/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-11-12 Jesven first version * 2023-02-23 Shell Support sigtimedwait * 2023-07-04 Shell Support siginfo, sigqueue * remove lwp_signal_backup/restore() to reduce architecture codes * update the generation, pending and delivery routines */ #define __RT_IPC_SOURCE__ #define DBG_TAG "lwp.signal" #define DBG_LVL DBG_INFO #include #include #include #include #include "lwp_internal.h" #include "sys/signal.h" #include "syscall_generic.h" static lwp_siginfo_t siginfo_create(int signo, int code, int value) { lwp_siginfo_t siginfo; struct rt_lwp *self_lwp; rt_thread_t self_thr; siginfo = rt_malloc(sizeof(*siginfo)); if (siginfo) { siginfo->ksiginfo.signo = signo; siginfo->ksiginfo.code = code; siginfo->ksiginfo.value = value; self_lwp = lwp_self(); self_thr = rt_thread_self(); if (self_lwp) { siginfo->ksiginfo.from_pid = self_lwp->pid; siginfo->ksiginfo.from_tid = self_thr->tid; } else { siginfo->ksiginfo.from_pid = 0; siginfo->ksiginfo.from_tid = 0; } } return siginfo; } rt_inline void siginfo_delete(lwp_siginfo_t siginfo) { rt_free(siginfo); } rt_inline void _sigorsets(lwp_sigset_t *dset, const lwp_sigset_t *set0, const lwp_sigset_t *set1) { switch (_LWP_NSIG_WORDS) { case 4: dset->sig[3] = set0->sig[3] | set1->sig[3]; dset->sig[2] = set0->sig[2] | set1->sig[2]; case 2: dset->sig[1] = set0->sig[1] | set1->sig[1]; case 1: dset->sig[0] = set0->sig[0] | set1->sig[0]; default: return; } } rt_inline void _sigandsets(lwp_sigset_t *dset, const lwp_sigset_t *set0, const lwp_sigset_t *set1) { switch (_LWP_NSIG_WORDS) { case 4: dset->sig[3] = set0->sig[3] & set1->sig[3]; dset->sig[2] = set0->sig[2] & set1->sig[2]; case 2: dset->sig[1] = set0->sig[1] & set1->sig[1]; case 1: dset->sig[0] = set0->sig[0] & set1->sig[0]; default: return; } } rt_inline void _signotsets(lwp_sigset_t *dset, const lwp_sigset_t *set) { switch (_LWP_NSIG_WORDS) { case 4: dset->sig[3] = ~set->sig[3]; dset->sig[2] = ~set->sig[2]; case 2: dset->sig[1] = ~set->sig[1]; case 1: dset->sig[0] = ~set->sig[0]; default: return; } } rt_inline void _sigaddset(lwp_sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_LWP_NSIG_WORDS == 1) { set->sig[0] |= 1UL << sig; } else { set->sig[sig / _LWP_NSIG_BPW] |= 1UL << (sig % _LWP_NSIG_BPW); } } rt_inline void _sigdelset(lwp_sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_LWP_NSIG_WORDS == 1) { set->sig[0] &= ~(1UL << sig); } else { set->sig[sig / _LWP_NSIG_BPW] &= ~(1UL << (sig % _LWP_NSIG_BPW)); } } rt_inline int _sigisemptyset(lwp_sigset_t *set) { switch (_LWP_NSIG_WORDS) { case 4: return (set->sig[3] | set->sig[2] | set->sig[1] | set->sig[0]) == 0; case 2: return (set->sig[1] | set->sig[0]) == 0; case 1: return set->sig[0] == 0; default: return 1; } } rt_inline int _sigismember(lwp_sigset_t *set, int _sig) { unsigned long sig = _sig - 1; if (_LWP_NSIG_WORDS == 1) { return 1 & (set->sig[0] >> sig); } else { return 1 & (set->sig[sig / _LWP_NSIG_BPW] >> (sig % _LWP_NSIG_BPW)); } } rt_inline int _next_signal(lwp_sigset_t *pending, lwp_sigset_t *mask) { unsigned long i, *s, *m, x; int sig = 0; s = pending->sig; m = mask->sig; x = *s & ~*m; if (x) { sig = rt_hw_ffz(~x) + 1; return sig; } switch (_LWP_NSIG_WORDS) { default: for (i = 1; i < _LWP_NSIG_WORDS; ++i) { x = *++s &~ *++m; if (!x) continue; sig = rt_hw_ffz(~x) + i*_LWP_NSIG_BPW + 1; break; } break; case 2: x = s[1] &~ m[1]; if (!x) break; sig = rt_hw_ffz(~x) + _LWP_NSIG_BPW + 1; break; case 1: /* Nothing to do */ break; } return sig; } #define _SIGQ(tp) (&(tp)->signal.sig_queue) rt_inline int sigqueue_isempty(lwp_sigqueue_t sigqueue) { return _sigisemptyset(&sigqueue->sigset_pending); } rt_inline int sigqueue_ismember(lwp_sigqueue_t sigqueue, int signo) { return _sigismember(&sigqueue->sigset_pending, signo); } rt_inline int sigqueue_peek(lwp_sigqueue_t sigqueue, lwp_sigset_t *mask) { return _next_signal(&sigqueue->sigset_pending, mask); } rt_inline int sigqueue_examine(lwp_sigqueue_t sigqueue, lwp_sigset_t *pending) { int is_empty = sigqueue_isempty(sigqueue); if (!is_empty) { _sigorsets(pending, &sigqueue->sigset_pending, &sigqueue->sigset_pending); } return is_empty; } static void sigqueue_enqueue(lwp_sigqueue_t sigqueue, lwp_siginfo_t siginfo) { lwp_siginfo_t idx; rt_bool_t inserted = RT_FALSE; rt_list_for_each_entry(idx, &sigqueue->siginfo_list, node) { if (idx->ksiginfo.signo >= siginfo->ksiginfo.signo) { rt_list_insert_after(&idx->node, &siginfo->node); inserted = RT_TRUE; break; } } if (!inserted) rt_list_insert_before(&sigqueue->siginfo_list, &siginfo->node); _sigaddset(&sigqueue->sigset_pending, siginfo->ksiginfo.signo); return ; } /** * dequeue a siginfo matching the signo which is likely to be existed, and * test if any other siblings remains */ static lwp_siginfo_t sigqueue_dequeue(lwp_sigqueue_t sigqueue, int signo) { lwp_siginfo_t found; lwp_siginfo_t candidate; lwp_siginfo_t next; rt_bool_t is_empty; found = RT_NULL; is_empty = RT_TRUE; rt_list_for_each_entry_safe(candidate, next, &sigqueue->siginfo_list, node) { if (candidate->ksiginfo.signo == signo) { if (found) { /* already found */ is_empty = RT_FALSE; break; } else { /* found first */ found = candidate; rt_list_remove(&found->node); } } else if (candidate->ksiginfo.signo > signo) break; } if (found && is_empty) _sigdelset(&sigqueue->sigset_pending, signo); return found; } static void sigqueue_discard(lwp_sigqueue_t sigqueue, int signo) { lwp_siginfo_t queuing_si; while (!sigqueue_isempty(sigqueue)) { queuing_si = sigqueue_dequeue(sigqueue, signo); siginfo_delete(queuing_si); } } /* assuming that (void *) is compatible to long at length */ RT_STATIC_ASSERT(lp_width_same, sizeof(void *) == sizeof(long)); /** translate lwp siginfo to user siginfo_t */ rt_inline void siginfo_k2u(lwp_siginfo_t ksigi, siginfo_t *usigi) { usigi->si_code = ksigi->ksiginfo.code; usigi->si_signo = ksigi->ksiginfo.signo; usigi->si_value.sival_ptr = (void *)ksigi->ksiginfo.value; usigi->si_pid = ksigi->ksiginfo.from_pid; /* deprecated field */ usigi->si_errno = 0; } /* must called in locked context */ rt_inline lwp_sighandler_t _get_sighandler_locked(struct rt_lwp *lwp, int signo) { return lwp->signal.sig_action[signo - 1]; } static lwp_sigset_t *_mask_block_fn(rt_thread_t thread, const lwp_sigset_t *sigset, lwp_sigset_t *new_set) { _sigorsets(new_set, &thread->signal.sigset_mask, sigset); return new_set; } static