/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2006-03-17 Bernard the first version * 2006-04-28 Bernard fix the scheduler algorthm * 2006-04-30 Bernard add SCHEDULER_DEBUG * 2006-05-27 Bernard fix the scheduler algorthm for same priority * thread schedule * 2006-06-04 Bernard rewrite the scheduler algorithm * 2006-08-03 Bernard add hook support * 2006-09-05 Bernard add 32 priority level support * 2006-09-24 Bernard add rt_system_scheduler_start function * 2009-09-16 Bernard fix _rt_scheduler_stack_check * 2010-04-11 yi.qiu add module feature * 2010-07-13 Bernard fix the maximal number of rt_scheduler_lock_nest * issue found by kuronca * 2010-12-13 Bernard add defunct list initialization even if not use heap. * 2011-05-10 Bernard clean scheduler debug log. * 2013-12-21 Grissiom add rt_critical_level * 2018-11-22 Jesven remove the current task from ready queue * add per cpu ready queue * add _rt_get_highest_priority_thread to find highest priority task * rt_schedule_insert_thread won't insert current task to ready queue * in smp version, rt_hw_context_switch_interrupt maybe switch to * new task directly * */ #include #include rt_list_t rt_thread_priority_table[RT_THREAD_PRIORITY_MAX]; rt_uint32_t rt_thread_ready_priority_group; #if RT_THREAD_PRIORITY_MAX > 32 /* Maximum priority level, 256 */ rt_uint8_t rt_thread_ready_table[32]; #endif #ifndef RT_USING_SMP extern volatile rt_uint8_t rt_interrupt_nest; static rt_int16_t rt_scheduler_lock_nest; struct rt_thread *rt_current_thread = RT_NULL; rt_uint8_t rt_current_priority; #endif /*RT_USING_SMP*/ rt_list_t rt_thread_defunct; #ifdef RT_USING_HOOK static void (*rt_scheduler_hook)(struct rt_thread *from, struct rt_thread *to); /** * @addtogroup Hook */ /**@{*/ /** * This function will set a hook function, which will be invoked when thread * switch happens. * * @param hook the hook function */ void rt_scheduler_sethook(void (*hook)(struct rt_thread *from, struct rt_thread *to)) { rt_scheduler_hook = hook; } /**@}*/ #endif #ifdef RT_USING_OVERFLOW_CHECK static void _rt_scheduler_stack_check(struct rt_thread *thread) { RT_ASSERT(thread != RT_NULL); #if defined(ARCH_CPU_STACK_GROWS_UPWARD) if (*((rt_uint8_t *)((rt_ubase_t)thread->stack_addr + thread->stack_size - 1)) != '#' || #else if (*((rt_uint8_t *)thread->stack_addr) != '#' || #endif (rt_ubase_t)thread->sp <= (rt_ubase_t)thread->stack_addr || (rt_ubase_t)thread->sp > (rt_ubase_t)thread->stack_addr + (rt_ubase_t)thread->stack_size) { rt_ubase_t level; rt_kprintf("thread:%s stack overflow\n", thread->name); level = rt_hw_interrupt_disable(); while (level); } #if defined(ARCH_CPU_STACK_GROWS_UPWARD) else if ((rt_ubase_t)thread->sp > ((rt_ubase_t)thread->stack_addr + thread->stack_size)) { rt_kprintf("warning: %s stack is close to the top of stack address.\n", thread->name); } #else else if ((rt_ubase_t)thread->sp <= ((rt_ubase_t)thread->stack_addr + 32)) { rt_kprintf("warning: %s stack is close to end of stack address.