/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-08-21 zhangjun copy from minilibc * 2020-09-07 Meco Man combine gcc armcc iccarm * 2021-02-05 Meco Man add timegm() * 2021-02-07 Meco Man fixed gettimeofday() * 2021-02-08 Meco Man add settimeofday() stime() * 2021-02-10 Meco Man add ctime_r() and re-implement ctime() * 2021-02-11 Meco Man fix bug #3183 - align days[] and months[] to 4 bytes * 2021-02-12 Meco Man add errno * 2012-12-08 Bernard fix the issue of _timevalue.tv_usec initialization, * which found by Rob * 2021-02-12 Meco Man move all of the functions located in to this file * 2021-03-15 Meco Man fixed a bug of leaking memory in asctime() * 2021-05-01 Meco Man support fixed timezone * 2021-07-21 Meco Man implement that change/set timezone APIs * 2023-07-03 xqyjlj refactor posix time and timer * 2023-07-16 Shell update signal generation routine for lwp * adapt to new api and do the signal handling in thread context */ #include "sys/time.h" #include #include #include #include #include "drivers/rtc.h" #ifdef RT_USING_SMART #include "lwp.h" #endif #ifdef RT_USING_POSIX_DELAY #include #endif #if defined( RT_USING_RTC ) || defined( RT_USING_CPUTIME) #include #endif #ifdef RT_USING_KTIME #include "ktime.h" #endif #define DBG_TAG "time" #define DBG_LVL DBG_INFO #include #define _WARNING_NO_RTC "Cannot find a RTC device!" /* seconds per day */ #define SPD 24*60*60 /* days per month -- nonleap! */ static const short __spm[13] = { 0, (31), (31 + 28), (31 + 28 + 31), (31 + 28 + 31 + 30), (31 + 28 + 31 + 30 + 31), (31 + 28 + 31 + 30 + 31 + 30), (31 + 28 + 31 + 30 + 31 + 30 + 31), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31), }; rt_align(4) static const char *days = "Sun Mon Tue Wed Thu Fri Sat "; rt_align(4) static const char *months = "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec "; #ifndef __isleap static int __isleap(int year) { /* every fourth year is a leap year except for century years that are * not divisible by 400. */ /* return (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); */ return (!(year % 4) && ((year % 100) || !(year % 400))); } #endif static void num2str(char *c, int i) { c[0] = i / 10 + '0'; c[1] = i % 10 + '0'; } static rt_err_t _control_rtc(int cmd, void *arg) { #ifdef RT_USING_RTC static rt_device_t device = RT_NULL; rt_err_t rst = -RT_ERROR; if (device == RT_NULL) { device = rt_device_find("rtc"); } /* read timestamp from RTC device */ if (device != RT_NULL) { if (rt_device_open(device, 0) == RT_EOK) { rst = rt_device_control(device, cmd, arg); rt_device_close(device); } } else { LOG_W(_WARNING_NO_RTC); return -RT_ENOSYS; } return rst; #else LOG_W(_WARNING_NO_RTC); return -RT_ENOSYS; #endif /* RT_USING_RTC */ } struct tm *gmtime_r(const time_t *timep, struct tm *r) { int i; int work; if(timep == RT_NULL || r == RT_NULL) { rt_set_errno(EFAULT); return RT_NULL; } rt_memset(r, RT_NULL, sizeof(struct tm)); work = *timep % (SPD); r->tm_sec = work % 60; work /= 60; r->tm_min = work % 60; r->tm_hour = work / 60; work = (int)(*timep / (SPD)); r->tm_wday = (4 + work) % 7; for (i = 1970;; ++i) { int k = __isleap(i) ? 