lwp_sigset_t *_mask_unblock_fn(rt_thread_t thread, const lwp_sigset_t *sigset, lwp_sigset_t *new_set) { lwp_sigset_t complement; _signotsets(&complement, sigset); _sigandsets(new_set, &thread->signal.sigset_mask, &complement); return new_set; } static lwp_sigset_t *_mask_set_fn(rt_thread_t thread, const lwp_sigset_t *sigset, lwp_sigset_t *new_set) { memcpy(new_set, sigset, sizeof(*sigset)); return new_set; } static lwp_sigset_t *(*_sig_mask_fn[__LWP_SIG_MASK_CMD_WATERMARK]) (rt_thread_t thread, const lwp_sigset_t *sigset, lwp_sigset_t *new_set) = { [LWP_SIG_MASK_CMD_BLOCK] = _mask_block_fn, [LWP_SIG_MASK_CMD_UNBLOCK] = _mask_unblock_fn, [LWP_SIG_MASK_CMD_SET_MASK] = _mask_set_fn, }; static void _thread_signal_mask(rt_thread_t thread, lwp_sig_mask_cmd_t how, const lwp_sigset_t *sigset, lwp_sigset_t *oset) { lwp_sigset_t new_set; /** * Note: POSIX wants this API to be capable to query the current mask * by passing NULL in `sigset` */ if (oset) memcpy(oset, &thread->signal.sigset_mask, sizeof(lwp_sigset_t)); if (sigset) { _sig_mask_fn[how](thread, sigset, &new_set); /* remove un-maskable signal from set */ _sigdelset(&new_set, SIGKILL); _sigdelset(&new_set, SIGSTOP); memcpy(&thread->signal.sigset_mask, &new_set, sizeof(lwp_sigset_t)); } } void lwp_sigqueue_clear(lwp_sigqueue_t sigq) { lwp_siginfo_t this, next; if (!sigqueue_isempty(sigq)) { rt_list_for_each_entry_safe(this, next, &sigq->siginfo_list, node) { siginfo_delete(this); } } } static void lwp_signal_notify(rt_slist_t *list_head, lwp_siginfo_t siginfo) { rt_slist_t *node; rt_slist_for_each(node, list_head) { struct rt_lwp_notify *n = rt_slist_entry(node, struct rt_lwp_notify, list_node); if (n->notify) { n->notify(n->signalfd_queue, siginfo->ksiginfo.signo); } } } rt_err_t lwp_signal_init(struct lwp_signal *sig) { rt_err_t rc = RT_EOK; sig->real_timer = LWP_SIG_INVALID_TIMER; memset(&sig->sig_dispatch_thr, 0, sizeof(sig->sig_dispatch_thr)); memset(&sig->sig_action, 0, sizeof(sig->sig_action)); memset(&sig->sig_action_nodefer, 0, sizeof(sig->sig_action_nodefer)); memset(&sig->sig_action_onstack, 0, sizeof(sig->sig_action_onstack)); memset(&sig->sig_action_restart, 0, sizeof(sig->sig_action_restart)); memset(&sig->sig_action_siginfo, 0, sizeof(sig->sig_action_siginfo)); lwp_sigqueue_init(&sig->sig_queue); return rc; } rt_err_t lwp_signal_detach(struct lwp_signal *signal) { rt_err_t ret = RT_EOK; timer_delete(signal->real_timer); lwp_sigqueue_clear(&signal->sig_queue); return ret; } int lwp_thread_signal_suspend_check(rt_thread_t thread, int suspend_flag) { struct rt_lwp *lwp = (struct rt_lwp*)thread->lwp; int ret = 0; switch (suspend_flag) { case RT_INTERRUPTIBLE: if (!sigqueue_isempty(_SIGQ(thread))) { break; } if (thread->lwp && !sigqueue_isempty(_SIGQ(lwp))) { break; } ret = 1; break; case RT_KILLABLE: if (sigqueue_ismember(_SIGQ(thread), SIGKILL)) { break; } if (thread->lwp && sigqueue_ismember(_SIGQ(lwp), SIGKILL)) { break; } ret = 1; break; case RT_UNINTERRUPTIBLE: ret = 1; break; default: RT_ASSERT(0); break; } return ret; } void lwp_thread_signal_catch(void *exp_frame) { int signo = 0; struct rt_thread *thread; struct rt_lwp *lwp; lwp_siginfo_t siginfo = 0; lwp_sigqueue_t