\n", thread->name); } #endif } #endif /* * get the highest priority thread in ready queue */ #ifdef RT_USING_SMP static struct rt_thread* _rt_get_highest_priority_thread(rt_ubase_t *highest_prio) { register struct rt_thread *highest_priority_thread; register rt_ubase_t highest_ready_priority, local_highest_ready_priority; struct rt_cpu* pcpu = rt_cpu_self(); #if RT_THREAD_PRIORITY_MAX > 32 register rt_ubase_t number; number = __rt_ffs(rt_thread_ready_priority_group) - 1; highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1; number = __rt_ffs(pcpu->priority_group) - 1; local_highest_ready_priority = (number << 3) + __rt_ffs(pcpu->ready_table[number]) - 1; #else highest_ready_priority = __rt_ffs(rt_thread_ready_priority_group) - 1; local_highest_ready_priority = __rt_ffs(pcpu->priority_group) - 1; #endif /* get highest ready priority thread */ if (highest_ready_priority < local_highest_ready_priority) { *highest_prio = highest_ready_priority; highest_priority_thread = rt_list_entry(rt_thread_priority_table[highest_ready_priority].next, struct rt_thread, tlist); } else { *highest_prio = local_highest_ready_priority; highest_priority_thread = rt_list_entry(pcpu->priority_table[local_highest_ready_priority].next, struct rt_thread, tlist); } return highest_priority_thread; } #else static struct rt_thread* _rt_get_highest_priority_thread(rt_ubase_t *highest_prio) { register struct rt_thread *highest_priority_thread; register rt_ubase_t highest_ready_priority; #if RT_THREAD_PRIORITY_MAX > 32 register rt_ubase_t number; number = __rt_ffs(rt_thread_ready_priority_group) - 1; highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1; #else highest_ready_priority = __rt_ffs(rt_thread_ready_priority_group) - 1; #endif /* get highest ready priority thread */ highest_priority_thread = rt_list_entry(rt_thread_priority_table[highest_ready_priority].next, struct rt_thread, tlist); *highest_prio = highest_ready_priority; return highest_priority_thread; } #endif /** * @ingroup SystemInit * This function will initialize the system scheduler */ void rt_system_scheduler_init(void) { #ifdef RT_USING_SMP int cpu; #endif /*RT_USING_SMP*/ register rt_base_t offset; #ifndef RT_USING_SMP rt_scheduler_lock_nest = 0; #endif /*RT_USING_SMP*/ RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("start scheduler: max priority 0x%02x\n", RT_THREAD_PRIORITY_MAX)); for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++) { rt_list_init(&rt_thread_priority_table[offset]); } #ifdef RT_USING_SMP for (cpu = 0; cpu < RT_CPUS_NR; cpu++) { struct rt_cpu *pcpu = rt_cpu_index(cpu); for (offset = 0; offset < RT_THREAD_PRIORITY_MAX; offset ++) { rt_list_init(&pcpu->priority_table[offset]); } pcpu->irq_switch_flag = 0; pcpu->current_priority = RT_THREAD_PRIORITY_MAX - 1; pcpu->current_thread = RT_NULL; pcpu->priority_group = 0; #if RT_THREAD_PRIORITY_MAX > 32 rt_memset(pcpu->ready_table, 0, sizeof(pcpu->ready_table)); #endif } #endif /*RT_USING_SMP*/ /* initialize ready priority group */ rt_thread_ready_priority_group = 0; #if RT_THREAD_PRIORITY_MAX > 32 /* initialize ready table */ rt_memset(rt_thread_ready_table, 0, sizeof(rt_thread_ready_table)); #endif /* initialize thread defunct */ rt_list_init(&rt_thread_defunct); } /** * @ingroup SystemInit * This function will startup scheduler. It will select one thread * with the highest priority level, then switch to it. */ void rt_system_scheduler_start(void) { register struct rt_thread *to_thread; rt_ubase_t highest_ready_priority; to_thread = _rt_get_highest_priority_thread(&highest_ready_priority); #ifdef RT_USING_SMP to_thread->oncpu = rt_hw_cpu_id(); #else rt_current_thread = to_thread; #endif /*RT_USING_SMP*/ rt_schedule_remove_thread(to_thread); to_thread->stat = RT_THREAD_RUNNING; /* switch to new thread */ #ifdef