rt-thread-official/bsp/at32/libraries/rt_drivers/drv_pwm.c

745 lines
17 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-05-16 shelton first version
* 2024-09-24 shelton update driver
*/
#include "drv_common.h"
#ifdef RT_USING_PWM
#include "drv_pwm.h"
#include <drivers/dev_pwm.h>
//#define DRV_DEBUG
#define LOG_TAG "drv.pwm"
#include <drv_log.h>
#define MAX_PERIOD 65535
#define MIN_PERIOD 3
#define MIN_PULSE 2
struct at32_pwm
{
struct rt_device_pwm pwm_device;
tmr_type* tmr_x;
rt_uint8_t channel;
char *name;
};
enum
{
#ifdef BSP_USING_PWM1
PWM1_INDEX,
#endif
#ifdef BSP_USING_PWM2
PWM2_INDEX,
#endif
#ifdef BSP_USING_PWM3
PWM3_INDEX,
#endif
#ifdef BSP_USING_PWM4
PWM4_INDEX,
#endif
#ifdef BSP_USING_PWM5
PWM5_INDEX,
#endif
#ifdef BSP_USING_PWM6
PWM6_INDEX,
#endif
#ifdef BSP_USING_PWM7
PWM7_INDEX,
#endif
#ifdef BSP_USING_PWM8
PWM8_INDEX,
#endif
#ifdef BSP_USING_PWM9
PWM9_INDEX,
#endif
#ifdef BSP_USING_PWM10
PWM10_INDEX,
#endif
#ifdef BSP_USING_PWM11
PWM11_INDEX,
#endif
#ifdef BSP_USING_PWM12
PWM12_INDEX,
#endif
#ifdef BSP_USING_PWM13
PWM13_INDEX,
#endif
};
static struct at32_pwm at32_pwm_obj[] =
{
#ifdef BSP_USING_PWM1
PWM1_CONFIG,
#endif
#ifdef BSP_USING_PWM2
PWM2_CONFIG,
#endif
#ifdef BSP_USING_PWM3
PWM3_CONFIG,
#endif
#ifdef BSP_USING_PWM4
PWM4_CONFIG,
#endif
#ifdef BSP_USING_PWM5
PWM5_CONFIG,
#endif
#ifdef BSP_USING_PWM6
PWM6_CONFIG,
#endif
#ifdef BSP_USING_PWM7
PWM7_CONFIG,
#endif
#ifdef BSP_USING_PWM8
PWM8_CONFIG,
#endif
#ifdef BSP_USING_PWM9
PWM9_CONFIG,
#endif
#ifdef BSP_USING_PWM10
PWM10_CONFIG,
#endif
#ifdef BSP_USING_PWM11
PWM11_CONFIG,
#endif
#ifdef BSP_USING_PWM12
PWM12_CONFIG,
#endif
#ifdef BSP_USING_PWM13
PWM13_CONFIG,
#endif
};
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg);
static struct rt_pwm_ops drv_ops =
{
drv_pwm_control
};
static void tmr_pclk_get(rt_uint32_t *pclk1_doubler, rt_uint32_t *pclk2_doubler)
{
crm_clocks_freq_type clocks_struct;
*pclk1_doubler = 1;
*pclk2_doubler = 1;
crm_clocks_freq_get(&clocks_struct);
if(clocks_struct.ahb_freq != clocks_struct.apb1_freq)
{
*pclk1_doubler = 2;
}
if(clocks_struct.ahb_freq != clocks_struct.apb2_freq)
{
*pclk2_doubler = 2;
}
}
static rt_err_t at32_hw_pwm_init(struct at32_pwm *instance)
{
tmr_output_config_type tmr_oc_config_struct;
tmr_type *tmr_x = instance->tmr_x;
at32_msp_tmr_init(tmr_x);
tmr_base_init(tmr_x, 0, 0);
tmr_clock_source_div_set(tmr_x, TMR_CLOCK_DIV1);
/* pwm mode configuration */
tmr_output_default_para_init(&tmr_oc_config_struct);
/* config pwm mode */
tmr_oc_config_struct.oc_mode = TMR_OUTPUT_CONTROL_PWM_MODE_A;
/* config tmr pwm output */
if(instance->channel & 0x01)
{
tmr_output_channel_config(tmr_x, TMR_SELECT_CHANNEL_1, &tmr_oc_config_struct);
tmr_output_channel_buffer_enable(tmr_x, TMR_SELECT_CHANNEL_1, TRUE);
}
if(instance->channel & 0x02)
{
tmr_output_channel_config(tmr_x, TMR_SELECT_CHANNEL_2, &tmr_oc_config_struct);
tmr_output_channel_buffer_enable(tmr_x, TMR_SELECT_CHANNEL_2, TRUE);
}
if(instance->channel & 0x04)
{
tmr_output_channel_config(tmr_x, TMR_SELECT_CHANNEL_3, &tmr_oc_config_struct);
