/* * Copyright (c) 2020-2021, Bluetrum Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2020-11-30 greedyhao first version */ #include "drv_sdio.h" #include "interrupt.h" #include #ifdef BSP_USING_SDIO // #define DRV_DEBUG #define LOG_TAG "drv.sdio" #include #define SDIO_USING_1_BIT static struct ab32_sdio_config sdio_config[] = { {.instance = SDMMC0_BASE, }, }; static struct rt_mmcsd_host *host = RT_NULL; #define RTHW_SDIO_LOCK(_sdio) rt_mutex_take(&(_sdio)->mutex, RT_WAITING_FOREVER) #define RTHW_SDIO_UNLOCK(_sdio) rt_mutex_release(&(_sdio)->mutex); struct sdio_pkg { struct rt_mmcsd_cmd *cmd; void *buff; rt_uint32_t flag; rt_uint32_t xfer_blks; }; struct rthw_sdio { struct rt_mmcsd_host *host; struct ab32_sdio_des sdio_des; struct rt_event event; struct rt_mutex mutex; struct sdio_pkg *pkg; }; rt_align(SDIO_ALIGN_LEN) static rt_uint8_t cache_buf[SDIO_BUFF_SIZE]; static rt_uint8_t sd_baud = 119; rt_uint8_t sysclk_update_baud(rt_uint8_t baud); static rt_uint32_t ab32_sdio_clk_get(hal_sfr_t hw_sdio) { return (get_sysclk_nhz() / (sd_baud+1)); } /** * @brief This function get order from sdio. * @param data * @retval sdio order */ static int get_order(rt_uint32_t data) { int order = 0; switch (data) { case 1: order = 0; break; case 2: order = 1; break; case 4: order = 2; break; case 8: order = 3; break; case 16: order = 4; break; case 32: order = 5; break; case 64: order = 6; break; case 128: order = 7; break; case 256: order = 8; break; case 512: order = 9; break; case 1024: order = 10; break; case 2048: order = 11; break; case 4096: order = 12; break; case 8192: order = 13; break; case 16384: order = 14; break; default : order = 0; break; } return order; } /** * @brief This function wait sdio completed. * @param sdio rthw_sdio * @retval None */ static void rthw_sdio_wait_completed(struct rthw_sdio *sdio) { rt_uint32_t status = 0; struct rt_mmcsd_cmd *cmd = sdio->pkg->cmd; struct rt_mmcsd_data *data = cmd->data; hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio; rt_err_t tx_finish = -RT_ERROR; if (rt_event_recv(&sdio->event, 0xFFFFFFFF & ~HW_SDIO_CON_DFLAG, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, rt_tick_from_millisecond(5000), &status) != RT_EOK) { LOG_E("wait completed timeout"); cmd->err = -RT_ETIMEOUT; return; } if (sdio->pkg == RT_NULL) { return; } cmd->resp[0] = hw_sdio[SDxARG3]; cmd->resp[1] = hw_sdio[SDxARG2]; cmd->resp[2] = hw_sdio[SDxARG1]; cmd->resp[3] = hw_sdio[SDxARG0]; if (!(status & HW_SDIO_CON_NRPS)) { cmd->err = RT_EOK; LOG_D("sta:0x%08X [%08X %08X %08X %08X]", status, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]); } else { cmd->err = -RT_ERROR; } } /** * @brief This function transfer data by dma. * @param sdio rthw_sdio * @param pkg sdio package * @retval None */ static void rthw_sdio_transfer_by_dma(struct rthw_sdio *sdio, struct sdio_pkg *pkg) { struct rt_mmcsd_data *data; int size; void *buff; hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio; if ((RT_NULL == pkg) || (RT_NULL == sdio)) { LOG_E("rthw_sdio_transfer_by_dma invalid args"); return; } data = pkg->cmd->data; if (RT_NULL == data) { LOG_E("rthw_sdio_transfer_by_dma invalid args"); return; } buff = pkg->buff; if (RT_NULL == buff) { LOG_E("rthw_sdio_transfer_by_dma invalid args"); return; } hw_sdio = sdio->sdio_des.hw_sdio; size = data->blks * data->blksize; if (data->flags & DATA_DIR_WRITE) { LOG_D("DATA_DIR_WRITE %d", pkg->xfer_blks); sdio->sdio_des.txconfig((rt_uint32_t *)((rt_uint8_t *)buff + (pkg->xfer_blks * data->blksize)), 512); } else if (data->flags & DATA_DIR_READ) { LOG_D("DATA_DIR_WRITE %d", pkg->xfer_blks); sdio->sdio_des.rxconfig((rt_uint32_t *)((rt_uint8_t *)buff + (pkg->xfer_blks * data->blksize)), data->blksize); } } /** * @brief This function send command. * @param sdio rthw_sdio * @param pkg sdio package * @retval None */ static void rthw_sdio_send_command(struct rthw_sdio *sdio, struct sdio_pkg *pkg) { struct rt_mmcsd_cmd *cmd = pkg->cmd; struct rt_mmcsd_data *data = cmd->data; hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio; rt_uint32_t reg_cmd = 0; rt_uint32_t data_flag = 0; /* save pkg */ sdio->pkg = pkg; #define CK8E BIT(11) //在命令/数据包后加上8CLK #define CBUSY BIT(10) //Busy Check #define CLRSP BIT(9) //17Byte Long Rsp #define CRSP BIT(8) //Need Rsp /* config cmd reg */ if (cmd->cmd_code != 18) { reg_cmd = cmd->cmd_code | 0x40 | CK8E; } else { reg_cmd = cmd->cmd_code | 0x40; } switch (resp_type(cmd)) { case RESP_R1B: reg_cmd |= CBUSY | CRSP; break; case RESP_R2: reg_cmd |= CLRSP | CRSP; break; default: reg_cmd |= CRSP; break; } LOG_D("CMD:%d 0x%04X ARG:0x%08x RES:%s%s%s%s%s%s%s%s%s rw:%c len:%d blksize:%d", cmd->cmd_code, reg_cmd, cmd->arg, resp_type(cmd) == RESP_NONE ? "NONE" : "", resp_type(cmd) == RESP_R1 ? "R1" : "", resp_type(cmd) == RESP_R1B ? "R1B" : "", resp_type(cmd) == RESP_R2 ? "R2" : "", resp_type(cmd) == RESP_R3 ? "R3" : "", resp_type(cmd) == RESP_R4 ? "R4" : "", resp_type(cmd) == RESP_R5 ? "R5" : "", resp_type(cmd) == RESP_R6 ? "R6" : "", resp_type(cmd) == RESP_R7 ? "R7" : "", data ? (data->flags & DATA_DIR_WRITE ? 'w' : 'r') : '-', data ? data->blks * data->blksize : 0, data ? data->blksize : 0 ); /* config data reg */ if (data != RT_NULL) { rt_uint32_t dir = 0; rt_uint32_t size = data->blks * data->blksize; int order; order = get_order(data->blksize); dir = (data->flags & DATA_DIR_READ) ? HW_SDIO_TO_HOST : 0; data_flag = data->flags; } /* transfer config */ if (data_flag & DATA_DIR_READ) { rthw_sdio_transfer_by_dma(sdio, pkg); } /* send cmd */ hw_sdio[SDxARG3] = cmd->arg; hw_sdio[SDxCMD] = reg_cmd; /* wait cmd completed */ rthw_sdio_wait_completed(sdio); /* transfer config */ if (data != RT_NULL) { do { if ((data_flag & DATA_DIR_WRITE) || ((data_flag & DATA_DIR_READ) && (pkg->xfer_blks != 0))) { rthw_sdio_transfer_by_dma(sdio, pkg); } rt_uint32_t status = 0; if (rt_event_recv(&sdio->event, 0xFFFFFFFF & ~HW_SDIO_CON_DFLAG, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, rt_tick_from_millisecond(5000), &status) != RT_EOK) { LOG_E("wait completed timeout"); LOG_E("SDxCON=0x%X SDxCMD=0x%X\n", hw_sdio[SDxCON], hw_sdio[SDxCMD]); cmd->err = -RT_ETIMEOUT; } if (data_flag & DATA_DIR_WRITE) { if (((hw_sdio[SDxCON] & HW_SDIO_CON_CRCS) >> 17) != 2) { LOG_E("Write CRC error!"); cmd->err = -RT_ERROR; hw_sdio[SDxCPND] = HW_SDIO_CON_DFLAG; } } } while(++pkg->xfer_blks != data->blks); } /* clear pkg */ sdio->pkg = RT_NULL; } /** * @brief This function send sdio request. * @param host rt_mmcsd_host * @param req request * @retval None */ static void rthw_sdio_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req) { struct sdio_pkg pkg; struct rthw_sdio *sdio = host->private_data; struct rt_mmcsd_data *data; RTHW_SDIO_LOCK(sdio); if (req->cmd != RT_NULL) { rt_memset(&pkg, 0, sizeof(pkg)); data = req->cmd->data; pkg.cmd = req->cmd; if (data != RT_NULL) { rt_uint32_t size = data->blks * data->blksize; RT_ASSERT(size <= SDIO_BUFF_SIZE); pkg.buff = data->buf; if ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1)) { pkg.buff = cache_buf; if (data->flags & DATA_DIR_WRITE) { rt_memcpy(cache_buf, data->buf, size); } } } rthw_sdio_send_command(sdio, &pkg); if ((data != RT_NULL) && (data->flags & DATA_DIR_READ) && ((rt_uint32_t)data->buf & (SDIO_ALIGN_LEN - 1))) { rt_memcpy(data->buf, cache_buf, data->blksize * data->blks); } } if (req->stop != RT_NULL) { rt_memset(&pkg, 0, sizeof(pkg)); pkg.cmd = req->stop; rthw_sdio_send_command(sdio, &pkg); } RTHW_SDIO_UNLOCK(sdio); mmcsd_req_complete(sdio->host); } /** * @brief This function config sdio. * @param host rt_mmcsd_host * @param io_cfg rt_mmcsd_io_cfg * @retval None */ static void rthw_sdio_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg) { rt_uint32_t clkcr, div, clk_src; rt_uint32_t clk = io_cfg->clock; struct rthw_sdio *sdio = host->private_data; hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio; clk_src = sdio->sdio_des.clk_get(sdio->sdio_des.hw_sdio); if (clk_src < 240 * 1000) { LOG_E("The clock rate is too low! rata:%d", clk_src); return; } if (clk > host->freq_max) clk = host->freq_max; if (clk > clk_src) { // LOG_W("Setting rate(%d) is greater than clock source rate(%d).", clk, clk_src); // clk = clk_src; } LOG_D("clk:%d width:%s%s%s power:%s%s%s", clk, io_cfg->bus_width == MMCSD_BUS_WIDTH_8 ? "8" : "", io_cfg->bus_width == MMCSD_BUS_WIDTH_4 ? "4" : "", io_cfg->bus_width == MMCSD_BUS_WIDTH_1 ? "1" : "", io_cfg->power_mode == MMCSD_POWER_OFF ? "OFF" : "", io_cfg->power_mode == MMCSD_POWER_UP ? "UP" : "", io_cfg->power_mode == MMCSD_POWER_ON ? "ON" : "" ); RTHW_SDIO_LOCK(sdio); switch (io_cfg->power_mode) { case MMCSD_POWER_OFF: hw_sdio[SDxCON] &= ~BIT(0); break; case MMCSD_POWER_UP: sd_baud = 199; hw_sdio[SDxCON] = 0; rt_thread_mdelay(1); hw_sdio[SDxCON] |= BIT(0); /* SD control enable */ hw_sdio[SDxBAUD] = sysclk_update_baud(sd_baud); hw_sdio[SDxCON] |= BIT(3); /* Keep clock output */ hw_sdio[SDxCON] |= BIT(4); hw_sdio[SDxCON] |= BIT(5); /* Data interrupt enable */ hal_mdelay(40); break; case MMCSD_POWER_ON: if (clk == SDIO_MAX_FREQ) { hw_sdio[SDxCON] &= ~BIT(3); sd_baud = 3; hw_sdio[SDxBAUD] = sysclk_update_baud(sd_baud); } break; default: LOG_W("unknown power_mode %d", io_cfg->power_mode); break; } RTHW_SDIO_UNLOCK(sdio); } /** * @brief This function update sdio interrupt. * @param host rt_mmcsd_host * @param enable * @retval None */ void rthw_sdio_irq_update(struct rt_mmcsd_host *host, rt_int32_t enable) { struct rthw_sdio *sdio = host->private_data; hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio; if (enable) { LOG_D("enable sdio irq"); rt_hw_irq_enable(IRQ_SD_VECTOR); } else { LOG_D("disable sdio irq"); rt_hw_irq_disable(IRQ_SD_VECTOR); } } /** * @brief This function detect sdcard. * @param host rt_mmcsd_host * @retval 0x01 */ static rt_int32_t rthw_sd_detect(struct rt_mmcsd_host *host) { LOG_D("try to detect device"); return 0x01; } /** * @brief This function interrupt process function. * @param host rt_mmcsd_host * @retval None */ rt_section(".irq.sdio") void rthw_sdio_irq_process(struct rt_mmcsd_host *host) { int complete = 0; struct rthw_sdio *sdio = host->private_data; hal_sfr_t hw_sdio = sdio->sdio_des.hw_sdio; rt_uint32_t intstatus = hw_sdio[SDxCON]; /* clear flag */ if (intstatus & HW_SDIO_CON_CFLAG) { complete = 1; hw_sdio[SDxCPND] = HW_SDIO_CON_CFLAG; } if (intstatus & HW_SDIO_CON_DFLAG) { complete = 1; hw_sdio[SDxCPND] = HW_SDIO_CON_DFLAG; } if (complete) { rt_event_send(&sdio->event, intstatus); } } static const struct rt_mmcsd_host_ops ab32_sdio_ops = { rthw_sdio_request, rthw_sdio_iocfg, rthw_sd_detect, rthw_sdio_irq_update, }; /** * @brief This function create mmcsd host. * @param sdio_des ab32_sdio_des * @retval rt_mmcsd_host */ struct rt_mmcsd_host *sdio_host_create(struct ab32_sdio_des *sdio_des) { struct rt_mmcsd_host *host; struct rthw_sdio *sdio = RT_NULL; if ((sdio_des == RT_NULL) || (sdio_des->txconfig == RT_NULL) || (sdio_des->rxconfig == RT_NULL)) { LOG_E("L:%d F:%s %s %s %s", (sdio_des == RT_NULL ? "sdio_des is NULL" : ""), (sdio_des ? (sdio_des->txconfig ? "txconfig is NULL" : "") : ""), (sdio_des ? (sdio_des->rxconfig ? "rxconfig is NULL" : "") : "") ); return RT_NULL; } sdio = rt_malloc(sizeof(struct rthw_sdio)); if (sdio == RT_NULL) { LOG_E("L:%d F:%s malloc rthw_sdio fail"); return RT_NULL; } rt_memset(sdio, 0, sizeof(struct rthw_sdio)); host = mmcsd_alloc_host(); if (host == RT_NULL) { LOG_E("L:%d F:%s mmcsd alloc host fail"); rt_free(sdio); return RT_NULL; } rt_memcpy(&sdio->sdio_des, sdio_des, sizeof(struct ab32_sdio_des)); sdio->sdio_des.hw_sdio = (sdio_des->hw_sdio == RT_NULL ? SDMMC0_BASE : sdio_des->hw_sdio); sdio->sdio_des.clk_get = (sdio_des->clk_get == RT_NULL ? ab32_sdio_clk_get : sdio_des->clk_get); rt_event_init(&sdio->event, "sdio", RT_IPC_FLAG_FIFO); rt_mutex_init(&sdio->mutex, "sdio", RT_IPC_FLAG_PRIO); /* set host defautl attributes */ host->ops = &ab32_sdio_ops; host->freq_min = 240 * 1000; host->freq_max = SDIO_MAX_FREQ; host->valid_ocr = 0X00FFFF80;/* The voltage range supported is 1.65v-3.6v */ #ifndef SDIO_USING_1_BIT host->flags = MMCSD_BUSWIDTH_4 | MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ; #else host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_SDIO_IRQ; #endif host->max_seg_size = SDIO_BUFF_SIZE; host->max_dma_segs = 1; host->max_blk_size = 512; host->max_blk_count = 512; /* link up host and sdio */ sdio->host = host; host->private_data = sdio; rthw_sdio_irq_update(host, 1); /* ready to change */ mmcsd_change(host); return host; } static rt_err_t _dma_txconfig(rt_uint32_t *src, int Size) { hal_sfr_t sdiox = sdio_config->instance; sdiox[SDxDMAADR] = DMA_ADR(src); sdiox[SDxDMACNT] = BIT(18) | BIT(17) | BIT(16) | Size; return RT_EOK; } static rt_err_t _dma_rxconfig(rt_uint32_t *dst, int Size) { hal_sfr_t sdiox = sdio_config->instance; sdiox[SDxDMAADR] = DMA_ADR(dst); sdiox[SDxDMACNT] = (Size); return RT_EOK; } rt_section(".irq.sdio") void sdio_isr(int vector, void *param) { /* enter interrupt */ rt_interrupt_enter(); /* Process All SDIO Interrupt Sources */ rthw_sdio_irq_process(host); /* leave interrupt */ rt_interrupt_leave(); } int rt_hw_sdio_init(void) { struct ab32_sdio_des sdio_des = {0}; struct sd_handle hsd = {0}; rt_uint8_t param = 0; hsd.instance = SDMMC0_BASE; hal_rcu_periph_clk_enable(RCU_SD0); hal_sd_mspinit(&hsd); rt_hw_interrupt_install(IRQ_SD_VECTOR, sdio_isr, ¶m, "sd_isr"); sdio_des.clk_get = ab32_sdio_clk_get; sdio_des.hw_sdio = SDMMC0_BASE; sdio_des.rxconfig = _dma_rxconfig; sdio_des.txconfig = _dma_txconfig; host = sdio_host_create(&sdio_des); return 0; } INIT_DEVICE_EXPORT(rt_hw_sdio_init); void ab32_mmcsd_change(void) { mmcsd_change(host); } #endif // 0