t time_node;
SDH_ClearIntStatus(SDH_INT_CMD_COMPLETED | SDH_INT_CMD_ERRORS);
SDH_SendCommand(SDH_CMD_Cfg_TypeInstance);
time_node = (uint32_t)bflb_mtimer_get_time_ms();
uint32_t intFlag;
while (1)
{
intFlag = SDH_GetIntStatus();
if (intFlag & SDH_INT_CMD_ERRORS)
{
sd_status = SD_CMD_ERROR;
break;
}
else if (intFlag & SDH_INT_CMD_COMPLETED)
{
sd_status = SD_OK;
break;
}
else if ((uint32_t)bflb_mtimer_get_time_ms() - time_node > SDIO_CMDTIMEOUT_MS)
{
LOG_D("SDH send CMD%ld timeout: %ld ms", SDH_CMD_Cfg_TypeInstance->index, (uint32_t)bflb_mtimer_get_time_ms() - time_node);
return -RT_ETIMEOUT;
}
BL_DRV_DUMMY;
BL_DRV_DUMMY;
}
SDH_ClearIntStatus(intFlag & (SDH_INT_CMD_ERRORS | SDH_INT_CMD_COMPLETED));
if (sd_status != SD_OK)
{
LOG_E("SDH send CMD%ld error", SDH_CMD_Cfg_TypeInstance->index);
return -RT_ERROR;
}
else
{
LOG_D("SDH send CMD%ld success", SDH_CMD_Cfg_TypeInstance->index);
SDH_CMD_Cfg_TypeInstance->response[0] = BL_RD_REG(SDH_BASE, SDH_SD_RESP_0);
SDH_CMD_Cfg_TypeInstance->response[1] = BL_RD_REG(SDH_BASE, SDH_SD_RESP_2);
SDH_CMD_Cfg_TypeInstance->response[2] = BL_RD_REG(SDH_BASE, SDH_SD_RESP_4);
SDH_CMD_Cfg_TypeInstance->response[3] = BL_RD_REG(SDH_BASE, SDH_SD_RESP_6);
}
return RT_EOK;
}
static rt_err_t SDH_CardTransferNonBlocking(SDH_DMA_Cfg_Type *dmaCfg, SDH_Trans_Cfg_Type *transfer)
{
rt_err_t ret = RT_EOK;
SDH_Stat_Type stat = SDH_STAT_SUCCESS;
stat = SDH_TransferNonBlocking(dmaCfg, transfer);
if (stat != SDH_STAT_SUCCESS) {
LOG_E("SDH_TransferNonBlocking error:%d", stat);
return -RT_ERROR;
}
/* Flush ADMA2-descriptor-table to RAM, Otherwise ADMA2 will fail */
bflb_l1c_dcache_clean_range((void *)(dmaCfg->admaEntries), dmaCfg->maxEntries * sizeof(SDH_ADMA2_Desc_Type));
ret = sdio_host_send_command(transfer->cmdCfg);
if (ret != RT_EOK)
{
LOG_E("sdio_host_send_command error:%d", transfer->cmdCfg->index);
return ret;
}
rt_uint32_t intFlag;
SD_Error sd_status;
rt_uint32_t time_node;
time_node = (uint32_t)bflb_mtimer_get_time_ms();
while (1)
{
intFlag = SDH_GetIntStatus();
if (intFlag & SDH_INT_DATA_ERRORS || intFlag & SDH_INT_DMA_ERROR || intFlag & SDH_INT_AUTO_CMD12_ERROR)
{
sd_status = SD_CMD_ERROR;
break;
}
else if (intFlag & SDH_INT_DATA_COMPLETED)
{
sd_status = SD_OK;
break;
}
else if ((uint32_t)bflb_mtimer_get_time_ms() - time_node > SDIO_CMDTIMEOUT_MS)
{
LOG_E("SDH Transfer data timeout: %ld ms", (uint32_t)bflb_mtimer_get_time_ms() - time_node);
return -RT_ETIMEOUT;
}
BL_DRV_DUMMY;
BL_DRV_DUMMY;
}
SDH_ClearIntStatus(intFlag);
if (sd_status != SD_OK)
{