366 : 365; if (work >= k) work -= k; else break; } r->tm_year = i - 1900; r->tm_yday = work; r->tm_mday = 1; if (__isleap(i) && (work > 58)) { if (work == 59) r->tm_mday = 2; /* 29.2. */ work -= 1; } for (i = 11; i && (__spm[i] > work); --i); r->tm_mon = i; r->tm_mday += work - __spm[i]; r->tm_isdst = tz_is_dst(); return r; } RTM_EXPORT(gmtime_r); struct tm* gmtime(const time_t* t) { static struct tm tmp; return gmtime_r(t, &tmp); } RTM_EXPORT(gmtime); struct tm* localtime_r(const time_t* t, struct tm* r) { time_t local_tz; local_tz = *t + (time_t)tz_get() * 3600; return gmtime_r(&local_tz, r); } RTM_EXPORT(localtime_r); struct tm* localtime(const time_t* t) { static struct tm tmp; return localtime_r(t, &tmp); } RTM_EXPORT(localtime); time_t mktime(struct tm * const t) { time_t timestamp; timestamp = timegm(t); timestamp = timestamp - 3600 * (time_t)tz_get(); return timestamp; } RTM_EXPORT(mktime); char* asctime_r(const struct tm *t, char *buf) { if(t == RT_NULL || buf == RT_NULL) { rt_set_errno(EFAULT); return RT_NULL; } rt_memset(buf, RT_NULL, 26); /* Checking input validity */ if ((int)rt_strlen(days) <= (t->tm_wday << 2) || (int)rt_strlen(months) <= (t->tm_mon << 2)) { LOG_W("asctime_r: the input parameters exceeded the limit, please check it."); *(int*) buf = *(int*) days; *(int*) (buf + 4) = *(int*) months; num2str(buf + 8, t->tm_mday); if (buf[8] == '0') buf[8] = ' '; buf[10] = ' '; num2str(buf + 11, t->tm_hour); buf[13] = ':'; num2str(buf + 14, t->tm_min); buf[16] = ':'; num2str(buf + 17, t->tm_sec); buf[19] = ' '; num2str(buf + 20, 2000 / 100); num2str(buf + 22, 2000 % 100); buf[24] = '\n'; buf[25] = '\0'; return buf; } /* "Wed Jun 30 21:49:08 1993\n" */ *(int*) buf = *(int*) (days + (t->tm_wday << 2)); *(int*) (buf + 4) = *(int*) (months + (t->tm_mon << 2)); num2str(buf + 8, t->tm_mday); if (buf[8] == '0') buf[8] = ' '; buf[10] = ' '; num2str(buf + 11, t->tm_hour); buf[13] = ':'; num2str(buf + 14, t->tm_min); buf[16] = ':'; num2str(buf + 17, t->tm_sec); buf[19] = ' '; num2str(buf + 20, (t->tm_year + 1900) / 100); num2str(buf + 22, (t->tm_year + 1900) % 100); buf[24] = '\n'; buf[25] = '\0'; return buf; } RTM_EXPORT(asctime_r); char* asctime(const struct tm *timeptr) { static char buf[26]; return asctime_r(timeptr, buf); } RTM_EXPORT(asctime); char *ctime_r(const time_t * tim_p, char * result) { struct tm tm; return asctime_r(localtime_r(tim_p, &tm), result); } RTM_EXPORT(ctime_r); char* ctime(const time_t *tim_p) { return asctime(localtime(tim_p)); } RTM_EXPORT(ctime); #ifndef __ICCARM__ double difftime(time_t time1, time_t time2) { return (double)(time1 - time2); } #endif /* __ICCARM__ */ RTM_EXPORT(difftime); RTM_EXPORT(strftime); /* inherent in the toolchain */ /** * Returns the current time. * * @param time_t * t the timestamp pointer, if not used, keep NULL. * * @return The value ((time_t)-1) is returned if the calendar time is not available. * If timer is not a NULL pointer, the return value is also stored in timer. * */ rt_weak time_t time(time_t *t) { time_t _t; if (_control_rtc(RT_DEVICE_CTRL_RTC_GET_TIME, &_t) != RT_EOK) { rt_set_errno(EFAULT); return -1; } if (t) *t = _t; return _t; } RTM_EXPORT(time); rt_weak clock_t clock(void) { return rt_tick_get(); // TODO should return cpu usage time } RTM_EXPORT(clock); int stime(const time_t *t) { if ((t != RT_NULL) && (_control_rtc(RT_DEVICE_CTRL_RTC_SET_TIME, (void *)t) == RT_EOK)) { return 0; } rt_set_errno(EFAULT); return -1; } RTM_EXPORT(stime); time_t timegm(struct tm * const t) { time_t day; time_t i; time_t years; if(t == RT_NULL) { rt_set_errno(EFAULT); return (time_t)-1; } years = (time_t)t->tm_year - 70; if (t->tm_sec > 60) /* seconds after the minute - [0, 60] including leap second */ { t->tm_min += t->tm_sec / 60; t->tm_sec %= 60; } if (t->tm_min >= 60) /* minutes after the hour - [0, 59] */ { t->tm_hour += t->tm_min / 60; t->tm_min %= 60; } if (t->tm_hour >= 24) /* hours since midnight - [0, 23] */ { t->tm_mday += t->tm_hour / 24; t->tm_hour %= 24; } if (t->tm_mon >= 12) /* months since January - [0, 11] */ { t->tm_year += t->tm_mon / 12; t->tm_mon %= 12; } while (t->tm_mday > __spm[1 + t->tm_mon]) { if (t->tm_mon == 1 && __isleap(t->tm_year + 1900)) { --t->tm_mday; } t->tm_mday -= __spm[t->tm_mon]; ++t->tm_mon; if (t->tm_mon > 11) { t->tm_mon = 0; ++t->tm_year; } } if (t->tm_year < 70) { rt_set_errno(EINVAL); return (time_t) -1; } /* Days since 1970 is 365 * number of years + number of leap years since 1970 */ day = years * 365 + (years + 1) / 4; /* After 2100 we have to substract 3 leap years for every 400 years This is not intuitive. Most mktime implementations do not support dates after 2059, anyway, so we might leave this out for it's bloat. */ if (years >= 131) { years -= 131; years /= 100; day -= (years >> 2) * 3 + 1; if ((years &= 3) == 3) years--; day -= years; } day += t->tm_yday = __spm[t->tm_mon] + t->tm_mday - 1 + (__isleap(t->tm_year + 1900) & (t->tm_mon > 1)); /* day is now the number of days since 'Jan 1 1970' */ i = 7; t->tm_wday = (int)((day + 4) % i); /* Sunday=0, Monday=1, ..., Saturday=6 */ i = 24; day *= i; i = 60; return ((day + t->tm_hour) * i + t->tm_min) * i + t->tm_sec; } RTM_EXPORT(timegm); int gettimeofday(struct timeval *tv, struct timezone *tz) { /* The use of the timezone structure is obsolete; * the tz argument should normally be specified as NULL. * The tz_dsttime field has never been used under Linux. * Thus, the following is purely of historic interest. */ if(tz != RT_NULL) { tz->tz_dsttime = DST_NONE; tz->tz_minuteswest = -(tz_get() * 60); } if (tv != RT_NULL) { tv->tv_sec = 0; tv->tv_usec = 0; if (_control_rtc(RT_DEVICE_CTRL_RTC_GET_TIMEVAL, tv) == RT_EOK) return 0; } rt_set_errno(EINVAL); return -1; } RTM_EXPORT(gettimeofday); int settimeofday(const struct timeval *tv, const struct timezone *tz) { /* The use of the timezone structure is obsolete; * the tz argument should normally be specified as NULL. * The tz_dsttime field has never been used under Linux. * Thus, the following is purely of historic interest. */ if (tv != RT_NULL && tv->tv_usec >= 0 && tv->tv_sec >= 0) { if (_control_rtc(RT_DEVICE_CTRL_RTC_SET_TIMEVAL, (void *)tv) == RT_EOK) return 