rt-thread-official/bsp/imxrt/libraries/MIMXRT1020/MIMXRT1021/drivers/fsl_dcdc.c

914 lines
32 KiB
C

/*
* Copyright 2017-2021, NXP
* All rights reserved.
*
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "fsl_dcdc.h"
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.dcdc_1"
#endif
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief Get instance number for DCDC module.
*
* @param base DCDC peripheral base address
*/
static uint32_t DCDC_GetInstance(DCDC_Type *base);
#if (defined(DCDC_REG4_ENABLE_SP_MASK) && DCDC_REG4_ENABLE_SP_MASK)
/*!
* @brief Convert the byte array to word.
*
* @param ptrArray Pointer to the byte array.
* @return The converted result.
*/
static uint32_t DCDC_ConvertByteArrayToWord(uint8_t *ptrArray);
#endif /* DCDC_REG4_ENABLE_SP_MASK */
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Pointers to DCDC bases for each instance. */
static DCDC_Type *const s_dcdcBases[] = DCDC_BASE_PTRS;
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/*! @brief Pointers to DCDC clocks for each instance. */
static const clock_ip_name_t s_dcdcClocks[] = DCDC_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
/*******************************************************************************
* Code
******************************************************************************/
static uint32_t DCDC_GetInstance(DCDC_Type *base)
{
uint32_t instance;
/* Find the instance index from base address mappings. */
for (instance = 0; instance < ARRAY_SIZE(s_dcdcBases); instance++)
{
if (s_dcdcBases[instance] == base)
{
break;
}
}
assert(instance < ARRAY_SIZE(s_dcdcBases));
return instance;
}
#if (defined(DCDC_REG4_ENABLE_SP_MASK) && DCDC_REG4_ENABLE_SP_MASK)
static uint32_t DCDC_ConvertByteArrayToWord(uint8_t *ptrArray)
{
assert(ptrArray != NULL);
uint32_t temp32 = 0UL;
uint8_t index;
for (index = 0U; index < 4U; index++)
{
temp32 |= ptrArray[index] << ((index % 4U) * 8U);
}
return temp32;
}
#endif /* DCDC_REG4_ENABLE_SP_MASK */
#if defined(FSL_FEATURE_DCDC_HAS_CTRL_REG) && FSL_FEATURE_DCDC_HAS_CTRL_REG
/*!
* brief Enable the access to DCDC registers.
*
* param base DCDC peripheral base address.
* param config Pointer to the configuration structure.
*/
void DCDC_Init(DCDC_Type *base, dcdc_config_t *config)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the clock. */
CLOCK_EnableClock(s_dcdcClocks[DCDC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
uint32_t tmp32 = base->CTRL0;
tmp32 |= DCDC_CTRL0_CONTROL_MODE(config->controlMode) | DCDC_CTRL0_TRIM_HOLD(config->trimInputMode);
if (config->enableDcdcTimeout)
{
tmp32 |= DCDC_CTRL0_ENABLE_DCDC_CNT_MASK;
}
if (config->enableSwitchingConverterOutput)
{
tmp32 |= DCDC_CTRL0_DIG_EN_MASK;
}
base->CTRL0 |= DCDC_CTRL0_ENABLE_MASK;
base->CTRL0 = tmp32;
}
#else
/*!
* brief Enable the access to DCDC registers.
*
* param base DCDC peripheral base address.
*/
void DCDC_Init(DCDC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Enable the clock. */
CLOCK_EnableClock(s_dcdcClocks[DCDC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
#endif /* FSL_FEATURE_DCDC_HAS_CTRL_REG */
/*!
* brief Disable the access to DCDC registers.
*
* param base DCDC peripheral base address.
*/
void DCDC_Deinit(DCDC_Type *base)
{
#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Disable the clock. */
CLOCK_DisableClock(s_dcdcClocks[DCDC_GetInstance(base)]);
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
}
#if defined(FSL_FEATURE_DCDC_HAS_CTRL_REG) && FSL_FEATURE_DCDC_HAS_CTRL_REG
/*!
* brief Get the default setting for DCDC user configuration structure.
*
* This function initializes the user configuration structure to a default value. The default values are:
* code
* config->controlMode = kDCDC_StaticControl;
* config->trimInputMode = kDCDC_SampleTrimInput;
* config->enableDcdcTimeout = false;
* config->enableSwitchingConverterOutput = false;
* endcode
*
* param config Pointer to configuration structure. See to "dcdc_config_t"
*/
void DCDC_GetDefaultConfig(DCDC_Type *base, dcdc_config_t *config)
{
assert(NULL != config);
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
config->controlMode = kDCDC_StaticControl;
config->trimInputMode = kDCDC_SampleTrimInput;
config->enableDcdcTimeout = false;
config->enableSwitchingConverterOutput = false;
}
/*!
* @brief Make DCDC enter into low power modes.
*
* @param base DCDC peripheral base address.