tmr_output_channel_buffer_enable(tmr_x, TMR_SELECT_CHANNEL_3, TRUE);
}
if(instance->channel & 0x08)
{
tmr_output_channel_config(tmr_x, TMR_SELECT_CHANNEL_4, &tmr_oc_config_struct);
tmr_output_channel_buffer_enable(tmr_x, TMR_SELECT_CHANNEL_4, TRUE);
}
/* enable output */
tmr_output_enable(tmr_x, TRUE);
/* enable overflow request */
tmr_overflow_request_source_set(tmr_x, TRUE);
return RT_EOK;
}
static rt_err_t drv_pwm_enable(tmr_type* tmr_x, struct rt_pwm_configuration *configuration, rt_bool_t enable)
{
/* get the value of channel */
rt_uint32_t channel = configuration->channel;
if (!configuration->complementary)
{
if (!enable)
{
if(channel == 1)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_1, FALSE);
}
else if(channel == 2)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_2, FALSE);
}
else if(channel == 3)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_3, FALSE);
}
else if(channel == 4)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_4, FALSE);
}
}
else
{
if(channel == 1)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_1, TRUE);
}
else if(channel == 2)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_2, TRUE);
}
else if(channel == 3)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_3, TRUE);
}
else if(channel == 4)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_4, TRUE);
}
}
}
else
{
if (!enable)
{
if(channel == 1)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_1C, FALSE);
}
else if(channel == 2)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_2C, FALSE);
}
else if(channel == 3)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_3C, FALSE);
}
}
else
{
if(channel == 1)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_1C, TRUE);
}
else if(channel == 2)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_2C, TRUE);
}
else if(channel == 3)
{
tmr_channel_enable(tmr_x, TMR_SELECT_CHANNEL_3C, TRUE);
}
}
}
/* tmr_x enable counter */
tmr_counter_enable(tmr_x, TRUE);
return RT_EOK;
}
static rt_err_t drv_pwm_get(tmr_type* tmr_x, struct rt_pwm_configuration *configuration)
{
crm_clocks_freq_type clocks_struct;
rt_uint32_t pr, div, c1dt, c2dt, c3dt, c4dt, tmr_clock;
rt_uint32_t pclk1_doubler = 0, pclk2_doubler = 0;
rt_uint32_t channel = configuration->channel;
pr = tmr_x->pr;
div = tmr_x->div;
c1dt = tmr_x->c1dt;
c2dt = tmr_x->c2dt;
c3dt = tmr_x->c3dt;
c4dt = tmr_x->c4dt;
tmr_pclk_get(&pclk1_doubler, &pclk2_doubler);
crm_clocks_freq_get(&clocks_struct);
if(
#if defined (TMR1)
(tmr_x == TMR1)
#endif
#if defined (TMR8)
|| (tmr_x == TMR8)
#endif
#if defined (TMR9)
|| (tmr_x == TMR9)
#endif
#if defined (TMR10)
|| (tmr_x == TMR10)
#endif
#if defined (TMR11)
|| (tmr_x == TMR11)
#endif
)
{
tmr_clock = clocks_struct.apb2_freq * pclk2_doubler;
}
else
{
tmr_clock = clocks_struct.apb1_freq * pclk1_doubler;
}
/* convert nanosecond to frequency and duty cycle. */
tmr_clock /= 1000000UL;
configuration->period = (pr + 1) * (div + 1) * 1000UL / tmr_clock;
if(channel == 1)