pending; lwp_sigset_t *sig_mask; lwp_sigset_t save_sig_mask; lwp_sigset_t new_sig_mask; lwp_sighandler_t handler = 0; siginfo_t usiginfo; siginfo_t *p_usi = RT_NULL; thread = rt_thread_self(); lwp = (struct rt_lwp*)thread->lwp; RT_ASSERT(!!lwp); LWP_LOCK(lwp); /* check if signal exist */ if (!sigqueue_isempty(_SIGQ(thread))) { pending = _SIGQ(thread); sig_mask = &thread->signal.sigset_mask; } else if (!sigqueue_isempty(_SIGQ(lwp))) { pending = _SIGQ(lwp); sig_mask = &thread->signal.sigset_mask; } else { pending = RT_NULL; } if (pending) { /* peek the pending signal */ signo = sigqueue_peek(pending, sig_mask); if (signo) { siginfo = sigqueue_dequeue(pending, signo); RT_ASSERT(siginfo != RT_NULL); handler = _get_sighandler_locked(lwp, signo); /* IGN signal will never be queued */ RT_ASSERT(handler != LWP_SIG_ACT_IGN); /* copy the blocked signal mask from the registered signal action */ memcpy(&new_sig_mask, &lwp->signal.sig_action_mask[signo - 1], sizeof(new_sig_mask)); if (!_sigismember(&lwp->signal.sig_action_nodefer, signo)) _sigaddset(&new_sig_mask, signo); _thread_signal_mask(thread, LWP_SIG_MASK_CMD_BLOCK, &new_sig_mask, &save_sig_mask); /* siginfo is need for signal action */ if (_sigismember(&lwp->signal.sig_action_siginfo, signo)) { siginfo_k2u(siginfo, &usiginfo); p_usi = &usiginfo; } else p_usi = RT_NULL; } } LWP_UNLOCK(lwp); if (pending && signo) { siginfo_delete(siginfo); /* signal default handler */ if (handler == LWP_SIG_ACT_DFL) { LOG_D("%s: default handler; and exit", __func__); sys_exit_group(0); } /** * enter signal action of user * Note: that the p_usi is release before entering signal action by * reseting the kernel sp. */ LOG_D("%s: enter signal handler(signo=%d) at %p", __func__, signo, handler); arch_thread_signal_enter(signo, p_usi, exp_frame, handler, &save_sig_mask); /* the arch_thread_signal_enter() never return */ RT_ASSERT(0); } } static int _do_signal_wakeup(rt_thread_t thread, int sig) { int need_schedule; rt_sched_lock_level_t slvl; if (!_sigismember(&thread->signal.sigset_mask, sig)) { rt_sched_lock(&slvl); int stat = rt_sched_thread_get_stat(thread); if ((stat & RT_THREAD_SUSPEND_MASK) == RT_THREAD_SUSPEND_MASK) { if ((stat & RT_SIGNAL_COMMON_WAKEUP_MASK) != RT_SIGNAL_COMMON_WAKEUP_MASK) { thread->error = RT_EINTR; rt_sched_unlock(slvl); rt_thread_wakeup(thread); need_schedule = 1; } else if ((sig == SIGKILL || sig == SIGSTOP) && ((stat & RT_SIGNAL_KILL_WAKEUP_MASK) != RT_SIGNAL_KILL_WAKEUP_MASK)) { thread->error = RT_EINTR; rt_sched_unlock(slvl); rt_thread_wakeup(thread); need_schedule = 1; } else { rt_sched_unlock(slvl); need_schedule = 0; } } else { rt_sched_unlock(slvl); need_schedule = 0; } } else need_schedule = 0; return need_schedule; } /** find a candidate to be notified of the arrival */ static rt_thread_t _signal_find_catcher(struct rt_lwp *lwp, int signo) { rt_thread_t catcher = RT_NULL; rt_thread_t candidate; candidate = lwp->signal.sig_dispatch_thr[signo - 1]; if (candidate != RT_NULL && !_sigismember(&candidate->signal.sigset_mask, signo)) { catcher = candidate; } else { candidate = rt_thread_self(); /** Note: lwp of current is a const value that can be safely read */ if (candidate->lwp == lwp && !