* @param mode DCDC low power mode selection. See to "_dcdc_low_power_mode"
*/
void DCDC_EnterLowPowerMode(DCDC_Type *base, dcdc_low_power_mode_t mode)
{
switch (mode)
{
case kDCDC_StandbyMode:
base->CTRL0 |= DCDC_CTRL0_STBY_EN_MASK;
break;
case kDCDC_LowPowerMode:
base->CTRL0 |= DCDC_CTRL0_LP_MODE_EN_MASK;
break;
case kDCDC_GpcStandbyLowPowerMode:
base->CTRL0 |= DCDC_CTRL0_STBY_LP_MODE_EN_MASK;
break;
default:
assert(false);
break;
}
}
#endif /* FSL_FEATURE_DCDC_HAS_CTRL_REG */
/*!
* brief Configure the DCDC clock source.
*
* param base DCDC peripheral base address.
* param clockSource Clock source for DCDC. See to "dcdc_clock_source_t".
*/
void DCDC_SetClockSource(DCDC_Type *base, dcdc_clock_source_t clockSource)
{
uint32_t tmp32;
/* Configure the DCDC_REG0 register. */
tmp32 = base->REG0 & ~(DCDC_REG0_XTAL_24M_OK_MASK | DCDC_REG0_DISABLE_AUTO_CLK_SWITCH_MASK |
DCDC_REG0_SEL_CLK_MASK | DCDC_REG0_PWD_OSC_INT_MASK);
switch (clockSource)
{
case kDCDC_ClockInternalOsc:
tmp32 |= DCDC_REG0_DISABLE_AUTO_CLK_SWITCH_MASK;
break;
case kDCDC_ClockExternalOsc:
/* Choose the external clock and disable the internal clock. */
tmp32 |= DCDC_REG0_DISABLE_AUTO_CLK_SWITCH_MASK | DCDC_REG0_SEL_CLK_MASK | DCDC_REG0_PWD_OSC_INT_MASK;
break;
case kDCDC_ClockAutoSwitch:
/* Set to switch from internal ring osc to xtal 24M if auto mode is enabled. */
tmp32 |= DCDC_REG0_XTAL_24M_OK_MASK;
break;
default:
assert(false);
break;
}
base->REG0 = tmp32;
}
/*!
* brief Get the default setting for detection configuration.
*
* The default configuration are set according to responding registers' setting when powered on.
* They are:
* code
* config->enableXtalokDetection = false;
* config->powerDownOverVoltageDetection = true;
* config->powerDownLowVlotageDetection = false;
* config->powerDownOverCurrentDetection = true;
* config->powerDownPeakCurrentDetection = true;
* config->powerDownZeroCrossDetection = true;
* config->OverCurrentThreshold = kDCDC_OverCurrentThresholdAlt0;
* config->PeakCurrentThreshold = kDCDC_PeakCurrentThresholdAlt0;
* endcode
*
* param config Pointer to configuration structure. See to "dcdc_detection_config_t"
*/
void DCDC_GetDefaultDetectionConfig(dcdc_detection_config_t *config)
{
assert(NULL != config);
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
config->enableXtalokDetection = false;
#if (defined(FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT) && (FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT == 2))
config->powerDownOverVoltageVdd1P8Detection = true;
config->powerDownOverVoltageVdd1P0Detection = true;
#else
config->powerDownOverVoltageDetection = true;
#endif /* FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT */
config->powerDownLowVlotageDetection = false;
config->powerDownOverCurrentDetection = true;
config->powerDownPeakCurrentDetection = true;
config->powerDownZeroCrossDetection = true;
config->OverCurrentThreshold = kDCDC_OverCurrentThresholdAlt0;
config->PeakCurrentThreshold = kDCDC_PeakCurrentThresholdAlt0;
}
/*!
* breif Configure the DCDC detection.
*
* param base DCDC peripheral base address.