configuration->pulse = (c1dt) * (div + 1) * 1000UL / tmr_clock;
if(channel == 2)
configuration->pulse = (c2dt) * (div + 1) * 1000UL / tmr_clock;
if(channel == 3)
configuration->pulse = (c3dt) * (div + 1) * 1000UL / tmr_clock;
if(channel == 4)
configuration->pulse = (c4dt) * (div + 1) * 1000UL / tmr_clock;
return RT_EOK;
}
static rt_err_t drv_pwm_set(tmr_type* tmr_x, struct rt_pwm_configuration *configuration)
{
crm_clocks_freq_type clocks_struct;
tmr_channel_select_type channel_select;
rt_uint32_t period, pulse, channel, psc, tmr_clock;
rt_uint32_t pclk1_doubler = 0, pclk2_doubler = 0;
tmr_pclk_get(&pclk1_doubler, &pclk2_doubler);
crm_clocks_freq_get(&clocks_struct);
if(
#if defined (TMR1)
(tmr_x == TMR1)
#endif
#if defined (TMR8)
|| (tmr_x == TMR8)
#endif
#if defined (TMR9)
|| (tmr_x == TMR9)
#endif
#if defined (TMR10)
|| (tmr_x == TMR10)
#endif
#if defined (TMR11)
|| (tmr_x == TMR11)
#endif
)
{
tmr_clock = clocks_struct.apb2_freq * pclk2_doubler;
}
else
{
tmr_clock = clocks_struct.apb1_freq * pclk1_doubler;
}
/* convert nanosecond to frequency and duty cycle. */
tmr_clock /= 1000000UL;
/* calculate pwm period */
period = (unsigned long long)configuration->period * tmr_clock / 1000ULL;;
psc = period / MAX_PERIOD + 1;
period = period / psc;
tmr_div_value_set(tmr_x, psc - 1);
if(period < MIN_PERIOD)
{
period = MIN_PERIOD;
}
tmr_period_value_set(tmr_x, period - 1);
/* calculate pulse width */
pulse = (unsigned long long)configuration->pulse * tmr_clock / psc / 1000ULL;
if(pulse < MIN_PULSE)
{
pulse = MIN_PULSE;
}
else if(pulse >= period)
{
pulse = period + 1;
}
/* get channel parameter */
channel = configuration->channel;
if(channel == 1)
{
channel_select = TMR_SELECT_CHANNEL_1;
}
else if(channel == 2)
{
channel_select = TMR_SELECT_CHANNEL_2;
}
else if(channel == 3)
{
channel_select = TMR_SELECT_CHANNEL_3;
}
else if(channel == 4)
{
channel_select = TMR_SELECT_CHANNEL_4;
}
tmr_channel_value_set(tmr_x, channel_select, pulse);
/* if you want the pwm setting to take effect immediately,
please uncommon the following code, but it will cause the last pwm cycle not complete. */
//tmr_counter_value_set(tmr_x, 0);
//tmr_x->swevt_bit.ovfswtr = TRUE;
return RT_EOK;
}
static rt_err_t drv_pwm_set_period(tmr_type* tmr_x, struct rt_pwm_configuration *configuration)
{
crm_clocks_freq_type clocks_struct;
rt_uint32_t period, psc, tmr_clock;
rt_uint32_t pclk1_doubler = 0, pclk2_doubler = 0;
tmr_pclk_get(&pclk1_doubler, &pclk2_doubler);
crm_clocks_freq_get(&clocks_struct);
if(
#if defined (TMR1)
(tmr_x == TMR1)
#endif
#if defined (TMR8)
|| (tmr_x == TMR8)
#endif
#if defined (TMR9)
|| (tmr_x == TMR9)
#endif
#if defined (TMR10)
|| (tmr_x == TMR10)
#endif
#if defined (TMR11)
|| (tmr_x == TMR11)
#endif
)
{
tmr_clock = clocks_struct.apb2_freq * pclk2_doubler;
}
else
{
tmr_clock = clocks_struct.apb1_freq * pclk1_doubler;
}
/* convert nanosecond to frequency and duty cycle. */
tmr_clock /= 1000000UL;
/* calculate pwm period */
period = (unsigned long long)configuration->period * tmr_clock / 1000ULL;;