LOG_E("sd_status :%d", sd_status);
return -RT_ERROR;
}
LOG_D("Transfer data used time: %ld ms", (uint32_t)bflb_mtimer_get_time_ms() - time_node);
return RT_EOK;
}
static rt_err_t rt_hw_sdh_data_transfer(struct rt_mmcsd_host *host, struct rt_mmcsd_cmd *cmd, struct rt_mmcsd_data *data)
{
rt_err_t ret = RT_EOK;
SDH_Data_Cfg_Type SDH_Data_Cfg_TypeInstance;
SDH_CMD_Cfg_Type SDH_CMD_Cfg_TypeInstance;
SDH_Trans_Cfg_Type SDH_Trans_Cfg_TypeInstance = { &SDH_Data_Cfg_TypeInstance, &SDH_CMD_Cfg_TypeInstance };
SDH_CMD_Cfg_TypeInstance.index = cmd->cmd_code;
SDH_CMD_Cfg_TypeInstance.argument = cmd->arg;
SDH_CMD_Cfg_TypeInstance.type = SDH_CMD_NORMAL;
SDH_CMD_Cfg_TypeInstance.respType = sdio_host_get_resp_type(cmd);
SDH_CMD_Cfg_TypeInstance.flag = SDH_TRANS_FLAG_DATA_PRESENT;
/*set data parameter */
SDH_Data_Cfg_TypeInstance.enableAutoCommand12 = DISABLE;
SDH_Data_Cfg_TypeInstance.enableAutoCommand23 = DISABLE;
SDH_Data_Cfg_TypeInstance.enableIgnoreError = DISABLE;
SDH_Data_Cfg_TypeInstance.dataType = SDH_TRANS_DATA_NORMAL;
SDH_Data_Cfg_TypeInstance.blockSize = data->blksize;
SDH_Data_Cfg_TypeInstance.blockCount = data->blks;
if (cmd->cmd_code == READ_SINGLE_BLOCK || cmd->cmd_code == READ_MULTIPLE_BLOCK)
{
SDH_Data_Cfg_TypeInstance.rxDataLen = 0;
SDH_Data_Cfg_TypeInstance.rxData = (rt_uint32_t *)sdh_buffer;
// SDH_Data_Cfg_TypeInstance.rxData = (rt_uint32_t *)data->buf;
SDH_Data_Cfg_TypeInstance.txDataLen = 0;
SDH_Data_Cfg_TypeInstance.txData = NULL;
}
else
{
rt_memcpy((void *)sdh_buffer, (void *)data->buf, data->blksize);
SDH_Data_Cfg_TypeInstance.rxDataLen = 0;
SDH_Data_Cfg_TypeInstance.rxData = NULL;
SDH_Data_Cfg_TypeInstance.txDataLen = 0;
// SDH_Data_Cfg_TypeInstance.txData = (rt_uint32_t *)data->buf;
SDH_Data_Cfg_TypeInstance.txData = (rt_uint32_t *)sdh_buffer;
}
/*set parameters for SDH_DMA_Cfg_TypeInstance*/
SDH_DMA_Cfg_TypeInstance.dmaMode = SDH_DMA_MODE_ADMA2;
SDH_DMA_Cfg_TypeInstance.burstSize = SDH_BURST_SIZE_128_BYTES;
SDH_DMA_Cfg_TypeInstance.fifoThreshold = SDH_FIFO_THRESHOLD_256_BYTES;
SDH_DMA_Cfg_TypeInstance.admaEntries = (rt_uint32_t *)adma2Entries;
SDH_DMA_Cfg_TypeInstance.maxEntries = sizeof(adma2Entries) / sizeof(adma2Entries[0]);
if (data->flags & DATA_DIR_WRITE)
{
bflb_l1c_dcache_clean_range((void *)(sdh_buffer), data->blksize * data->blks);
}
ret = SDH_CardTransferNonBlocking(&SDH_DMA_Cfg_TypeInstance, &SDH_Trans_Cfg_TypeInstance);
if (ret != RT_EOK)
{
LOG_E("SDH_CardTransferNonBlocking error:%d", ret);
return ret;
}
if (resp_type(cmd) != RESP_NONE)
{