* param config Pointer to configuration structure. See to "dcdc_detection_config_t"
*/
void DCDC_SetDetectionConfig(DCDC_Type *base, const dcdc_detection_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG0 register. */
tmp32 = base->REG0 & ~(DCDC_REG0_XTALOK_DISABLE_MASK
#if (defined(FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT) && (FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT == 2))
| DCDC_REG0_PWD_HIGH_VDD1P8_DET_MASK | DCDC_REG0_PWD_HIGH_VDD1P0_DET_MASK
#else
| DCDC_REG0_PWD_HIGH_VOLT_DET_MASK
#endif /* FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT */
#if defined(FSL_FEATURE_DCDC_HAS_REG0_DCDC_IN_DET) && FSL_FEATURE_DCDC_HAS_REG0_DCDC_IN_DET
| DCDC_REG0_PWD_CMP_DCDC_IN_DET_MASK
#else
| DCDC_REG0_PWD_CMP_BATT_DET_MASK
#endif /* FSL_FEATURE_DCDC_HAS_REG0_DCDC_IN_DET */
| DCDC_REG0_PWD_OVERCUR_DET_MASK | DCDC_REG0_PWD_CUR_SNS_CMP_MASK | DCDC_REG0_PWD_ZCD_MASK |
DCDC_REG0_CUR_SNS_THRSH_MASK | DCDC_REG0_OVERCUR_TRIG_ADJ_MASK);
tmp32 |= DCDC_REG0_CUR_SNS_THRSH(config->PeakCurrentThreshold) |
DCDC_REG0_OVERCUR_TRIG_ADJ(config->OverCurrentThreshold);
if (false == config->enableXtalokDetection)
{
tmp32 |= DCDC_REG0_XTALOK_DISABLE_MASK;
}
#if (defined(FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT) && (FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT == 2))
if (config->powerDownOverVoltageVdd1P8Detection)
{
tmp32 |= DCDC_REG0_PWD_HIGH_VDD1P8_DET_MASK;
}
if (config->powerDownOverVoltageVdd1P0Detection)
{
tmp32 |= DCDC_REG0_PWD_HIGH_VDD1P0_DET_MASK;
}
#else
if (config->powerDownOverVoltageDetection)
{
tmp32 |= DCDC_REG0_PWD_HIGH_VOLT_DET_MASK;
}
#endif /* FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT */
if (config->powerDownLowVlotageDetection)
{
#if defined(FSL_FEATURE_DCDC_HAS_REG0_DCDC_IN_DET) && FSL_FEATURE_DCDC_HAS_REG0_DCDC_IN_DET
tmp32 |= DCDC_REG0_PWD_CMP_DCDC_IN_DET_MASK;
#else
tmp32 |= DCDC_REG0_PWD_CMP_BATT_DET_MASK;
#endif /* FSL_FEATURE_DCDC_HAS_REG0_DCDC_IN_DET */
}
if (config->powerDownOverCurrentDetection)
{
tmp32 |= DCDC_REG0_PWD_OVERCUR_DET_MASK;
}
if (config->powerDownPeakCurrentDetection)
{
tmp32 |= DCDC_REG0_PWD_CUR_SNS_CMP_MASK;
}
if (config->powerDownZeroCrossDetection)
{
tmp32 |= DCDC_REG0_PWD_ZCD_MASK;
}
base->REG0 = tmp32;
}
/*!
* brief Get the default setting for low power configuration.
*
* The default configuration are set according to responding registers' setting when powered on.
* They are:
* code
* config->enableOverloadDetection = true;
* config->enableAdjustHystereticValue = false;
* config->countChargingTimePeriod = kDCDC_CountChargingTimePeriod8Cycle;
* config->countChargingTimeThreshold = kDCDC_CountChargingTimeThreshold32;
* endcode
*
* param config Pointer to configuration structure. See to "dcdc_low_power_config_t"
*/
void DCDC_GetDefaultLowPowerConfig(dcdc_low_power_config_t *config)
{
assert(NULL != config);
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
#if !(defined(FSL_FEATURE_DCDC_HAS_NO_REG0_EN_LP_OVERLOAD_SNS) && FSL_FEATURE_DCDC_HAS_NO_REG0_EN_LP_OVERLOAD_SNS)
config->enableOverloadDetection = true;
#endif /* FSL_FEATURE_DCDC_HAS_NO_REG0_EN_LP_OVERLOAD_SNS */
config->enableAdjustHystereticValue = false;
config->countChargingTimePeriod = kDCDC_CountChargingTimePeriod8Cycle;
config->countChargingTimeThreshold = kDCDC_CountChargingTimeThreshold32;
}
/*!
* brief Configure the DCDC low power.
*
* param base DCDC peripheral base address.
* param config Pointer to configuration structure. See to "dcdc_low_power_config_t".
*/
void DCDC_SetLowPowerConfig(DCDC_Type *base, const dcdc_low_power_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG0 register. */
tmp32 = base->REG0 &
~(DCDC_REG0_LP_HIGH_HYS_MASK | DCDC_REG0_LP_OVERLOAD_FREQ_SEL_MASK | DCDC_REG0_LP_OVERLOAD_THRSH_MASK
#if !(defined(FSL_FEATURE_DCDC_HAS_NO_REG0_EN_LP_OVERLOAD_SNS) && FSL_FEATURE_DCDC_HAS_NO_REG0_EN_LP_OVERLOAD_SNS)
| DCDC_REG0_EN_LP_OVERLOAD_SNS_MASK
#endif /* FSL_FEATURE_DCDC_HAS_NO_REG0_EN_LP_OVERLOAD_SNS */
);
tmp32 |= DCDC_REG0_LP_OVERLOAD_FREQ_SEL(config->countChargingTimePeriod) |
DCDC_REG0_LP_OVERLOAD_THRSH(config->countChargingTimeThreshold);
#if !(defined(FSL_FEATURE_DCDC_HAS_NO_REG0_EN_LP_OVERLOAD_SNS) && FSL_FEATURE_DCDC_HAS_NO_REG0_EN_LP_OVERLOAD_SNS)
if (config->enableOverloadDetection)
{
tmp32 |= DCDC_REG0_EN_LP_OVERLOAD_SNS_MASK;
}
#endif /* FSL_FEATURE_DCDC_HAS_NO_REG0_EN_LP_OVERLOAD_SNS */
if (config->enableAdjustHystereticValue)
{
tmp32 |= DCDC_REG0_LP_HIGH_HYS_MASK;
}
base->REG0 = tmp32;
}
/*!