RT_USING_SMP rt_hw_context_switch_to((rt_ubase_t)&to_thread->sp, to_thread); #else rt_hw_context_switch_to((rt_ubase_t)&to_thread->sp); #endif /*RT_USING_SMP*/ /* never come back */ } /** * @addtogroup Thread */ /**@{*/ #ifdef RT_USING_SMP /** * This function will handle IPI interrupt and do a scheduling in system; * * @param vector, the number of IPI interrupt for system scheduling * @param param, use RT_NULL * * NOTE: this function should be invoke or register as ISR in BSP. */ void rt_scheduler_ipi_handler(int vector, void *param) { rt_schedule(); } /** * This function will perform one scheduling. It will select one thread * with the highest priority level in global ready queue or local ready queue, * then switch to it. */ void rt_schedule(void) { rt_base_t level; struct rt_thread *to_thread; struct rt_thread *current_thread; struct rt_cpu *pcpu; int cpu_id; /* disable interrupt */ level = rt_hw_interrupt_disable(); cpu_id = rt_hw_cpu_id(); pcpu = rt_cpu_index(cpu_id); current_thread = pcpu->current_thread; /* whether do switch in interrupt */ if (pcpu->irq_nest) { pcpu->irq_switch_flag = 1; rt_hw_interrupt_enable(level); goto __exit; } #ifdef RT_USING_SIGNALS if ((current_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_SUSPEND) { /* if current_thread signal is in pending */ if ((current_thread->stat & RT_THREAD_STAT_SIGNAL_MASK) & RT_THREAD_STAT_SIGNAL_PENDING) { rt_thread_resume(current_thread); } } #endif if (current_thread->scheduler_lock_nest == 1) /* whether lock scheduler */ { rt_ubase_t highest_ready_priority; if (rt_thread_ready_priority_group != 0 || pcpu->priority_group != 0) { to_thread = _rt_get_highest_priority_thread(&highest_ready_priority); current_thread->oncpu = RT_CPU_DETACHED; if ((current_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_RUNNING) { if (current_thread->current_priority < highest_ready_priority) { to_thread = current_thread; } else if (current_thread->current_priority == highest_ready_priority && (current_thread->stat & RT_THREAD_STAT_YIELD_MASK) == 0) { to_thread = current_thread; } else { rt_schedule_insert_thread(current_thread); } current_thread->stat &= ~RT_THREAD_STAT_YIELD_MASK; } to_thread->oncpu = cpu_id; if (to_thread != current_thread) { /* if the destination thread is not the same as current thread */ pcpu->current_priority = (rt_uint8_t)highest_ready_priority; RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (current_thread, to_thread)); rt_schedule_remove_thread(to_thread); to_thread->stat = RT_THREAD_RUNNING | (to_thread->stat & ~RT_THREAD_STAT_MASK); /* switch to new thread */ RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("[%d]switch to priority#%d " "thread:%.*s(sp:0x%08x), " "from thread:%.*s(sp: 0x%08x)\n", pcpu->irq_nest, highest_ready_priority, RT_NAME_MAX, to_thread->name, to_thread->sp, RT_NAME_MAX, current_thread->name, current_thread->sp)); #ifdef RT_USING_OVERFLOW_CHECK _rt_scheduler_stack_check(to_thread); #endif rt_hw_context_switch((rt_ubase_t)¤t_thread->sp, (rt_ubase_t)&to_thread->sp, to_thread); } } } /* enable interrupt */ rt_hw_interrupt_enable(level); #ifdef RT_USING_SIGNALS /* check stat of thread for signal */ level = rt_hw_interrupt_disable(); if (current_thread->stat & RT_THREAD_STAT_SIGNAL_PENDING) { extern void rt_thread_handle_sig(rt_bool_t clean_state); current_thread->stat &= ~RT_THREAD_STAT_SIGNAL_PENDING; rt_hw_interrupt_enable(level); /* check