cmd->resp[0] = SDH_CMD_Cfg_TypeInstance.response[0];
LOG_D("resp[0]: %08x", cmd->resp[0]);
}
if (data->flags & DATA_DIR_READ)
{
bflb_l1c_dcache_invalidate_range((void *)(sdh_buffer), data->blksize * data->blks);
rt_memcpy(data->buf, sdh_buffer, data->blks * data->blksize);
}
return RT_EOK;
}
static rt_err_t rt_hw_sdh_cmd_transfer(struct rt_mmcsd_host *host, struct rt_mmcsd_cmd *cmd, struct rt_mmcsd_data *data)
{
rt_err_t ret = RT_EOK;
SDH_Stat_Type stat = SDH_STAT_SUCCESS;
SDH_Data_Cfg_Type SDH_Data_Cfg_TypeInstance;
SDH_CMD_Cfg_Type SDH_CMD_Cfg_TypeInstance;
if (data != RT_NULL)
{
SDH_Data_Cfg_TypeInstance.enableAutoCommand12 = DISABLE;
SDH_Data_Cfg_TypeInstance.enableAutoCommand23 = DISABLE;
SDH_Data_Cfg_TypeInstance.enableIgnoreError = DISABLE;
SDH_Data_Cfg_TypeInstance.dataType = SDH_TRANS_DATA_NORMAL;
SDH_Data_Cfg_TypeInstance.blockSize = data->blksize;
SDH_Data_Cfg_TypeInstance.blockCount = data->blks;
SDH_Data_Cfg_TypeInstance.rxDataLen = 0;
SDH_Data_Cfg_TypeInstance.rxData = (rt_uint32_t *)data->buf;
SDH_Data_Cfg_TypeInstance.txDataLen = 0;
SDH_Data_Cfg_TypeInstance.txData = NULL;
/* Config the data transfer parameter */
stat = SDH_ConfigDataTranfer(&SDH_Data_Cfg_TypeInstance);
if (stat != SDH_STAT_SUCCESS)
{
return -RT_ERROR;
}
SDH_CMD_Cfg_TypeInstance.flag = SDH_TRANS_FLAG_DATA_PRESENT;
}
else
{
SDH_CMD_Cfg_TypeInstance.flag = SDH_TRANS_FLAG_NONE;
}
SDH_CMD_Cfg_TypeInstance.index = cmd->cmd_code;
SDH_CMD_Cfg_TypeInstance.argument = cmd->arg;
SDH_CMD_Cfg_TypeInstance.type = SDH_CMD_NORMAL;
SDH_CMD_Cfg_TypeInstance.respType = sdio_host_get_resp_type(cmd);
ret = sdio_host_send_command(&SDH_CMD_Cfg_TypeInstance);
if (ret != RT_EOK)
{
memset(cmd->resp, 0, sizeof(cmd->resp));
return ret;
}
if (resp_type(cmd) != RESP_NONE)
{
if (resp_type(cmd) == RESP_R2)
{
cmd->resp[0] = ((SDH_CMD_Cfg_TypeInstance.response[3] << 8) & ~0xff);
cmd->resp[0] |= ((SDH_CMD_Cfg_TypeInstance.response[2] >> 24) & 0xff);
cmd->resp[1] = ((SDH_CMD_Cfg_TypeInstance.response[2] << 8) & ~0xff);
cmd->resp[1] |= ((SDH_CMD_Cfg_TypeInstance.response[1] >> 24) & 0xff);
cmd->resp[2] = ((SDH_CMD_Cfg_TypeInstance.response[1] << 8) & ~0xff);
cmd->resp[2] |= ((SDH_CMD_Cfg_TypeInstance.response[0] >> 24) & 0xff);
cmd->resp[3] = ((SDH_CMD_Cfg_TypeInstance.response[3] << 8) & ~0xff);
LOG_D("resp[0]: %08x %08x %08x %08x", cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
}
else
{
cmd->resp[0] = SDH_CMD_Cfg_TypeInstance.response[0];
LOG_D("resp[0]: %08x", cmd->resp[0]);
}
}
if (data != RT_NULL)
{
SD_Error sd_status;