* brief Get DCDC status flags.
*
* param base peripheral base address.
* return Mask of asserted status flags. See to "_dcdc_status_flags_t".
*/
uint32_t DCDC_GetstatusFlags(DCDC_Type *base)
{
uint32_t tmp32 = 0U;
if (DCDC_REG0_STS_DC_OK_MASK == (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
tmp32 |= (uint32_t)kDCDC_LockedOKStatus;
}
return tmp32;
}
#if !(defined(FSL_FEATURE_DCDC_HAS_NO_CURRENT_ALERT_FUNC) && FSL_FEATURE_DCDC_HAS_NO_CURRENT_ALERT_FUNC)
/*!
* brief Reset current alert signal. Alert signal is generate by peak current detection.
*
* param base DCDC peripheral base address.
* param enable Switcher to reset signal. True means reset signal. False means don't reset signal.
*/
void DCDC_ResetCurrentAlertSignal(DCDC_Type *base, bool enable)
{
if (enable)
{
base->REG0 |= DCDC_REG0_CURRENT_ALERT_RESET_MASK;
}
else
{
base->REG0 &= ~DCDC_REG0_CURRENT_ALERT_RESET_MASK;
}
}
#endif /* FSL_FEATURE_DCDC_HAS_NO_CURRENT_ALERT_FUNC */
/*!
* brief Get the default setting for loop control configuration.
*
* The default configuration are set according to responding registers' setting when powered on.
* They are:
* code
* config->enableCommonHysteresis = false;
* config->enableCommonThresholdDetection = false;
* config->enableInvertHysteresisSign = false;
* config->enableRCThresholdDetection = false;
* config->enableRCScaleCircuit = 0U;
* config->complementFeedForwardStep = 0U;
* endcode
*
* param config Pointer to configuration structure. See to "dcdc_loop_control_config_t"
*/
void DCDC_GetDefaultLoopControlConfig(dcdc_loop_control_config_t *config)
{
assert(NULL != config);
/* Initializes the configure structure to zero. */
(void)memset(config, 0, sizeof(*config));
config->enableCommonHysteresis = false;
config->enableCommonThresholdDetection = false;
config->enableInvertHysteresisSign = false;
config->enableRCThresholdDetection = false;
config->enableRCScaleCircuit = 0U;
config->complementFeedForwardStep = 0U;
}
/*!
* brief Configure the DCDC loop control.
*
* param base DCDC peripheral base address.
* param config Pointer to configuration structure. See to "dcdc_loop_control_config_t".
*/
void DCDC_SetLoopControlConfig(DCDC_Type *base, const dcdc_loop_control_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
/* Configure the DCDC_REG1 register. */
#if defined(FSL_FEATURE_DCDC_HAS_SWITCHING_CONVERTER_DIFFERENTIAL_MODE) && \
FSL_FEATURE_DCDC_HAS_SWITCHING_CONVERTER_DIFFERENTIAL_MODE
tmp32 = base->REG1 & ~(DCDC_REG1_LOOPCTRL_EN_DF_HYST_MASK | DCDC_REG1_LOOPCTRL_EN_CM_HYST_MASK |
DCDC_REG1_LOOPCTRL_DF_HST_THRESH_MASK | DCDC_REG1_LOOPCTRL_CM_HST_THRESH_MASK);
if (config->enableCommonHysteresis)
{
tmp32 |= DCDC_REG1_LOOPCTRL_EN_CM_HYST_MASK;
}
if (config->enableCommonThresholdDetection)
{
tmp32 |= DCDC_REG1_LOOPCTRL_CM_HST_THRESH_MASK;
}
if (config->enableDifferentialHysteresis)
{
tmp32 |= DCDC_REG1_LOOPCTRL_EN_DF_HYST_MASK;
}
if (config->enableDifferentialThresholdDetection)
{
tmp32 |= DCDC_REG1_LOOPCTRL_DF_HST_THRESH_MASK;
}
#else
tmp32 = base->REG1 & ~(DCDC_REG1_LOOPCTRL_EN_HYST_MASK | DCDC_REG1_LOOPCTRL_HST_THRESH_MASK);
if (config->enableCommonHysteresis)
{
tmp32 |= DCDC_REG1_LOOPCTRL_EN_HYST_MASK;
}
if (config->enableCommonThresholdDetection)
{
tmp32 |= DCDC_REG1_LOOPCTRL_HST_THRESH_MASK;
}
#endif /* FSL_FEATURE_DCDC_HAS_SWITCHING_CONVERTER_DIFFERENTIAL_MODE */
base->REG1 = tmp32;
/* configure the DCDC_REG2 register. */
tmp32 = base->REG2 & ~(DCDC_REG2_LOOPCTRL_HYST_SIGN_MASK | DCDC_REG2_LOOPCTRL_RCSCALE_THRSH_MASK |
DCDC_REG2_LOOPCTRL_EN_RCSCALE_MASK | DCDC_REG2_LOOPCTRL_DC_FF_MASK);
tmp32 |= DCDC_REG2_LOOPCTRL_DC_FF(config->complementFeedForwardStep) |
DCDC_REG2_LOOPCTRL_EN_RCSCALE(config->enableRCScaleCircuit);
if (config->enableInvertHysteresisSign)
{
tmp32 |= DCDC_REG2_LOOPCTRL_HYST_SIGN_MASK;
}
if (config->enableRCThresholdDetection)
{
tmp32 |= DCDC_REG2_LOOPCTRL_RCSCALE_THRSH_MASK;
}
base->REG2 = tmp32;
}
/*!