psc = period / MAX_PERIOD + 1;
period = period / psc;
tmr_div_value_set(tmr_x, psc - 1);
if(period < MIN_PERIOD)
{
period = MIN_PERIOD;
}
tmr_period_value_set(tmr_x, period - 1);
return RT_EOK;
}
static rt_err_t drv_pwm_set_pulse(tmr_type* tmr_x, struct rt_pwm_configuration *configuration)
{
crm_clocks_freq_type clocks_struct;
tmr_channel_select_type channel_select;
rt_uint32_t period, pulse, channel, psc, tmr_clock;
rt_uint32_t pclk1_doubler = 0, pclk2_doubler = 0;
tmr_pclk_get(&pclk1_doubler, &pclk2_doubler);
crm_clocks_freq_get(&clocks_struct);
if(
#if defined (TMR1)
(tmr_x == TMR1)
#endif
#if defined (TMR8)
|| (tmr_x == TMR8)
#endif
#if defined (TMR9)
|| (tmr_x == TMR9)
#endif
#if defined (TMR10)
|| (tmr_x == TMR10)
#endif
#if defined (TMR11)
|| (tmr_x == TMR11)
#endif
)
{
tmr_clock = clocks_struct.apb2_freq * pclk2_doubler;
}
else
{
tmr_clock = clocks_struct.apb1_freq * pclk1_doubler;
}
/* convert nanosecond to frequency and duty cycle. */
tmr_clock /= 1000000UL;
/* calculate pwm period */
period = (unsigned long long)configuration->period * tmr_clock / 1000ULL;;
psc = period / MAX_PERIOD + 1;
/* calculate pulse width */
pulse = (unsigned long long)configuration->pulse * tmr_clock / psc / 1000ULL;
if(pulse < MIN_PULSE)
{
pulse = MIN_PULSE;
}
else if(pulse >= period)
{
pulse = period + 1;
}
/* get channel parameter */
channel = configuration->channel;
if(channel == 1)
{
channel_select = TMR_SELECT_CHANNEL_1;
}
else if(channel == 2)
{
channel_select = TMR_SELECT_CHANNEL_2;
}
else if(channel == 3)
{
channel_select = TMR_SELECT_CHANNEL_3;
}
else if(channel == 4)
{
channel_select = TMR_SELECT_CHANNEL_4;
}
tmr_channel_value_set(tmr_x, channel_select, pulse);
return RT_EOK;
}
static rt_err_t drv_pwm_control(struct rt_device_pwm *device, int cmd, void *arg)
{
struct rt_pwm_configuration *configuration = (struct rt_pwm_configuration *)arg;
tmr_type *tmr_x = (tmr_type *)device->parent.user_data;
switch (cmd)
{
case PWM_CMD_ENABLE:
return drv_pwm_enable(tmr_x, configuration, RT_TRUE);
case PWM_CMD_DISABLE:
return drv_pwm_enable(tmr_x, configuration, RT_FALSE);
case PWM_CMD_SET:
return drv_pwm_set(tmr_x, configuration);
case PWM_CMD_SET_PERIOD:
return drv_pwm_set_period(tmr_x, configuration);
case PWM_CMD_SET_PULSE:
return drv_pwm_set_pulse(tmr_x, configuration);
case PWM_CMD_GET:
return drv_pwm_get(tmr_x, configuration);
default:
return -RT_EINVAL;
}
}
static void pwm_get_channel(void)
{
#ifdef BSP_USING_PWM1_CH1
at32_pwm_obj[PWM1_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM1_CH2
at32_pwm_obj[PWM1_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM1_CH3
at32_pwm_obj[PWM1_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM1_CH4
at32_pwm_obj[PWM1_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM2_CH1
at32_pwm_obj[PWM2_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM2_CH2
at32_pwm_obj[PWM2_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM2_CH3
at32_pwm_obj[PWM2_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM2_CH4