_sigismember(&candidate->signal.sigset_mask, signo)) { catcher = candidate; } else { rt_list_for_each_entry(candidate, &lwp->t_grp, sibling) { if (!_sigismember(&candidate->signal.sigset_mask, signo)) { catcher = candidate; break; } } /* fall back to main thread */ if (catcher == RT_NULL) catcher = rt_list_entry(lwp->t_grp.prev, struct rt_thread, sibling); } /* reset the cache thread to catcher (even if catcher is main thread) */ lwp->signal.sig_dispatch_thr[signo - 1] = catcher; } return catcher; } static int _siginfo_deliver_to_lwp(struct rt_lwp *lwp, lwp_siginfo_t siginfo) { rt_thread_t catcher; catcher = _signal_find_catcher(lwp, siginfo->ksiginfo.signo); sigqueue_enqueue(&lwp->signal.sig_queue, siginfo); return _do_signal_wakeup(catcher, siginfo->ksiginfo.signo); } static int _siginfo_deliver_to_thread(rt_thread_t thread, lwp_siginfo_t siginfo) { sigqueue_enqueue(_SIGQ(thread), siginfo); return _do_signal_wakeup(thread, siginfo->ksiginfo.signo); } rt_inline rt_bool_t _sighandler_is_ignored(struct rt_lwp *lwp, int signo) { rt_bool_t is_ignored; lwp_sighandler_t action; lwp_sigset_t ign_set = lwp_sigset_init(LWP_SIG_IGNORE_SET); action = _get_sighandler_locked(lwp, signo); if (action == LWP_SIG_ACT_IGN) is_ignored = RT_TRUE; else if (action == LWP_SIG_ACT_DFL && _sigismember(&ign_set, signo)) is_ignored = RT_TRUE; else is_ignored = RT_FALSE; return is_ignored; } rt_inline rt_bool_t _sighandler_cannot_caught(struct rt_lwp *lwp, int signo) { return signo == SIGKILL || signo == SIGSTOP; } rt_err_t lwp_signal_kill(struct rt_lwp *lwp, long signo, long code, long value) { rt_err_t ret = -1; lwp_siginfo_t siginfo; rt_bool_t terminated; rt_bool_t need_schedule; /** must be able to be suspended */ RT_DEBUG_SCHEDULER_AVAILABLE(RT_TRUE); if (!lwp || signo <= 0 || signo > _LWP_NSIG) { ret = -RT_EINVAL; } else { LOG_D("%s(lwp=%p \"%s\",signo=%ld,code=%ld,value=%ld)", __func__, lwp, lwp->cmd, signo, code, value); need_schedule = RT_FALSE; LWP_LOCK(lwp); terminated = lwp->terminated; /* short-circuit code for inactive task, ignored signals */ if (terminated || _sighandler_is_ignored(lwp, signo)) { ret = 0; } else { siginfo = siginfo_create(signo, code, value); if (siginfo) { need_schedule = _siginfo_deliver_to_lwp(lwp, siginfo); ret = 0; lwp_signal_notify(&lwp->signalfd_notify_head, siginfo); } else { LOG_I("%s: siginfo malloc failed", __func__); ret = -RT_ENOMEM; } } LWP_UNLOCK(lwp); if (need_schedule) rt_schedule(); } return ret; } static void _signal_action_flag_k2u(int signo, struct lwp_signal *signal, struct lwp_sigaction *act) { long flags = 0; if (_sigismember(&signal->sig_action_nodefer, signo)) flags |= SA_NODEFER; if (_sigismember(&signal->sig_action_onstack, signo)) flags |= SA_ONSTACK; if (_sigismember(&signal->sig_action_restart, signo)) flags |= SA_RESTART; if (_sigismember(&signal->sig_action_siginfo, signo)) flags |= SA_SIGINFO; act->sa_flags = flags; } static void _signal_action_flag_u2k(int signo, struct lwp_signal *signal, const struct lwp_sigaction *act) { long flags = act->sa_flags; if (flags & SA_NODEFER) _sigaddset(&signal->sig_action_nodefer, signo); if (flags & SA_ONSTACK) _sigaddset(&signal->sig_action_onstack, signo); if (flags & SA_RESTART) _sigaddset(&signal->sig_action_restart, signo); if (flags & SA_SIGINFO) _sigaddset(&signal->sig_action_siginfo, signo); } rt_err_t lwp_signal_action(struct rt_lwp *lwp, int signo, const struct lwp_sigaction *restrict act, struct lwp_sigaction *restrict oact) { lwp_sighandler_t prev_handler; lwp_sigqueue_t thread_sigq; rt_list_t *thread_list; rt_err_t ret = RT_EOK; if (lwp) { /** acquire READ access to lwp */ LWP_LOCK(lwp); if (oact) { oact->sa_mask = lwp->signal.sig_action_mask[signo - 1]; oact->__sa_handler._sa_handler = lwp->signal.sig_action[signo - 1]; oact->sa_restorer = RT_NULL; _signal_action_flag_k2u(signo, &lwp->signal, oact); } if (act) { /** * Note: POSIX.1-2017 requires calls to sigaction() that supply a NULL act * argument succeed, even in the case of signals that cannot be caught or ignored */ if (_sighandler_cannot_caught(lwp, signo)) ret = -RT_EINVAL; else { prev_handler = _get_sighandler_locked(lwp, signo); lwp->signal.sig_action_mask[signo - 1] = act->sa_mask; if (act->__sa_handler._sa_handler == SIG_IGN) lwp->signal.sig_action[signo - 1] = LWP_SIG_ACT_IGN; else lwp->signal.sig_action[signo - 1] = act->__sa_handler._sa_handler; _signal_action_flag_u2k(signo, &lwp->signal, act); /** * Brief: Discard the pending signal if signal action is set to SIG_IGN * * Note: POSIX.1-2017: Setting a signal action to SIG_IGN for a signal * that is pending shall cause the pending signal to be discarded, * whether or not it is blocked. */ if (prev_handler != LWP_SIG_ACT_IGN && _get_sighandler_locked(lwp, signo) == LWP_SIG_ACT_IGN) { sigqueue_discard(_SIGQ(lwp), signo); for (thread_list = lwp->t_grp.next; thread_list != &lwp->t_grp; thread_list = thread_list->next) { thread_sigq = _SIGQ(rt_list_entry(thread_list, struct rt_thread, sibling)); sigqueue_discard(thread_sigq, signo); } } } } LWP_UNLOCK(lwp); } else ret = -RT_EINVAL; return ret; } rt_err_t lwp_thread_signal_kill(rt_thread_t thread, long signo, long code, long value) { rt_err_t ret = -1; struct rt_lwp *lwp; lwp_siginfo_t siginfo; rt_bool_t need_schedule; /** must be able to be suspended */ RT_DEBUG_SCHEDULER_AVAILABLE(RT_TRUE); LOG_D("%s(signo=%d)", __func__, signo); if (!thread || signo <= 0 || signo >= _LWP_NSIG) { ret = -RT_EINVAL; } else { lwp = thread->lwp; need_schedule = RT_FALSE; RT_ASSERT(lwp); LWP_LOCK(lwp); if (!lwp) ret = -RT_EPERM; else if (lwp->terminated || _sighandler_is_ignored(lwp, signo)) ret = 0; else { siginfo = siginfo_create(signo, code, value); if (siginfo) { need_schedule = _siginfo_deliver_to_thread(thread, siginfo); lwp_signal_notify(&lwp->signalfd_notify_head, siginfo); ret = 0; } else { LOG_I("%s: siginfo malloc failed", __func__); ret = -RT_ENOMEM; } } LWP_UNLOCK(lwp); if (need_schedule) rt_schedule(); } return ret; } #ifndef ARCH_MM_MMU void lwp_thread_sighandler_set(int sig, lwp_sighandler_t func) { rt_base_t level; if (sig == 0 || sig > _LWP_NSIG) return; level = rt_hw_interrupt_disable(); rt_thread_self()->signal_handler[sig - 1] = func; rt_hw_interrupt_enable(level); } #endif rt_err_t lwp_thread_signal_mask(rt_thread_t thread, lwp_sig_mask_cmd_t how, const lwp_sigset_t *sigset, lwp_sigset_t *oset) { rt_err_t