* brief Configure for the min power.
*
* param base DCDC peripheral base address.
* param config Pointer to configuration structure. See to "dcdc_min_power_config_t".
*/
void DCDC_SetMinPowerConfig(DCDC_Type *base, const dcdc_min_power_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
tmp32 = base->REG3 & ~DCDC_REG3_MINPWR_DC_HALFCLK_MASK;
if (config->enableUseHalfFreqForContinuous)
{
tmp32 |= DCDC_REG3_MINPWR_DC_HALFCLK_MASK;
}
base->REG3 = tmp32;
}
#if (defined(FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT) && (FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT == 2))
/*!
* brief Adjust the target voltage of VDD_SOC in run mode and low power mode.
* Do not use this function. It has been superceded by DCDC_AdjustRunTargetVoltage
* and DCDC_AdjustLowPowerTargetVoltage.
*
* This function is to adjust the target voltage of DCDC output. Change them and finally wait until the output is
* stabled.
* Set the target value of run mode the same as low power mode before entering power save mode, because DCDC will switch
* back to run mode if it detects the current loading is larger than about 50 mA(typical value).
*
* param base DCDC peripheral base address.
* param VDDRun Target value in run mode. 25 mV each step from 0x00 to 0x1F. 00 is for 0.8V, 0x1F is for 1.575V.
* param VDDStandby Target value in low power mode. 25 mV each step from 0x00 to 0x4. 00 is for 0.9V, 0x4 is for 1.0V.
* param sel sel DCDC target voltage output selection. See to "_dcdc_voltage_output_sel".
*/
void DCDC_AdjustTargetVoltage(DCDC_Type *base, uint32_t VDDRun, uint32_t VDDStandby, dcdc_voltage_output_sel_t sel)
{
uint32_t tmp32;
if (sel == kDCDC_VoltageOutput1P8)
{
/* Unlock the step for the VDD 1P8. */
base->REG3 &= ~DCDC_REG3_VDD1P8CTRL_DISABLE_STEP_MASK;
/* Configure the DCDC_CTRL1 register. */
tmp32 = base->CTRL1 & ~(DCDC_CTRL1_VDD1P8CTRL_STBY_TRG_MASK | DCDC_CTRL1_VDD1P8CTRL_TRG_MASK);
tmp32 |= DCDC_CTRL1_VDD1P8CTRL_STBY_TRG(VDDStandby) | DCDC_CTRL1_VDD1P8CTRL_TRG(VDDRun);
base->CTRL1 = tmp32;
}
else if (sel == kDCDC_VoltageOutput1P0)
{
/* Unlock the step for the VDD 1P0. */
base->REG3 &= ~DCDC_REG3_VDD1P0CTRL_DISABLE_STEP_MASK;
/* Configure the DCDC_CTRL1 register. */
tmp32 = base->CTRL1 & ~(DCDC_CTRL1_VDD1P0CTRL_STBY_TRG_MASK | DCDC_CTRL1_VDD1P0CTRL_TRG_MASK);
tmp32 |= DCDC_CTRL1_VDD1P0CTRL_STBY_TRG(VDDStandby) | DCDC_CTRL1_VDD1P0CTRL_TRG(VDDRun);
base->CTRL1 = tmp32;
}
else
{
; /* Intentional empty */
}
/* DCDC_STS_DC_OK bit will be de-asserted after target register changes. After output voltage is set to new
* target value, DCDC_STS_DC_OK will be asserted. */
while (DCDC_REG0_STS_DC_OK_MASK != (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
}
}
/*!
* brief Adjust the target voltage of VDD_SOC in run mode.
*
* This function is to adjust the target voltage of DCDC output. Change them and finally wait until the output is
* stabled.
