/* * The Clear BSD License * Copyright (c) 2017, NXP Semiconductor, Inc. * All rights reserved. * * * Redistribution and use in source and binary forms, with or without modification, * are permitted (subject to the limitations in the disclaimer below) provided * that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of Freescale Semiconductor, Inc. nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_spdif.h" /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.spdif" #endif /******************************************************************************* * Definitations ******************************************************************************/ enum _spdif_transfer_state { kSPDIF_Busy = 0x0U, /*!< SPDIF is busy */ kSPDIF_Idle, /*!< Transfer is done. */ kSPDIF_Error /*!< Transfer error occured. */ }; /*! @brief Typedef for spdif tx interrupt handler. */ typedef void (*spdif_isr_t)(SPDIF_Type *base, spdif_handle_t *handle); /******************************************************************************* * Prototypes ******************************************************************************/ /*! * @brief Get the instance number for SPDIF. * * @param base SPDIF base pointer. */ uint32_t SPDIF_GetInstance(SPDIF_Type *base); /******************************************************************************* * Variables ******************************************************************************/ /* Base pointer array */ static SPDIF_Type *const s_spdifBases[] = SPDIF_BASE_PTRS; /*! @brief SPDIF handle pointer */ spdif_handle_t *s_spdifHandle[ARRAY_SIZE(s_spdifBases)][2]; /* IRQ number array */ static const IRQn_Type s_spdifIRQ[] = SPDIF_IRQS; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Clock name array */ static const clock_ip_name_t s_spdifClock[] = SPDIF_CLOCKS; #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /*! @brief Pointer to IRQ handler for each instance. */ static spdif_isr_t s_spdifTxIsr; /*! @brief Pointer to IRQ handler for each instance. */ static spdif_isr_t s_spdifRxIsr; /*! @brief Used for spdif gain */ static uint8_t s_spdif_gain[8] = {24U, 16U, 12U, 8U, 6U, 4U, 3U, 1U}; static uint8_t s_spdif_tx_watermark[4] = {16, 12, 8, 4}; static uint8_t s_spdif_rx_watermark[4] = {1, 4, 8, 16}; /******************************************************************************* * Code ******************************************************************************/ uint32_t SPDIF_GetInstance(SPDIF_Type *base) { uint32_t instance; /* Find the instance index from base address mappings. */ for (instance = 0; instance < ARRAY_SIZE(s_spdifBases); instance++) { if (s_spdifBases[instance] == base) { break; } } assert(instance < ARRAY_SIZE(s_spdifBases)); return instance; } void SPDIF_Init(SPDIF_Type *base, const spdif_config_t *config) { uint32_t val = 0; #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) /* Enable the SPDIF clock */ CLOCK_EnableClock(s_spdifClock[SPDIF_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ /* Reset the internal logic */ base->SCR |= SPDIF_SCR_SOFT_RESET_MASK; /* Waiting for reset finish */ while (base->SCR & SPDIF_SCR_SOFT_RESET_MASK) { } /* Setting the SPDIF settings */ base->SCR = SPDIF_SCR_RXFIFOFULL_SEL(config->rxFullSelect) | SPDIF_SCR_RXAUTOSYNC(config->isRxAutoSync) | SPDIF_SCR_TXAUTOSYNC(config->isRxAutoSync) | SPDIF_SCR_TXFIFOEMPTY_SEL(config->txFullSelect) | SPDIF_SCR_TXFIFO_CTRL(1U) | SPDIF_SCR_VALCTRL(config->validityConfig) | SPDIF_SCR_TXSEL(config->txSource) | SPDIF_SCR_USRC_SEL(config->uChannelSrc); /* Set DPLL clock source */ base->SRPC = SPDIF_SRPC_CLKSRC_SEL(config->DPLLClkSource) | SPDIF_SRPC_GAINSEL(config->gain); /* Set SPDIF tx clock source */ val = base->STC & ~SPDIF_STC_TXCLK_SOURCE_MASK; val |= SPDIF_STC_TXCLK_SOURCE(config->txClkSource); base->STC = val; } void SPDIF_Deinit(SPDIF_Type *base) { SPDIF_TxEnable(base, false); SPDIF_RxEnable(base, false); #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) CLOCK_DisableClock(s_spdifClock[SPDIF_GetInstance(base)]); #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */ } void SPDIF_GetDefaultConfig(spdif_config_t *config) { config->isTxAutoSync = true; config->isRxAutoSync = true; config->DPLLClkSource = 1; config->txClkSource = 1; config->rxFullSelect = kSPDIF_RxFull8Samples; config->txFullSelect = kSPDIF_TxEmpty8Samples; config->uChannelSrc = kSPDIF_UChannelFromTx; config->txSource = kSPDIF_txNormal; config->validityConfig = kSPDIF_validityFlagAlwaysClear; config->gain = kSPDIF_GAIN_8; } void SPDIF_TxEnable(SPDIF_Type *base, bool enable) { uint32_t val = 0; if (enable) { /* Open Tx FIFO */ val = base->SCR & (~SPDIF_SCR_TXFIFO_CTRL_MASK); val |= SPDIF_SCR_TXFIFO_CTRL(1U); base->SCR = val; /* Enable transfer clock */ base->STC |= SPDIF_STC_TX_ALL_CLK_EN_MASK; } else { base->SCR &= ~(SPDIF_SCR_TXFIFO_CTRL_MASK | SPDIF_SCR_TXSEL_MASK); /* Disable transfer clock */ base->STC &= ~SPDIF_STC_TX_ALL_CLK_EN_MASK; } } void SPDIF_TxSetSampleRate(SPDIF_Type *base, uint32_t sampleRate_Hz, uint32_t sourceClockFreq_Hz) { uint32_t clkDiv = sourceClockFreq_Hz / (sampleRate_Hz * 64); uint32_t mod = sourceClockFreq_Hz % (sampleRate_Hz * 64); uint32_t val = 0; uint8_t clockSource = (((base->STC) & SPDIF_STC_TXCLK_SOURCE_MASK) >> SPDIF_STC_TXCLK_SOURCE_SHIFT); /* Compute the nearest divider */ if (mod > ((sampleRate_Hz * 64) / 2)) { clkDiv += 1U; } /* If use divided systeme clock */ if (clockSource == 5U) { if (clkDiv > 256) { val = base->STC & (~(SPDIF_STC_TXCLK_DF_MASK | SPDIF_STC_SYSCLK_DF_MASK)); val |= SPDIF_STC_SYSCLK_DF(clkDiv / 128U - 1U) | SPDIF_STC_TXCLK_DF(127U); base->STC = val; } else { val = base->STC & (~(SPDIF_STC_TXCLK_DF_MASK | SPDIF_STC_SYSCLK_DF_MASK)); val |= SPDIF_STC_SYSCLK_DF(1U) | SPDIF_STC_TXCLK_DF(clkDiv - 1U); base->STC = val; } } else { /* Other clock only uses txclk div */ val = base->STC & (~(SPDIF_STC_TXCLK_DF_MASK | SPDIF_STC_SYSCLK_DF_MASK)); val |= SPDIF_STC_TXCLK_DF(clkDiv - 1U); base->STC = val; } } uint32_t SPDIF_GetRxSampleRate(SPDIF_Type *base, uint32_t clockSourceFreq_Hz) { uint32_t gain = s_spdif_gain[((base->SRPC & SPDIF_SRPC_GAINSEL_MASK) >> SPDIF_SRPC_GAINSEL_SHIFT)]; uint32_t measure = 0, sampleRate = 0; uint64_t temp = 0; /* Wait the DPLL locked */ while ((base->SRPC & SPDIF_SRPC_LOCK_MASK) == 0U) { } /* Get the measure value */ measure = base->SRFM; temp = (uint64_t)measure * (uint64_t)clockSourceFreq_Hz; temp /= (uint64_t)(1024 * 1024 * 128 * gain); sampleRate = (uint32_t)temp; return sampleRate; } void SPDIF_WriteBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size) { assert(buffer); assert(size / 6U == 0U); uint32_t i = 0, j = 0, data = 0; while (i < size) { /* Wait until it can write data */ while ((SPDIF_GetStatusFlag(base) & kSPDIF_TxFIFOEmpty) == 0U) { } /* Write left channel data */ for (j = 0; j < 3U; j++) { data |= ((uint32_t)(*buffer) << (j * 8U)); buffer++; } SPDIF_WriteLeftData(base, data); /* Write right channel data */ data = 0; for (j = 0; j < 3U; j++) { data |= ((uint32_t)(*buffer) << (j * 8U)); buffer++; } SPDIF_WriteRightData(base, data); i += 6U; } } void SPDIF_ReadBlocking(SPDIF_Type *base, uint8_t *buffer, uint32_t size) { assert(buffer); assert(size / 6U == 0U); uint32_t i = 0, j = 0, data = 0; while (i < size) { /* Wait until it can write data */ while ((SPDIF_GetStatusFlag(base) & kSPDIF_RxFIFOFull) == 0U) { } /* Write left channel data */ data = SPDIF_ReadLeftData(base); for (j = 0; j < 3U; j++) { *buffer = ((data >> (j * 8U)) & 0xFFU); buffer++; } /* Write right channel data */ data = SPDIF_ReadRightData(base); for (j = 0; j < 3U; j++) { *buffer = ((data >> (j * 8U)) & 0xFFU); buffer++; } i += 6U; } } void SPDIF_TransferTxCreateHandle(SPDIF_Type *base, spdif_handle_t *handle, spdif_transfer_callback_t callback, void *userData) { assert(handle); /* Zero the handle */ memset(handle, 0, sizeof(*handle)); s_spdifHandle[SPDIF_GetInstance(base)][0] = handle; handle->callback = callback; handle->userData = userData; handle->watermark = s_spdif_tx_watermark[(base->SCR & SPDIF_SCR_TXFIFOEMPTY_SEL_MASK) >> SPDIF_SCR_TXFIFOEMPTY_SEL_SHIFT]; /* Set the isr pointer */ s_spdifTxIsr = SPDIF_TransferTxHandleIRQ; /* Enable Tx irq */ EnableIRQ(s_spdifIRQ[SPDIF_GetInstance(base)]); } void SPDIF_TransferRxCreateHandle(SPDIF_Type *base, spdif_handle_t *handle, spdif_transfer_callback_t callback, void *userData) { assert(handle); /* Zero the handle */ memset(handle, 0, sizeof(*handle)); s_spdifHandle[SPDIF_GetInstance(base)][1] = handle; handle->callback = callback; handle->userData = userData; handle->watermark = s_spdif_rx_watermark[(base->SCR & SPDIF_SCR_RXFIFOFULL_SEL_MASK) >> SPDIF_SCR_RXFIFOFULL_SEL_SHIFT]; /* Set the isr pointer */ s_spdifRxIsr = SPDIF_TransferRxHandleIRQ; /* Enable Rx irq */ EnableIRQ(s_spdifIRQ[SPDIF_GetInstance(base)]); } status_t SPDIF_TransferSendNonBlocking(SPDIF_Type *base, spdif_handle_t *handle, spdif_transfer_t *xfer) { assert(handle); /* Check if the queue is full */ if (handle->spdifQueue[handle->queueUser].data) { return kStatus_SPDIF_QueueFull; } /* Add into queue */ handle->transferSize[handle->queueUser] = xfer->dataSize; handle->spdifQueue[handle->queueUser].data = xfer->data; handle->spdifQueue[handle->queueUser].dataSize = xfer->dataSize; handle->queueUser = (handle->queueUser + 1) % SPDIF_XFER_QUEUE_SIZE; /* Set the state to busy */ handle->state = kSPDIF_Busy; /* Enable interrupt */ SPDIF_EnableInterrupts(base, kSPDIF_TxFIFOEmpty); /* Enable Tx transfer */ SPDIF_TxEnable(base, true); return kStatus_Success; } status_t SPDIF_TransferReceiveNonBlocking(SPDIF_Type *base, spdif_handle_t *handle, spdif_transfer_t *xfer) { assert(handle); /* Check if the queue is full */ if (handle->spdifQueue[handle->queueUser].data) { return kStatus_SPDIF_QueueFull; } /* Add into queue */ handle->transferSize[handle->queueUser] = xfer->dataSize; handle->spdifQueue[handle->queueUser].data = xfer->data; handle->spdifQueue[handle->queueUser].dataSize = xfer->dataSize; handle->spdifQueue[handle->queueUser].udata = xfer->udata; handle->spdifQueue[handle->queueUser].qdata = xfer->qdata; handle->queueUser = (handle->queueUser + 1) % SPDIF_XFER_QUEUE_SIZE; /* Set state to busy */ handle->state = kSPDIF_Busy; /* Enable interrupt */ SPDIF_EnableInterrupts(base, kSPDIF_UChannelReceiveRegisterFull | kSPDIF_QChannelReceiveRegisterFull | kSPDIF_RxFIFOFull | kSPDIF_RxControlChannelChange); /* Enable Rx transfer */ SPDIF_RxEnable(base, true); return kStatus_Success; } status_t SPDIF_TransferGetSendCount(SPDIF_Type *base, spdif_handle_t *handle, size_t *count) { assert(handle); status_t status = kStatus_Success; if (handle->state != kSPDIF_Busy) { status = kStatus_NoTransferInProgress; } else { *count = (handle->transferSize[handle->queueDriver] - handle->spdifQueue[handle->queueDriver].dataSize); } return status; } status_t SPDIF_TransferGetReceiveCount(SPDIF_Type *base, spdif_handle_t *handle, size_t *count) { assert(handle); status_t status = kStatus_Success; if (handle->state != kSPDIF_Busy) { status = kStatus_NoTransferInProgress; } else { *count = (handle->transferSize[handle->queueDriver] - handle->spdifQueue[handle->queueDriver].dataSize); } return status; } void SPDIF_TransferAbortSend(SPDIF_Type *base, spdif_handle_t *handle) { assert(handle); /* Use FIFO request interrupt and fifo error */ SPDIF_DisableInterrupts(base, kSPDIF_TxFIFOEmpty); handle->state = kSPDIF_Idle; /* Clear the queue */ memset(handle->spdifQueue, 0, sizeof(spdif_transfer_t) * SPDIF_XFER_QUEUE_SIZE); handle->queueDriver = 0; handle->queueUser = 0; } void SPDIF_TransferAbortReceive(SPDIF_Type *base, spdif_handle_t *handle) { assert(handle); /* Disable interrupt */ SPDIF_DisableInterrupts(base, kSPDIF_UChannelReceiveRegisterFull | kSPDIF_QChannelReceiveRegisterFull | kSPDIF_RxFIFOFull | kSPDIF_RxControlChannelChange); handle->state = kSPDIF_Idle; /* Clear the queue */ memset(handle->spdifQueue, 0, sizeof(spdif_transfer_t) * SPDIF_XFER_QUEUE_SIZE); handle->queueDriver = 0; handle->queueUser = 0; } void SPDIF_TransferTxHandleIRQ(SPDIF_Type *base, spdif_handle_t *handle) { assert(handle); uint8_t *buffer = handle->spdifQueue[handle->queueDriver].data; uint8_t dataSize = 0; uint32_t i = 0, j = 0, data = 0; /* Do Transfer */ if ((SPDIF_GetStatusFlag(base) & kSPDIF_TxFIFOEmpty) && (base->SIE & kSPDIF_TxFIFOEmpty)) { dataSize = handle->watermark; while (i < dataSize) { data = 0; /* Write left channel data */ for (j = 0; j < 3U; j++) { data |= ((uint32_t)(*buffer) << (j * 8U)); buffer++; } SPDIF_WriteLeftData(base, data); /* Write right channel data */ data = 0; for (j = 0; j < 3U; j++) { data |= ((uint32_t)(*buffer) << (j * 8U)); buffer++; } SPDIF_WriteRightData(base, data); i++; } handle->spdifQueue[handle->queueDriver].dataSize -= dataSize * 6U; handle->spdifQueue[handle->queueDriver].data += dataSize * 6U; /* If finished a blcok, call the callback function */ if (handle->spdifQueue[handle->queueDriver].dataSize == 0U) { memset(&handle->spdifQueue[handle->queueDriver], 0, sizeof(spdif_transfer_t)); handle->queueDriver = (handle->queueDriver + 1) % SPDIF_XFER_QUEUE_SIZE; if (handle->callback) { (handle->callback)(base, handle, kStatus_SPDIF_TxIdle, handle->userData); } } /* If all data finished, just stop the transfer */ if (handle->spdifQueue[handle->queueDriver].data == NULL) { SPDIF_TransferAbortSend(base, handle); } } } void SPDIF_TransferRxHandleIRQ(SPDIF_Type *base, spdif_handle_t *handle) { assert(handle); uint8_t *buffer = NULL; uint8_t dataSize = 0; uint32_t i = 0, j = 0, data = 0; /* Handle Cnew flag */ if (SPDIF_GetStatusFlag(base) & kSPDIF_RxControlChannelChange) { /* Clear the interrupt flag */ SPDIF_ClearStatusFlags(base, SPDIF_SIE_CNEW_MASK); if (handle->callback) { (handle->callback)(base, handle, kStatus_SPDIF_RxCnew, handle->userData); } } /* Handle illegal symbol */ if (SPDIF_GetStatusFlag(base) & kSPDIF_RxIllegalSymbol) { SPDIF_ClearStatusFlags(base, kSPDIF_RxIllegalSymbol); if (handle->callback) { (handle->callback)(base, handle, kStatus_SPDIF_RxIllegalSymbol, handle->userData); } } /* Handle Parity Bit Error */ if (SPDIF_GetStatusFlag(base) & kSPDIF_RxParityBitError) { SPDIF_ClearStatusFlags(base, kSPDIF_RxParityBitError); if (handle->callback) { (handle->callback)(base, handle, kStatus_SPDIF_RxParityBitError, handle->userData); } } /* Handle DPlocked */ if (SPDIF_GetStatusFlag(base) & kSPDIF_RxDPLLLocked) { SPDIF_ClearStatusFlags(base, kSPDIF_RxDPLLLocked); if (handle->callback) { (handle->callback)(base, handle, kStatus_SPDIF_RxDPLLLocked, handle->userData); } } /* Handle Q channel full flag */ if ((SPDIF_GetStatusFlag(base) & kSPDIF_QChannelReceiveRegisterFull) && (base->SIE & kSPDIF_QChannelReceiveRegisterFull)) { buffer = handle->spdifQueue[handle->queueDriver].qdata; data = SPDIF_ReadQChannel(base); buffer[0] = data & 0xFFU; buffer[1] = (data >> 8U) & 0xFFU; buffer[2] = (data >> 16U) & 0xFFU; } /* Handle U channel full flag */ if ((SPDIF_GetStatusFlag(base) & kSPDIF_UChannelReceiveRegisterFull) && (base->SIE & kSPDIF_UChannelReceiveRegisterFull)) { buffer = handle->spdifQueue[handle->queueDriver].udata; data = SPDIF_ReadUChannel(base); buffer[0] = data & 0xFFU; buffer[1] = (data >> 8U) & 0xFFU; buffer[2] = (data >> 16U) & 0xFFU; } /* Handle audio data transfer */ if ((SPDIF_GetStatusFlag(base) & kSPDIF_RxFIFOFull) && (base->SIE & kSPDIF_RxFIFOFull)) { dataSize = handle->watermark; buffer = handle->spdifQueue[handle->queueDriver].data; while (i < dataSize) { /* Read left channel data */ data = SPDIF_ReadLeftData(base); for (j = 0; j < 3U; j++) { *buffer = ((data >> (j * 8U)) & 0xFFU); buffer++; } /* Read right channel data */ data = SPDIF_ReadRightData(base); for (j = 0; j < 3U; j++) { *buffer = ((data >> (j * 8U)) & 0xFFU); buffer++; } i++; } handle->spdifQueue[handle->queueDriver].dataSize -= dataSize * 6U; handle->spdifQueue[handle->queueDriver].data += dataSize * 6U; /* If finished a blcok, call the callback function */ if (handle->spdifQueue[handle->queueDriver].dataSize == 0U) { memset(&handle->spdifQueue[handle->queueDriver], 0, sizeof(spdif_transfer_t)); handle->queueDriver = (handle->queueDriver + 1) % SPDIF_XFER_QUEUE_SIZE; if (handle->callback) { (handle->callback)(base, handle, kStatus_SPDIF_RxIdle, handle->userData); } } /* If all data finished, just stop the transfer */ if (handle->spdifQueue[handle->queueDriver].data == NULL) { SPDIF_TransferAbortReceive(base, handle); } } } #if defined(SPDIF) void SPDIF_DriverIRQHandler(void) { if ((s_spdifHandle[0][0]) && s_spdifTxIsr) { s_spdifTxIsr(SPDIF, s_spdifHandle[0][0]); } if ((s_spdifHandle[0][1]) && s_spdifRxIsr) { s_spdifRxIsr(SPDIF, s_spdifHandle[0][1]); } /* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping exception return operation might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) __DSB(); #endif } #endif