
Understanding UFFS

Ricky Zheng
< ricky_gz_zheng@yahoo.co.nz >

Created: March 2007
Last modified: Nov 2011

mailto:ricky_gz_zheng@yahoo.co.nz

Content
● Why UFFS ?
● Design goal
● Flash: NOR vs NAND ?
● What's wrong with FAT ?
● UFFS basic idea

– Serial number
– Tree in memory
– Journalizing

● UFFS architecture
– UFFS device
– Mount point
– UFFS nodes tree

– Mounting UFFS
– Page spare/UFFS tags
– Block info cache
– UFFS page buffer
– Block recover
– Bad block management
– How ECC works ?
– Flash interface

● What's next ?
– UFFS2

Why UFFS ?

● JFFS/JFFS2
– Can't go out of Linux/MTD
– Memory monster

● YAFFS/YAFFS2 still consumes too much
RAM
– 64M FLASH, 500 files ==> 410K RAM

● No open source lightweight flash file system
exists yet ...

UFFS design goal
● Ultra low cost

– Low memory cost
– Fast booting

● Superb Stability
– Constant RAM consumption, support static memory allocation
– Guaranteed integrity across unexpected power losses
– Bad block tolerant, ECC and ware leveling

● NAND flash friendly
– Support small (512B) or large page (up to 4KB) size
– Support SLC and MLC
– Support software ECC or hardware ECC / RS-ECC
– Direct flash interface

● Well Emulated on PC platform, easy for debugging

Flash: NOR vs NAND

● NOR:
– Random access for read
– Big block (minimal erase unit)
– Byte programing
– Slow erasing/programing

● NAND:
– Page/spare access for read
– Small block
– Page/spare programing (with limited

splits/Restricted rewrite)
– Fast erasing/programing
– Delivered with bad blocks

NAND Flash Basic

Block

Page data
Spare

Erase: '0'->'1', Write/Program: '1'->'0'

What's wrong with FAT

● Need FTL (which may cost many RAM)
● Big FAT table,slow down the whole system
● Vulnerable when unexpectedly interrupted

while updating FAT or File info
FAT

File data

File infoChanges Changes

Changes

Write File

UFFS basic idea(1)

● Use unique parent/serial number pair to:
– Identify blocks
– Build relationships

Parent Serial

Parent Serial
Parent Serial Parent Serial

Parent Serial

Parent SerialParent Serial

Parent Serial

ROOT

Parent Serial

Parent: 16 bit
Serial: 16 bit

UFFS basic idea(2)

● Build the relationship tree in memory when
mounting UFFS:
– Erased blocks
– Bad blocks
– Hash tables (serial number as key)

● Dir table
● File table
● File data table

● Tree node size: 16 bytes
– Memory cost: 16 * total_blocks

UFFS basic idea(3)

● Journalizing
– Write to a new block/page instead of modify the

old one.
– Use circular time stamp: 00->01->11->00>...
– Check and correct conflicts while mounting

UFFS
– Using “mini-header” eliminates partial page

programing requirement

UFFS Device

● UFFS Device & Mount Point

“/” “/data/”

extern uffs_Device uffs_rootDev;
extern uffs_Device uffs_dataDev;
static struct uffs_mountTableSt
femu_MountTbl[] = {

{&uffs_rootDev, 0, 200, "/"},
{&uffs_dataDev, 201, -1, "/data/"},
{NULL, 0, 0, NULL},

};

UFFS Device ===> Partition
UFFS Device: individual flash ops, cache/buffer, tree nodes ...

UFFS node tree

● UFFS nodes tree
UFFS device

Dir nodes

File nodes

Data nodes

Bad blocks block,next

block,next

block,parent,serial,sum,next

block,parent,serial,sum,length(4),next

block,parent,serial,length(2),next

Hash table, serial as the key

Erased blocks

sizeof(TreeNode) = 16B

UFFS Mounting

● Mounting UFFS
Step 1:

– Scan page spares*, classify
DIR/FILE/DATA nodes

– Check bad block
– Check interrupted writing

Step 2:
– Randomize erased blocks

Step3:
– Check DATA nodes,take care

orphan nodes
Super fast !

UFFS device

Dir nodes

File nodes

Data nodes

Bad blocks

Erased blocks

* UFFS only read a few spares (normally one or two)
from each block rather then all spares !!

UFFS tags

● Page spare/UFFS tags
struct uffs_TagStoreSt {

u32 dirty:1;
u32 valid:1;
u32 type:2;
u32 block_ts:2;
u32 data_len:12;
u32 serial:14;
u32 parent:10;
u32 page_id:6;
u32 reserved:4;
u32 tag_ecc:12;

};

sizeof(struct uffs_TagStoreSt) = 8, small enough to store on spare area

* Note: if using RS-ECC on small page MLC, then tag may store on page data area

UFFS block info cache

● UFFS block info cache
struct uffs_pageSpareSt {

u8 expired:1;
uffs_Tags tag;

};
struct uffs_blockInfoSt {

struct uffs_blockInfoSt *next;
struct uffs_blockInfoSt *prev;
u16 blockNum;
struct uffs_pageSpareSt *spares;
int expiredCount;
int refCount;