* Set the target value of run mode the same as low power mode before entering power save mode, because DCDC will switch
* back to run mode if it detects the current loading is larger than about 50 mA(typical value).
*
* param base DCDC peripheral base address.
* param VDDRun Target value in run mode. 25 mV each step from 0x00 to 0x1F. 00 is for 0.8V, 0x1F is for 1.575V.
* param sel sel DCDC target voltage output selection. See to "_dcdc_voltage_output_sel".
*/
void DCDC_AdjustRunTargetVoltage(DCDC_Type *base, uint32_t VDDRun, dcdc_voltage_output_sel_t sel)
{
uint32_t tmp32;
if (sel == kDCDC_VoltageOutput1P8)
{
/* Unlock the step for the VDD 1P8. */
base->REG3 &= ~DCDC_REG3_VDD1P8CTRL_DISABLE_STEP_MASK;
/* Configure the DCDC_CTRL1 register. */
tmp32 = base->CTRL1 & ~DCDC_CTRL1_VDD1P8CTRL_TRG_MASK;
tmp32 |= DCDC_CTRL1_VDD1P8CTRL_TRG(VDDRun);
base->CTRL1 = tmp32;
}
else if (sel == kDCDC_VoltageOutput1P0)
{
/* Unlock the step for the VDD 1P0. */
base->REG3 &= ~DCDC_REG3_VDD1P0CTRL_DISABLE_STEP_MASK;
/* Configure the DCDC_CTRL1 register. */
tmp32 = base->CTRL1 & ~DCDC_CTRL1_VDD1P0CTRL_TRG_MASK;
tmp32 |= DCDC_CTRL1_VDD1P0CTRL_TRG(VDDRun);
base->CTRL1 = tmp32;
}
else
{
; /* Intentional empty */
}
/* DCDC_STS_DC_OK bit will be de-asserted after target register changes. After output voltage is set to new
* target value, DCDC_STS_DC_OK will be asserted. */
while (DCDC_REG0_STS_DC_OK_MASK != (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
}
}
/*!
* brief Adjust the target voltage of VDD_SOC in low power mode.
*
* This function is to adjust the target voltage of DCDC output. Change them and finally wait until the output is
* stabled.
* Set the target value of run mode the same as low power mode before entering power save mode, because DCDC will switch
* back to run mode if it detects the current loading is larger than about 50 mA(typical value).
*
* param base DCDC peripheral base address.
* param VDDStandby Target value in low power mode. 25 mV each step from 0x00 to 0x4. 00 is for 0.9V, 0x4 is for 1.0V.
* param sel sel DCDC target voltage output selection. See to "_dcdc_voltage_output_sel".
*/
void DCDC_AdjustLowPowerTargetVoltage(DCDC_Type *base, uint32_t VDDStandby, dcdc_voltage_output_sel_t sel)
{
uint32_t tmp32;
if (sel == kDCDC_VoltageOutput1P8)
{
/* Unlock the step for the VDD 1P8. */
base->REG3 &= ~DCDC_REG3_VDD1P8CTRL_DISABLE_STEP_MASK;
/* Configure the DCDC_CTRL1 register. */
tmp32 = base->CTRL1 & ~(DCDC_CTRL1_VDD1P8CTRL_STBY_TRG_MASK);
tmp32 |= DCDC_CTRL1_VDD1P8CTRL_STBY_TRG(VDDStandby);
base->CTRL1 = tmp32;
}
else if (sel == kDCDC_VoltageOutput1P0)
{
/* Unlock the step for the VDD 1P0. */
base->REG3 &= ~DCDC_REG3_VDD1P0CTRL_DISABLE_STEP_MASK;
/* Configure the DCDC_CTRL1 register. */
tmp32 = base->CTRL1 & ~(DCDC_CTRL1_VDD1P0CTRL_STBY_TRG_MASK);
tmp32 |= DCDC_CTRL1_VDD1P0CTRL_STBY_TRG(VDDStandby);
base->CTRL1 = tmp32;
}
else
{
; /* Intentional empty */
}
/* DCDC_STS_DC_OK bit will be de-asserted after target register changes. After output voltage is set to new
* target value, DCDC_STS_DC_OK will be asserted. */
while (DCDC_REG0_STS_DC_OK_MASK != (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
}
}
#else
/*!
* brief Adjust the target voltage of VDD_SOC in run mode and low power mode.
* Do not use this function. It has been superceded by DCDC_AdjustRunTargetVoltage
* and DCDC_AdjustLowPowerTargetVoltage
*
* This function is to adjust the target voltage of DCDC output. Change them and finally wait until the output is
* stabled.
* Set the target value of run mode the same as low power mode before entering power save mode, because DCDC will switch
* back to run mode if it detects the current loading is larger than about 50 mA(typical value).
*
* param base DCDC peripheral base address.
* param VDDRun Target value in run mode. 25 mV each step from 0x00 to 0x1F. 00 is for 0.8V, 0x1F is for 1.575V.