signal status */ rt_thread_handle_sig(RT_TRUE); } else { rt_hw_interrupt_enable(level); } #endif __exit: return ; } #else /** * This function will perform one schedule. It will select one thread * with the highest priority level, and switch to it immediately. */ void rt_schedule(void) { rt_base_t level; struct rt_thread *to_thread; struct rt_thread *from_thread; /* disable interrupt */ level = rt_hw_interrupt_disable(); /* check the scheduler is enabled or not */ if (rt_scheduler_lock_nest == 0) { rt_ubase_t highest_ready_priority; if (rt_thread_ready_priority_group != 0) { /* need_insert_from_thread: need to insert from_thread to ready queue */ int need_insert_from_thread = 0; to_thread = _rt_get_highest_priority_thread(&highest_ready_priority); if ((rt_current_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_RUNNING) { if (rt_current_thread->current_priority < highest_ready_priority) { to_thread = rt_current_thread; } else if (rt_current_thread->current_priority == highest_ready_priority && (rt_current_thread->stat & RT_THREAD_STAT_YIELD_MASK) == 0) { to_thread = rt_current_thread; } else { need_insert_from_thread = 1; } rt_current_thread->stat &= ~RT_THREAD_STAT_YIELD_MASK; } if (to_thread != rt_current_thread) { /* if the destination thread is not the same as current thread */ rt_current_priority = (rt_uint8_t)highest_ready_priority; from_thread = rt_current_thread; rt_current_thread = to_thread; RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (from_thread, to_thread)); if (need_insert_from_thread) { rt_schedule_insert_thread(from_thread); } rt_schedule_remove_thread(to_thread); to_thread->stat = RT_THREAD_RUNNING | (to_thread->stat & ~RT_THREAD_STAT_MASK); /* switch to new thread */ RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("[%d]switch to priority#%d " "thread:%.*s(sp:0x%08x), " "from thread:%.*s(sp: 0x%08x)\n", rt_interrupt_nest, highest_ready_priority, RT_NAME_MAX, to_thread->name, to_thread->sp, RT_NAME_MAX, from_thread->name, from_thread->sp)); #ifdef RT_USING_OVERFLOW_CHECK _rt_scheduler_stack_check(to_thread); #endif if (rt_interrupt_nest == 0) { extern void rt_thread_handle_sig(rt_bool_t clean_state); rt_hw_context_switch((rt_ubase_t)&from_thread->sp, (rt_ubase_t)&to_thread->sp); /* enable interrupt */ rt_hw_interrupt_enable(level); #ifdef RT_USING_SIGNALS /* check stat of thread for signal */ level = rt_hw_interrupt_disable(); if (rt_current_thread->stat & RT_THREAD_STAT_SIGNAL_PENDING) { extern void rt_thread_handle_sig(rt_bool_t clean_state); rt_current_thread->stat &= ~RT_THREAD_STAT_SIGNAL_PENDING; rt_hw_interrupt_enable(level); /* check signal status */ rt_thread_handle_sig(RT_TRUE); } else { rt_hw_interrupt_enable(level); } #endif goto __exit; } else { RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("switch in interrupt\n")); rt_hw_context_switch_interrupt((rt_ubase_t)&from_thread->sp, (rt_ubase_t)&to_thread->sp); } } else { rt_schedule_remove_thread(rt_current_thread); rt_current_thread->stat = RT_THREAD_RUNNING | (rt_current_thread->stat & ~RT_THREAD_STAT_MASK); } } } /* enable interrupt */ rt_hw_interrupt_enable(level); __exit: return; } #endif /*RT_USING_SMP*/ /** * This function checks if a scheduling is needed after IRQ context. If yes, * it will select one thread with the highest priority level, and then switch * to it. */ #ifdef RT_USING_SMP