uint32_t time_node;
time_node = (uint32_t)bflb_mtimer_get_time_ms();
uint32_t intFlag;
while (1)
{
intFlag = SDH_GetIntStatus();
if (intFlag & SDH_INT_DATA_ERRORS || intFlag & SDH_INT_DMA_ERROR)
{
sd_status = SD_DataCfg_ERROR;
break;
}
else if (intFlag & SDH_INT_BUFFER_READ_READY || intFlag & SDH_INT_DATA_COMPLETED)
{
sd_status = SD_OK;
break;
}
else if ((uint32_t)bflb_mtimer_get_time_ms() - time_node > SDIO_CMDTIMEOUT_MS)
{
LOG_E("SDH get csr data timeout: %ld ms", (uint32_t)bflb_mtimer_get_time_ms() - time_node);
return -RT_ETIMEOUT;
}
BL_DRV_DUMMY;
BL_DRV_DUMMY;
}
SDH_ClearIntStatus(intFlag);
if (sd_status != SD_OK)
{
return -RT_ERROR;
}
if (data->flags & DATA_DIR_READ)
{
rt_uint32_t ret = SDH_ReadDataPort(&SDH_Data_Cfg_TypeInstance);
if (ret <= 0)
return -RT_ERROR;
}
}
return RT_EOK;
}
static void rt_hw_sdh_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
RT_ASSERT(host != RT_NULL);
RT_ASSERT(req != RT_NULL);
if (req->cmd != RT_NULL)
{
struct rt_mmcsd_cmd *cmd = req->cmd;
struct rt_mmcsd_data *data = req->data;
LOG_D("[%s%s%s%s%s]REQ: CMD:%d ARG:0x%08x RES:%s%s%s%s%s%s%s%s%s rw:%c addr:%08x, blks:%d, blksize:%d datalen:%d",
(host->card == RT_NULL) ? "Unknown" : "",
(host->card) && (host->card->card_type == CARD_TYPE_MMC) ? "MMC" : "",
(host->card) && (host->card->card_type == CARD_TYPE_SD) ? "SD" : "",
(host->card) && (host->card->card_type == CARD_TYPE_SDIO) ? "SDIO" : "",
(host->card) && (host->card->card_type == CARD_TYPE_SDIO_COMBO) ? "SDIO_COMBO" : "",
cmd->cmd_code,
cmd->arg,
resp_type(cmd) == RESP_NONE ? "NONE" : "",
resp_type(cmd) == RESP_R1 ? "R1" : "",
resp_type(cmd) == RESP_R1B ? "R1B" : "",
resp_type(cmd) == RESP_R2 ? "R2" : "",
resp_type(cmd) == RESP_R3 ? "R3" : "",
resp_type(cmd) == RESP_R4 ? "R4" : "",
resp_type(cmd) == RESP_R5 ? "R5" : "",
resp_type(cmd) == RESP_R6 ? "R6" : "",
resp_type(cmd) == RESP_R7 ? "R7" : "",
data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-',
data ? data->buf : 0,
data ? data->blks : 0,
data ? data->blksize : 0,
data ? data->blks * data->blksize : 0);
if (cmd->cmd_code == READ_SINGLE_BLOCK || cmd->cmd_code == READ_MULTIPLE_BLOCK || \
cmd->cmd_code == WRITE_BLOCK || cmd->cmd_code == WRITE_MULTIPLE_BLOCK)
{
cmd->err = rt_hw_sdh_data_transfer(host, cmd, data);
}
else
{
cmd->err = rt_hw_sdh_cmd_transfer(host, cmd, data);
if (cmd->cmd_code == SD_SEND_IF_COND && cmd->err != RT_EOK)
{
LOG_D("retry cmd: %d", SD_SEND_IF_COND);
struct rt_mmcsd_cmd user_cmd;
rt_uint8_t retries = 0;
rt_err_t ret = RT_EOK;
do
{