* param VDDStandby Target value in low power mode. 25 mV each step from 0x00 to 0x4. 00 is for 0.9V, 0x4 is for 1.0V.
*/
void DCDC_AdjustTargetVoltage(DCDC_Type *base, uint32_t VDDRun, uint32_t VDDStandby)
{
uint32_t tmp32;
/* Unlock the step for the output. */
base->REG3 &= ~DCDC_REG3_DISABLE_STEP_MASK;
/* Configure the DCDC_REG3 register. */
tmp32 = base->REG3 & ~(DCDC_REG3_TARGET_LP_MASK | DCDC_REG3_TRG_MASK);
tmp32 |= DCDC_REG3_TARGET_LP(VDDStandby) | DCDC_REG3_TRG(VDDRun);
base->REG3 = tmp32;
/* DCDC_STS_DC_OK bit will be de-asserted after target register changes. After output voltage is set to new
* target value, DCDC_STS_DC_OK will be asserted. */
while (DCDC_REG0_STS_DC_OK_MASK != (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
}
}
/*!
* brief Adjust the target voltage of VDD_SOC in run mode.
*
* This function is to adjust the target voltage of DCDC output. Change them and finally wait until the output is
* stabled.
* Set the target value of run mode the same as low power mode before entering power save mode, because DCDC will switch
* back to run mode if it detects the current loading is larger than about 50 mA(typical value).
*
* param base DCDC peripheral base address.
* param VDDRun Target value in run mode. 25 mV each step from 0x00 to 0x1F. 00 is for 0.8V, 0x1F is for 1.575V.
*/
void DCDC_AdjustRunTargetVoltage(DCDC_Type *base, uint32_t VDDRun)
{
uint32_t tmp32;
/* Unlock the step for the output. */
base->REG3 &= ~DCDC_REG3_DISABLE_STEP_MASK;
/* Configure the DCDC_REG3 register. */
tmp32 = base->REG3 & ~DCDC_REG3_TRG_MASK;
tmp32 |= DCDC_REG3_TRG(VDDRun);
base->REG3 = tmp32;
/* DCDC_STS_DC_OK bit will be de-asserted after target register changes. After output voltage is set to new
* target value, DCDC_STS_DC_OK will be asserted. */
while (DCDC_REG0_STS_DC_OK_MASK != (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
}
}
/*!
* brief Adjust the target voltage of VDD_SOC in low power mode.
*
* This function is to adjust the target voltage of DCDC output. Change them and finally wait until the output is
* stabled.
* Set the target value of run mode the same as low power mode before entering power save mode, because DCDC will switch
* back to run mode if it detects the current loading is larger than about 50 mA(typical value).
*
* param base DCDC peripheral base address.
* param VDDStandby Target value in low power mode. 25 mV each step from 0x00 to 0x4. 00 is for 0.9V, 0x4 is for 1.0V.
*/
void DCDC_AdjustLowPowerTargetVoltage(DCDC_Type *base, uint32_t VDDStandby)
{
uint32_t tmp32;
/* Unlock the step for the output. */
base->REG3 &= ~DCDC_REG3_DISABLE_STEP_MASK;
/* Configure the DCDC_REG3 register. */
tmp32 = base->REG3 & ~DCDC_REG3_TARGET_LP_MASK;
tmp32 |= DCDC_REG3_TARGET_LP(VDDStandby);
base->REG3 = tmp32;
/* DCDC_STS_DC_OK bit will be de-asserted after target register changes. After output voltage is set to new
* target value, DCDC_STS_DC_OK will be asserted. */
while (DCDC_REG0_STS_DC_OK_MASK != (DCDC_REG0_STS_DC_OK_MASK & base->REG0))
{
}
}
#endif /* FSL_FEATURE_DCDC_VDD_OUTPUT_COUNT == 2 */
/*!
* brief Configure the DCDC internal regulator.
*
* param base DCDC peripheral base address.
* param config Pointer to configuration structure. See to "dcdc_internal_regulator_config_t".
*/
void DCDC_SetInternalRegulatorConfig(DCDC_Type *base, const dcdc_internal_regulator_config_t *config)
{
assert(NULL != config);
uint32_t tmp32;
#if (defined(FSL_FEATURE_DCDC_HAS_REG3_FBK_SEL) && FSL_FEATURE_DCDC_HAS_REG3_FBK_SEL)
tmp32 = base->REG3 & ~DCDC_REG3_REG_FBK_SEL_MASK;
tmp32 |= DCDC_REG3_REG_FBK_SEL(config->feedbackPoint);
base->REG3 = tmp32;
tmp32 = base->REG1 & ~DCDC_REG1_REG_RLOAD_SW_MASK;
#else
/* Configure the DCDC_REG1 register. */
tmp32 = base->REG1 & ~(DCDC_REG1_REG_FBK_SEL_MASK | DCDC_REG1_REG_RLOAD_SW_MASK);
tmp32 |= DCDC_REG1_REG_FBK_SEL(config->feedbackPoint);
#endif /* FSL_FEATURE_DCDC_HAS_REG3_FBK_SEL */
if (config->enableLoadResistor)
{
tmp32 |= DCDC_REG1_REG_RLOAD_SW_MASK;
}
base->REG1 = tmp32;
}
#if (defined(DCDC_REG4_ENABLE_SP_MASK) && DCDC_REG4_ENABLE_SP_MASK)
/*!