void rt_scheduler_do_irq_switch(void *context) { int cpu_id; rt_base_t level; struct rt_cpu* pcpu; struct rt_thread *to_thread; struct rt_thread *current_thread; level = rt_hw_interrupt_disable(); cpu_id = rt_hw_cpu_id(); pcpu = rt_cpu_index(cpu_id); current_thread = pcpu->current_thread; #ifdef RT_USING_SIGNALS if ((current_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_SUSPEND) { /* if current_thread signal is in pending */ if ((current_thread->stat & RT_THREAD_STAT_SIGNAL_MASK) & RT_THREAD_STAT_SIGNAL_PENDING) { rt_thread_resume(current_thread); } } #endif if (pcpu->irq_switch_flag == 0) { rt_hw_interrupt_enable(level); return; } if (current_thread->scheduler_lock_nest == 1 && pcpu->irq_nest == 0) { rt_ubase_t highest_ready_priority; /* clear irq switch flag */ pcpu->irq_switch_flag = 0; if (rt_thread_ready_priority_group != 0 || pcpu->priority_group != 0) { to_thread = _rt_get_highest_priority_thread(&highest_ready_priority); current_thread->oncpu = RT_CPU_DETACHED; if ((current_thread->stat & RT_THREAD_STAT_MASK) == RT_THREAD_RUNNING) { if (current_thread->current_priority < highest_ready_priority) { to_thread = current_thread; } else if (current_thread->current_priority == highest_ready_priority && (current_thread->stat & RT_THREAD_STAT_YIELD_MASK) == 0) { to_thread = current_thread; } else { rt_schedule_insert_thread(current_thread); } current_thread->stat &= ~RT_THREAD_STAT_YIELD_MASK; } to_thread->oncpu = cpu_id; if (to_thread != current_thread) { /* if the destination thread is not the same as current thread */ pcpu->current_priority = (rt_uint8_t)highest_ready_priority; RT_OBJECT_HOOK_CALL(rt_scheduler_hook, (current_thread, to_thread)); rt_schedule_remove_thread(to_thread); to_thread->stat = RT_THREAD_RUNNING | (to_thread->stat & ~RT_THREAD_STAT_MASK); #ifdef RT_USING_OVERFLOW_CHECK _rt_scheduler_stack_check(to_thread); #endif RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("switch in interrupt\n")); current_thread->cpus_lock_nest--; current_thread->scheduler_lock_nest--; rt_hw_context_switch_interrupt(context, (rt_ubase_t)¤t_thread->sp, (rt_ubase_t)&to_thread->sp, to_thread); } } } rt_hw_interrupt_enable(level); } #endif /*RT_USING_SMP*/ /* * This function will insert a thread to system ready queue. The state of * thread will be set as READY and remove from suspend queue. * * @param thread the thread to be inserted * @note Please do not invoke this function in user application. */ #ifdef RT_USING_SMP void rt_schedule_insert_thread(struct rt_thread *thread) { int cpu_id; int bind_cpu; rt_uint32_t cpu_mask; register rt_base_t level; RT_ASSERT(thread != RT_NULL); /* disable interrupt */ level = rt_hw_interrupt_disable(); /* it should be RUNNING thread */ if (thread->oncpu != RT_CPU_DETACHED) { thread->stat = RT_THREAD_RUNNING | (thread->stat & ~RT_THREAD_STAT_MASK); goto __exit; } /* READY thread, insert to ready queue */ thread->stat = RT_THREAD_READY | (thread->stat & ~RT_THREAD_STAT_MASK); cpu_id = rt_hw_cpu_id(); bind_cpu = thread->bind_cpu ; /* insert thread to ready list */ if (bind_cpu == RT_CPUS_NR) { #if RT_THREAD_PRIORITY_MAX > 32 rt_thread_ready_table[thread->number] |= thread->high_mask; #endif rt_thread_ready_priority_group |= thread->number_mask; rt_list_insert_before(&(rt_thread_priority_table[thread->current_priority]), &(thread->tlist)); cpu_mask = RT_CPU_MASK ^ (1 << cpu_id); rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask); } else { struct rt_cpu *pcpu = rt_cpu_index(bind_cpu); #if RT_THREAD_PRIORITY_MAX > 32 pcpu->ready_table[thread->number] |= thread->high_mask; #endif pcpu->priority_group |= thread->number_mask; rt_list_insert_before(&(rt_cpu_index(bind_cpu)->priority_table[thread->current_priority]), &(thread->tlist)); if (cpu_id != bind_cpu) { cpu_mask = 1 << bind_cpu; rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask); } } RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("insert thread[%.*s], the priority: %d\n", RT_NAME_MAX, thread->name, thread->current_priority)); __exit: /* enable interrupt */ rt_hw_interrupt_enable(level); } #else void rt_schedule_insert_thread(struct rt_thread *thread) { register rt_base_t temp; RT_ASSERT(thread != RT_NULL); /* disable interrupt */ temp = rt_hw_interrupt_disable(); /* it's current thread, it should be RUNNING thread */ if (thread == rt_current_thread) { thread->stat = RT_THREAD_RUNNING | (thread->stat & ~RT_THREAD_STAT_MASK); goto __exit; } /* READY thread, insert to ready queue */ thread->stat = RT_THREAD_READY | (thread->stat & ~RT_THREAD_STAT_MASK); /* insert thread to ready list */ rt_list_insert_before(&(rt_thread_priority_table[thread->current_priority]), &(thread->tlist)); RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("insert thread[%.*s], the priority: %d\n", RT_NAME_MAX, thread->name, thread->current_priority)); /* set priority mask */ #if RT_THREAD_PRIORITY_MAX > 32 rt_thread_ready_table[thread->number] |= thread->high_mask; #endif rt_thread_ready_priority_group |= thread->number_mask; __exit: /* enable interrupt */ rt_hw_interrupt_enable(temp); } #endif /*RT_USING_SMP*/ /* * This function will remove a thread from system ready queue. * * @param thread the thread to be removed * * @note Please do not invoke this function in user application. */ #ifdef RT_USING_SMP void rt_schedule_remove_thread(struct rt_thread *thread) { register rt_base_t level; RT_ASSERT(thread != RT_NULL); /* disable interrupt */ level = rt_hw_interrupt_disable(); RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("remove thread[%.*s], the priority: %d\n", RT_NAME_MAX, thread->name, thread->current_priority)); /* remove thread from ready list */ rt_list_remove(&(thread->tlist)); if (thread->bind_cpu == RT_CPUS_NR) { if (rt_list_isempty(&(rt_thread_priority_table[thread->current_priority]))) { #if RT_THREAD_PRIORITY_MAX > 32 rt_thread_ready_table[thread->number] &= ~thread->high_mask; if (rt_thread_ready_table[thread->number] == 0) { rt_thread_ready_priority_group &= ~thread->number_mask; } #else rt_thread_ready_priority_group &= ~thread->number_mask; #endif } } else { struct rt_cpu *pcpu = rt_cpu_index(thread->bind_cpu); if (rt_list_isempty(&(pcpu->priority_table[thread->current_priority]))) { #if RT_THREAD_PRIORITY_MAX > 32 pcpu->ready_table[thread->number] &= ~thread->high_mask; if (pcpu->ready_table[thread->number] == 0) { pcpu->priority_group &= ~thread->number_mask; } #else pcpu->priority_group &= ~thread->number_mask; #endif } } /* enable interrupt */ rt_hw_interrupt_enable(level); } #else void rt_schedule_remove_thread(struct rt_thread *thread) { register rt_base_t level; RT_ASSERT(thread != RT_NULL); /* disable interrupt */ level = rt_hw_interrupt_disable(); RT_DEBUG_LOG(RT_DEBUG_SCHEDULER, ("remove thread[%.