rt_memset(&user_cmd, 0, sizeof(struct rt_mmcsd_cmd));
user_cmd.cmd_code = GO_IDLE_STATE;
user_cmd.arg = 0;
user_cmd.flags = RESP_SPI_R1 | RESP_NONE | CMD_BC;
rt_hw_sdh_cmd_transfer(host, &user_cmd, RT_NULL);
rt_thread_mdelay(1);
cmd->err = rt_hw_sdh_cmd_transfer(host, cmd, data);
if(cmd->err == RT_EOK)
{
break;
}
retries ++;
LOG_D("cmd: %d retries: %d", SD_SEND_IF_COND, retries);
}
while (retries < 3);
}
}
}
if (req->stop != RT_NULL)
{
struct rt_mmcsd_cmd *stop = req->stop;
stop->err = rt_hw_sdh_cmd_transfer(host, stop, RT_NULL);
}
mmcsd_req_complete(host);
}
static void rt_hw_sdh_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg)
{
rt_uint32_t clk;
RT_ASSERT(host != RT_NULL);
RT_ASSERT(io_cfg != RT_NULL);
clk = io_cfg->clock;
LOG_D("clk:%d width:%s%s%s power:%s%s%s",
clk,
io_cfg->bus_width == MMCSD_BUS_WIDTH_8 ? "8" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_4 ? "4" : "",
io_cfg->bus_width == MMCSD_BUS_WIDTH_1 ? "1" : "",
io_cfg->power_mode == MMCSD_POWER_OFF ? "OFF" : "",
io_cfg->power_mode == MMCSD_POWER_UP ? "UP" : "",
io_cfg->power_mode == MMCSD_POWER_ON ? "ON" : ""
);
/* clock */
if (clk > host->freq_max)
clk = host->freq_max;
if (clk < host->freq_min)
clk = host->freq_min;
/* power mode */
switch (io_cfg->power_mode)
{
case MMCSD_POWER_UP:
break;
case MMCSD_POWER_ON:
SDH_Powon();
break;
case MMCSD_POWER_OFF:
break;
default:
break;
}
/* bus width */
switch (io_cfg->bus_width)
{
case MMCSD_BUS_WIDTH_1:
sdh_set_bus_width(SDH_DATA_BUS_WIDTH_1BIT);
break;
case MMCSD_BUS_WIDTH_4:
sdh_set_bus_width(SDH_DATA_BUS_WIDTH_4BITS);
break;
case MMCSD_BUS_WIDTH_8:
sdh_set_bus_width(SDH_DATA_BUS_WIDTH_8BITS);
break;
default:
LOG_E("nonsupport bus width: %d", io_cfg->bus_width);
break;
}
}
static const struct rt_mmcsd_host_ops ops =
{
rt_hw_sdh_request,
rt_hw_sdh_iocfg,
RT_NULL,
RT_NULL,
};
int rt_hw_sdh_init(void)
{
struct rt_mmcsd_host *host;
host = mmcsd_alloc_host();
RT_ASSERT(host != RT_NULL);
sdh_clock_init();
sdh_gpio_init();
/* reset SDH controller*/
SDH_Reset();
sdio_host_init();
/* set host default attributes */
host->ops = &ops;
host->freq_min = 40 * 1000;
host->freq_max = 50 * 1000 * 1000;
host->valid_ocr = VDD_31_32 | VDD_32_33 | VDD_33_34;
host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED | MMCSD_BUSWIDTH_4;
host->max_seg_size = SDIO_BUFF_SIZE;
host->max_dma_segs = 1;
host->max_blk_size = 512;
host->max_blk_count = 512;
/* link up host and sdio */
host->private_data = host;
mmcsd_change(host);
return 0;
}
INIT_DEVICE_EXPORT(rt_hw_sdh_init);
#endif /* RT_USING_DFS */