* brief Init DCDC module when the control mode selected as setpoint mode.
*
* note The function should be invoked in the initial step to config the
* DCDC via setpoint control mode.
*
* param base DCDC peripheral base address.
* param config The pointer to the structure @ref dcdc_setpoint_config_t.
*/
void DCDC_SetPointInit(DCDC_Type *base, const dcdc_setpoint_config_t *config)
{
assert(config != NULL);
/* Enable DCDC Dig Logic. */
base->REG5 = config->enableDigLogicMap;
/* Set DCDC power mode. */
base->REG6 = config->lowpowerMap;
base->REG7 = config->standbyMap;
base->REG7P = config->standbyLowpowerMap;
/* Set target voltage of VDD1P8 in buck mode. */
base->REG8 = DCDC_ConvertByteArrayToWord(config->buckVDD1P8TargetVoltage);
base->REG9 = DCDC_ConvertByteArrayToWord(config->buckVDD1P8TargetVoltage + 4U);
base->REG10 = DCDC_ConvertByteArrayToWord(config->buckVDD1P8TargetVoltage + 8U);
base->REG11 = DCDC_ConvertByteArrayToWord(config->buckVDD1P8TargetVoltage + 12U);
/* Set target voltage of VDD1P0 in buck mode. */
base->REG12 = DCDC_ConvertByteArrayToWord(config->buckVDD1P0TargetVoltage);
base->REG13 = DCDC_ConvertByteArrayToWord(config->buckVDD1P0TargetVoltage + 4U);
base->REG14 = DCDC_ConvertByteArrayToWord(config->buckVDD1P0TargetVoltage + 8U);
base->REG15 = DCDC_ConvertByteArrayToWord(config->buckVDD1P0TargetVoltage + 12U);
/* Set target voltage of VDD1P8 in low power mode. */
base->REG16 = DCDC_ConvertByteArrayToWord(config->standbyVDD1P8TargetVoltage);
base->REG17 = DCDC_ConvertByteArrayToWord(config->standbyVDD1P8TargetVoltage + 4U);
base->REG18 = DCDC_ConvertByteArrayToWord(config->standbyVDD1P8TargetVoltage + 8U);
base->REG19 = DCDC_ConvertByteArrayToWord(config->standbyVDD1P8TargetVoltage + 12U);
/* Set target voltage of VDD1P0 in low power mode. */
base->REG20 = DCDC_ConvertByteArrayToWord(config->standbyVDD1P0TargetVoltage);
base->REG21 = DCDC_ConvertByteArrayToWord(config->standbyVDD1P0TargetVoltage + 4U);
base->REG22 = DCDC_ConvertByteArrayToWord(config->standbyVDD1P0TargetVoltage + 8U);
base->REG23 = DCDC_ConvertByteArrayToWord(config->standbyVDD1P0TargetVoltage + 12U);
/* Enable DCDC module. */
base->REG4 = config->enableDCDCMap;
}
#endif /* DCDC_REG4_ENABLE_SP_MASK */
/*!
* brief Boot DCDC into DCM(discontinous conduction mode).
*
* pwd_zcd=0x0;
* pwd_cmp_offset=0x0;
* dcdc_loopctrl_en_rcscale= 0x5;
* DCM_set_ctrl=1'b1;
*
* param base DCDC peripheral base address.
*/
void DCDC_BootIntoDCM(DCDC_Type *base)
{
base->REG0 &= ~(DCDC_REG0_PWD_ZCD_MASK | DCDC_REG0_PWD_CMP_OFFSET_MASK);
base->REG2 = (~DCDC_REG2_LOOPCTRL_EN_RCSCALE_MASK & base->REG2) | DCDC_REG2_LOOPCTRL_EN_RCSCALE(0x5U) |
DCDC_REG2_DCM_SET_CTRL_MASK;
}
/*!
* brief Boot DCDC into CCM(continous conduction mode).
*
* pwd_zcd=0x1;
* pwd_cmp_offset=0x0;
* dcdc_loopctrl_en_rcscale=0x3;
*
* param base DCDC peripheral base address.
*/
void DCDC_BootIntoCCM(DCDC_Type *base)
{
base->REG0 = (~DCDC_REG0_PWD_CMP_OFFSET_MASK & base->REG0) | DCDC_REG0_PWD_ZCD_MASK;
base->REG2 = (~DCDC_REG2_LOOPCTRL_EN_RCSCALE_MASK & base->REG2) | DCDC_REG2_LOOPCTRL_EN_RCSCALE(0x3U);
}