*s], the priority: %d\n", RT_NAME_MAX, thread->name, thread->current_priority)); /* remove thread from ready list */ rt_list_remove(&(thread->tlist)); if (rt_list_isempty(&(rt_thread_priority_table[thread->current_priority]))) { #if RT_THREAD_PRIORITY_MAX > 32 rt_thread_ready_table[thread->number] &= ~thread->high_mask; if (rt_thread_ready_table[thread->number] == 0) { rt_thread_ready_priority_group &= ~thread->number_mask; } #else rt_thread_ready_priority_group &= ~thread->number_mask; #endif } /* enable interrupt */ rt_hw_interrupt_enable(level); } #endif /*RT_USING_SMP*/ /** * This function will lock the thread scheduler. */ #ifdef RT_USING_SMP void rt_enter_critical(void) { register rt_base_t level; struct rt_thread *current_thread; /* disable interrupt */ level = rt_hw_local_irq_disable(); current_thread = rt_cpu_self()->current_thread; if (!current_thread) { rt_hw_local_irq_enable(level); return; } /* * the maximal number of nest is RT_UINT16_MAX, which is big * enough and does not check here */ { register rt_uint16_t lock_nest = current_thread->cpus_lock_nest; current_thread->cpus_lock_nest++; if (lock_nest == 0) { current_thread->scheduler_lock_nest ++; rt_hw_spin_lock(&_cpus_lock); } } /* critical for local cpu */ current_thread->critical_lock_nest ++; /* lock scheduler for local cpu */ current_thread->scheduler_lock_nest ++; /* enable interrupt */ rt_hw_local_irq_enable(level); } #else void rt_enter_critical(void) { register rt_base_t level; /* disable interrupt */ level = rt_hw_interrupt_disable(); /* * the maximal number of nest is RT_UINT16_MAX, which is big * enough and does not check here */ rt_scheduler_lock_nest ++; /* enable interrupt */ rt_hw_interrupt_enable(level); } #endif /*RT_USING_SMP*/ RTM_EXPORT(rt_enter_critical); /** * This function will unlock the thread scheduler. */ #ifdef RT_USING_SMP void rt_exit_critical(void) { register rt_base_t level; struct rt_thread *current_thread; /* disable interrupt */ level = rt_hw_local_irq_disable(); current_thread = rt_cpu_self()->current_thread; if (!current_thread) { rt_hw_local_irq_enable(level); return; } current_thread->scheduler_lock_nest --; current_thread->critical_lock_nest --; current_thread->cpus_lock_nest--; if (current_thread->cpus_lock_nest == 0) { current_thread->scheduler_lock_nest --; rt_hw_spin_unlock(&_cpus_lock); } if (current_thread->scheduler_lock_nest <= 0) { current_thread->scheduler_lock_nest = 0; /* enable interrupt */ rt_hw_local_irq_enable(level); rt_schedule(); } else { /* enable interrupt */ rt_hw_local_irq_enable(level); } } #else void rt_exit_critical(void) { register rt_base_t level; /* disable interrupt */ level = rt_hw_interrupt_disable(); rt_scheduler_lock_nest --; if (rt_scheduler_lock_nest <= 0) { rt_scheduler_lock_nest = 0; /* enable interrupt */ rt_hw_interrupt_enable(level); if (rt_current_thread) { /* if scheduler is started, do a schedule */ rt_schedule(); } } else { /* enable interrupt */ rt_hw_interrupt_enable(level); } } #endif /*RT_USING_SMP*/ RTM_EXPORT(rt_exit_critical); /** * Get the scheduler lock level * * @return the level of the scheduler lock. 0 means unlocked. */ rt_uint16_t rt_critical_level(void) { #ifdef RT_USING_SMP struct rt_thread *current_thread = rt_cpu_self()->current_thread; return current_thread->critical_lock_nest; #else return rt_scheduler_lock_nest; #endif /*RT_USING_SMP*/ } RTM_EXPORT(rt_critical_level); /**@}*/