at32_pwm_obj[PWM2_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM3_CH1
at32_pwm_obj[PWM3_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM3_CH2
at32_pwm_obj[PWM3_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM3_CH3
at32_pwm_obj[PWM3_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM3_CH4
at32_pwm_obj[PWM3_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM4_CH1
at32_pwm_obj[PWM4_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM4_CH2
at32_pwm_obj[PWM4_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM4_CH3
at32_pwm_obj[PWM4_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM4_CH4
at32_pwm_obj[PWM4_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM5_CH1
at32_pwm_obj[PWM5_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM5_CH2
at32_pwm_obj[PWM5_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM5_CH3
at32_pwm_obj[PWM5_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM5_CH4
at32_pwm_obj[PWM5_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM6_CH1
at32_pwm_obj[PWM6_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM6_CH2
at32_pwm_obj[PWM6_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM6_CH3
at32_pwm_obj[PWM6_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM6_CH4
at32_pwm_obj[PWM6_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM7_CH1
at32_pwm_obj[PWM7_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM7_CH2
at32_pwm_obj[PWM7_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM7_CH3
at32_pwm_obj[PWM7_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM7_CH4
at32_pwm_obj[PWM7_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM8_CH1
at32_pwm_obj[PWM8_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM8_CH2
at32_pwm_obj[PWM8_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM8_CH3
at32_pwm_obj[PWM8_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM8_CH4
at32_pwm_obj[PWM8_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM9_CH1
at32_pwm_obj[PWM9_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM9_CH2
at32_pwm_obj[PWM9_INDEX].channel |= 1 << 1;
#endif
#ifdef BSP_USING_PWM9_CH3
at32_pwm_obj[PWM9_INDEX].channel |= 1 << 2;
#endif
#ifdef BSP_USING_PWM9_CH4
at32_pwm_obj[PWM9_INDEX].channel |= 1 << 3;
#endif
#ifdef BSP_USING_PWM12_CH1
at32_pwm_obj[PWM12_INDEX].channel |= 1 << 0;
#endif
#ifdef BSP_USING_PWM12_CH2
at32_pwm_obj[PWM12_INDEX].channel |= 1 << 1;
#endif
}
static int rt_hw_pwm_init(void)
{
int i = 0;
int result = RT_EOK;
pwm_get_channel();
for(i = 0; i < sizeof(at32_pwm_obj) / sizeof(at32_pwm_obj[0]); i++)
{
if(at32_hw_pwm_init(&at32_pwm_obj[i]) != RT_EOK)
{
LOG_E("%s init failed", at32_pwm_obj[i].name);
result = -RT_ERROR;
goto __exit;
}
else
{
if(rt_device_pwm_register(&at32_pwm_obj[i].pwm_device, at32_pwm_obj[i].name, &drv_ops, at32_pwm_obj[i].tmr_x) == RT_EOK)
{
LOG_D("%s register success", at32_pwm_obj[i].name);
}
else
{
LOG_D("%s register failed", at32_pwm_obj[i].name);
result = -RT_ERROR;
}
}
}
__exit:
return result;
}
INIT_BOARD_EXPORT(rt_hw_pwm_init);
#endif /* RT_USING_PWM */