};uffs_config.h:
MAX_CACHED_BLOCK_INFO(5 ~10)

Memory: 40 bytes for each cached info

UFFS page buffer

● UFFS page buffer
struct uffs_BufSt{

struct uffs_BufSt *next;
struct uffs_BufSt *prev;
struct uffs_BufSt *nextDirty;
struct uffs_BufSt *prevDirty;
u8 type;
u8 ext_mark;
u16 parent;
u16 serial;
u16 pageID;
u16 mark;
u16 refCount;
u16 dataLen;
u8 * data;
u8 * header;

};

uffs_config.h:
MAX_PAGE_BUFFERS (10 ~ 40)
Memory: (40 + page_size) each buffer

UFFS page status

● Free page: no page id
assigned yet. Free pages
are always on the bottom.

● Valid page: the page with a
id and have max page offset

● Discarded page: the page
with page id, there are one
or more pages have the
same id and bigger page
offset.

● Unknown status: interrupted
while writing a page.

1
1
1
2
2
3
3
4

0

6
2
4

5

Valid page
Discarded page
Free page

UFFS block status
● Bad block
● Free/Erased block
● Non-full loaded block (have one or more free pages)
● Full loaded block (no free page, page id = physical page offset)

1
1
1
2
2
3
3
4

0

6
2
4

5

Valid page
Discarded page
Free page

1
2
3
4
5
6
7
8

0

10
11
12
13
14
15

9

Bad block Free block Non-full
loaded block

Full loaded
block

UFFS block recover(1)

● Block recover happens when:
– No more free pages available inside the block and
– Data were modified and/or
– Flush the buffer

● Block recover steps:
– (1)Get a free/erased block from erased block list
– (2)Copy pages from old block, write to new block

with newer timestamps
– (3)Erase the old block
– (4)Put the old block to erased block list
– Note: (1) and (4) are operating in memory. (2) and

(3) identified by timestamps, all steps allow to be
interrupted at any time ! (Guaranteed integrity across
unexpected power losses)

UFFS block recover(2)
● No block recover if there are enough free pages

1
1
1
2
2
3
3
4

0

6
2
4

5

Valid page
Discarded page
Free page

Since there are free pages,
no block recover happens.
Mark old page as
discarded, and generate a
new page.

1
1
1
2
2
3
3
4

0

6
2
4
3

5

Block 1234 Block 1234

UFFS block recover(3)
● Recover a non-full loaded block

1
1
1
2
2
3
3
4

0

6
2
4
4
6
7

5

Valid page
Discarded page
Free page

1
2
3
4
5
6
7
8

0No more free page
available in this block,
modify any pages from 0-
7, or add a new page 8,
will cause block
recovering.

Block 5678Block 1234

UFFS block recover(4)
● Recover a full-loaded block

1
2
3
4
5
6
7
8

0

10
11
12
13
14
15

9

Valid page
Discarded page
Free page

Modify any page of full-
loaded block will cause
block recovering.

1
2
3
4
5
6
7
8

0

10
11
12
13
14
15

9

Block 1234 Block 5678

UFFS Page layout

● Mini-header (4B) and DATA on page data area, Tag, ECC and 'seal byte' on spare area
● In some case (for example, when using hardware RS-ECC on small page MLC), you can

treat the whole NAND page as one body, blur the page data and spare area boundary.
● The 'status byte': this is the first byte of mini-header. If status byte is not 0xFF – this page

is “dirty”, page program already started.
● The 'seal byte': this is the last byte of spare data. If seal byte is not 0xFF – this page is

“sealed”, all data and tag/ECC have been programmed successfully.

mini-
header DATA Tag ECC

Seal byteStatus byte

UFFS bad block management

● Bad block discover when mounting UFFS
● Bad block discover when read/write/erase

– Try ECC error correct
– If ECC fail, there is no way get valid data
– Do not process bad block immediately, leave it at

the end of Read/Write operation.
– Only handle one bad block during the one

read/write operation.
● Check bad block when formating UFFS

How ECC works ? (1)

● XOR: A ^ B = C
– 0 ^ 0 = 0
– 1 ^ 0 = 1
– 0 ^ 1 = 1
– 1 ^ 1 = 0

● Knowing any two of A, B and C, will know the
rest one.

● UFFS ECC: 3 bytes ECC for 256 bytes data
– 256 Bytes ==> 2048 Bits ===> 256(row) X 8(col)

How ECC works ? (2)

UFFS Flash Interface

● struct uffs_FlashOpsSt:
– Use hardware ECC, or leave it to UFFS
– Allow driver do the spare layout, or leave it to

UFFS
– Return flash operation status
– Sequential page programing. No partial page

programing.

UFFS Limitations

● Only one file/dir on one block
● Dynamic wear-leveling, Static wear-leveling

is not implemented.

The next: UFFS2 ?

● Smaller Tree Node (12 bytes), save 25%
RAM

● Use NAND block as buffers
● Multiple files/dirs on one block
● Support 8K, 16K page size
● Static wear-leveling
● Symbol link, FIFO file ?
● NOR flash support ? Maybe ...

The End