ret = -1; struct rt_lwp *lwp; if (thread) { lwp = (struct rt_lwp*)thread->lwp; LWP_LOCK(lwp); if (!lwp) { ret = -RT_EPERM; } else { ret = 0; _thread_signal_mask(thread, how, sigset, oset); } LWP_UNLOCK(lwp); } else ret = -RT_EINVAL; return ret; } static int _dequeue_signal(rt_thread_t thread, lwp_sigset_t *mask, siginfo_t *usi) { int signo; lwp_siginfo_t si; struct rt_lwp *lwp; lwp_sigset_t *pending; lwp_sigqueue_t sigqueue; sigqueue = _SIGQ(thread); pending = &sigqueue->sigset_pending; signo = _next_signal(pending, mask); if (!signo) { lwp = thread->lwp; RT_ASSERT(lwp); sigqueue = _SIGQ(lwp); pending = &sigqueue->sigset_pending; signo = _next_signal(pending, mask); } if (!signo) return signo; si = sigqueue_dequeue(sigqueue, signo); RT_ASSERT(!!si); siginfo_k2u(si, usi); siginfo_delete(si); return signo; } rt_err_t lwp_thread_signal_timedwait(rt_thread_t thread, lwp_sigset_t *sigset, siginfo_t *usi, struct timespec *timeout) { rt_err_t ret; lwp_sigset_t saved_sigset; lwp_sigset_t blocked_sigset; int sig; struct rt_lwp *lwp = thread->lwp; /** * Brief: POSIX * If one of the signals in set is already pending for the calling thread, * sigwaitinfo() will return immediately */ /* Create a mask of signals user dont want or cannot catch */ _sigdelset(sigset, SIGKILL); _sigdelset(sigset, SIGSTOP); _signotsets(sigset, sigset); LWP_LOCK(lwp); sig = _dequeue_signal(thread, sigset, usi); LWP_UNLOCK(lwp); if (sig) return sig; /** * Brief: POSIX * if none of the signals specified by set are pending, sigtimedwait() shall * wait for the time interval specified in the timespec structure referenced * by timeout. * * Note: If the pending signal arrives before thread suspend, the suspend * operation will return a failure */ _sigandsets(&blocked_sigset, &thread->signal.sigset_mask, sigset); _thread_signal_mask(thread, LWP_SIG_MASK_CMD_SET_MASK, &blocked_sigset, &saved_sigset); if (timeout) { rt_uint32_t time; time = rt_timespec_to_tick(timeout); /** * Brief: POSIX * If the timespec structure pointed to by timeout is zero-valued and * if none of the signals specified by set are pending, then * sigtimedwait() shall return immediately with an error */ if (time == 0) return -EAGAIN; ret = rt_thread_suspend_with_flag(thread, RT_INTERRUPTIBLE); rt_timer_control(&(thread->thread_timer), RT_TIMER_CTRL_SET_TIME, &time); rt_timer_start(&(thread->thread_timer)); } else { /* suspend kernel forever until signal was received */ ret = rt_thread_suspend_with_flag(thread, RT_INTERRUPTIBLE); } if (ret == RT_EOK) { rt_schedule(); /* If thread->error reliable? */ if (thread->error == -RT_EINTR) ret = -EINTR; else ret = -EAGAIN; } /* else ret == -EINTR */ _thread_signal_mask(thread, LWP_SIG_MASK_CMD_SET_MASK, &saved_sigset, RT_NULL); LWP_LOCK(lwp); sig = _dequeue_signal(thread, sigset, usi); LWP_UNLOCK(lwp); return sig ? sig : ret; } void lwp_thread_signal_pending(rt_thread_t thread, lwp_sigset_t *pending) { struct rt_lwp *lwp; lwp = thread->lwp; if (lwp) { memset(pending, 0, sizeof(*pending)); LWP_LOCK(lwp); sigqueue_examine(_SIGQ(thread), pending); sigqueue_examine(_SIGQ(lwp), pending); LWP_UNLOCK(lwp); _sigandsets(pending, pending, &thread->signal.sigset_mask); } }