0; } rt_set_errno(EINVAL); return -1; } RTM_EXPORT(settimeofday); #if defined(RT_USING_POSIX_DELAY) && defined(RT_USING_KTIME) int nanosleep(const struct timespec *rqtp, struct timespec *rmtp) { struct timespec old_ts = {0}; struct timespec new_ts = {0}; if (rqtp == RT_NULL) { rt_set_errno(EFAULT); return -1; } if (rqtp->tv_sec < 0 || rqtp->tv_nsec < 0 || rqtp->tv_nsec >= NANOSECOND_PER_SECOND) { rt_set_errno(EINVAL); return -1; } unsigned long ns = rqtp->tv_sec * NANOSECOND_PER_SECOND + rqtp->tv_nsec; rt_ktime_boottime_get_ns(&old_ts); rt_ktime_hrtimer_ndelay(ns); if (rt_get_errno() == -RT_EINTR) { if (rmtp) { rt_ktime_boottime_get_ns(&new_ts); rmtp->tv_sec = 0; rmtp->tv_nsec = (old_ts.tv_nsec + ns) - ((new_ts.tv_sec - old_ts.tv_sec) * NANOSECOND_PER_SECOND + new_ts.tv_nsec); if (rmtp->tv_nsec > NANOSECOND_PER_SECOND) { rmtp->tv_nsec %= NANOSECOND_PER_SECOND; rmtp->tv_sec += rmtp->tv_nsec / NANOSECOND_PER_SECOND; } } rt_set_errno(EINTR); return -1; } return 0; } RTM_EXPORT(nanosleep); #endif /* RT_USING_POSIX_DELAY && RT_USING_KTIME */ #if defined(RT_USING_POSIX_CLOCK) && defined(RT_USING_KTIME) int clock_getres(clockid_t clockid, struct timespec *res) { if (res == RT_NULL) { rt_set_errno(EFAULT); return -1; } switch (clockid) { case CLOCK_REALTIME: // use RTC case CLOCK_REALTIME_COARSE: return _control_rtc(RT_DEVICE_CTRL_RTC_GET_TIMERES, res); case CLOCK_MONOTONIC: // use cputimer case CLOCK_MONOTONIC_COARSE: case CLOCK_MONOTONIC_RAW: case CLOCK_BOOTTIME: case CLOCK_PROCESS_CPUTIME_ID: case CLOCK_THREAD_CPUTIME_ID: res->tv_sec = 0; res->tv_nsec = (rt_ktime_cputimer_getres() / RT_KTIME_RESMUL); return 0; default: rt_set_errno(EINVAL); return -1; } } RTM_EXPORT(clock_getres); int clock_gettime(clockid_t clockid, struct timespec *tp) { if (tp == RT_NULL) { rt_set_errno(EFAULT); return -1; } switch (clockid) { case CLOCK_REALTIME: // use RTC case CLOCK_REALTIME_COARSE: return _control_rtc(RT_DEVICE_CTRL_RTC_GET_TIMESPEC, tp); case CLOCK_MONOTONIC: // use boottime case CLOCK_MONOTONIC_COARSE: case CLOCK_MONOTONIC_RAW: case CLOCK_BOOTTIME: return rt_ktime_boottime_get_ns(tp); case CLOCK_PROCESS_CPUTIME_ID: case CLOCK_THREAD_CPUTIME_ID: return rt_ktime_boottime_get_ns(tp); // TODO not yet implemented default: tp->tv_sec = 0; tp->tv_nsec = 0; rt_set_errno(EINVAL); return -1; } } RTM_EXPORT(clock_gettime); int clock_nanosleep(clockid_t clockid, int flags, const struct timespec *rqtp, struct timespec *rmtp) { struct timespec ts = {0}; rt_err_t err; if (rqtp == RT_NULL) { rt_set_errno(EFAULT); return -1; } if (rqtp->tv_sec < 0 || rqtp->tv_nsec < 0 || rqtp->tv_nsec >= NANOSECOND_PER_SECOND) { rt_set_errno(EINVAL); return -1; } switch (clockid) { case CLOCK_REALTIME: // use RTC if (flags & TIMER_ABSTIME) err = _control_rtc(RT_DEVICE_CTRL_RTC_GET_TIMESPEC, &ts); break; case CLOCK_MONOTONIC: // use boottime case CLOCK_PROCESS_CPUTIME_ID: if (flags & TIMER_ABSTIME) err = rt_ktime_boottime_get_ns(&ts); break; default: rt_set_errno(EINVAL); return -1; } if (err != RT_EOK) return err; int64_t ns = rqtp->tv_nsec - ts.tv_nsec + (rqtp->tv_sec - ts.tv_sec) * NANOSECOND_PER_SECOND; if (ns <= 0) return 0; if (flags & TIMER_ABSTIME) { ts.tv_nsec = ns % NANOSECOND_PER_SECOND; ts.tv_sec = ns / NANOSECOND_PER_SECOND; return nanosleep(&ts, rmtp); } else { return nanosleep(rqtp, rmtp); } } RTM_EXPORT(clock_nanosleep); int clock_settime(clockid_t clockid, const struct timespec *tp) { if (tp == RT_NULL) { rt_set_errno(EFAULT); return -1; } if (tp->tv_sec < 0 || tp->tv_nsec < 0 || tp->tv_nsec >= NANOSECOND_PER_SECOND) { rt_set_errno(EINVAL); return -1; } switch (clockid) { case CLOCK_REALTIME: return _control_rtc(RT_DEVICE_CTRL_RTC_SET_TIMESPEC, (void *)tp); case CLOCK_REALTIME_COARSE: case CLOCK_MONOTONIC: case CLOCK_MONOTONIC_COARSE: case CLOCK_MONOTONIC_RAW: case CLOCK_BOOTTIME: case CLOCK_PROCESS_CPUTIME_ID: case CLOCK_THREAD_CPUTIME_ID: rt_set_errno(EPERM); return -1; default: rt_set_errno(EINVAL); return -1; } } RTM_EXPORT(clock_settime); int rt_timespec_to_tick(const struct timespec *time) { int tick; int nsecond, second; struct timespec tp = {0}; RT_ASSERT(time != RT_NULL); tick = RT_WAITING_FOREVER; if (time != NULL) { /* get current tp */ clock_gettime(CLOCK_REALTIME, &tp); if ((time->tv_nsec - tp.tv_nsec) < 0) { nsecond = NANOSECOND_PER_SECOND - (tp.tv_nsec - time->tv_nsec); second = time->tv_sec - tp.tv_sec - 1; } else { nsecond = time->tv_nsec - tp.tv_nsec; second = time->tv_sec - tp.tv_sec; } tick = second * RT_TICK_PER_SECOND + nsecond * RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND; if (tick < 0) tick = 0; } return tick; } RTM_EXPORT(rt_timespec_to_tick); #endif /* RT_USING_POSIX_CLOCK && RT_USING_KTIME */ #if defined(RT_USING_POSIX_TIMER) && defined(RT_USING_KTIME) #include #define ACTIVE 1 #define NOT_ACTIVE 0 struct timer_obj { struct rt_ktime_hrtimer hrtimer; void (*sigev_notify_function)(union sigval val); union sigval val; struct timespec interval; /* Reload value */ struct timespec value; /* Reload value */ unsigned long reload; /* Reload value in ms */ rt_uint32_t status; int sigev_signo; clockid_t clockid; #ifdef RT_USING_SMART pid_t pid; struct rt_work *work; #endif }; #ifdef RT_USING_SMART struct lwp_timer_event_param { struct rt_work work; union { int tid; pid_t pid; }; int signo; }; static void _lwp_timer_event_from_tid(struct rt_work *work, void *param) { rt_err_t ret; struct lwp_timer_event_param *data = (void *)work; rt_thread_t thread; RT_ASSERT(data->tid); thread = lwp_tid_get_thread(data->tid); ret = lwp_thread_signal_kill(thread, data->signo, SI_TIMER, 0); if (ret) { LOG_W("%s: Do kill failed(tid %d) returned %d", __func__, data->tid, ret); } rt_free(work); } static void _lwp_timer_event_from_pid(struct rt_work *work, void *param) { rt_err_t ret; struct lwp_timer_event_param *data = (void *)work; ret = lwp_signal_kill(lwp_from_pid(data->pid), data->signo, SI_TIMER, 0); if (ret) { LOG_W("%s: Do kill failed(pid %d) returned %d", __func__, data->pid, ret); } rt_free(work); } #endif /* RT_USING_SMART */ static void rtthread_timer_wrapper(void *timerobj) { struct timer_obj *timer; timer = (struct timer_obj *)timerobj; if (timer->reload == 0U) { timer->status = NOT_ACTIVE; } timer->reload = ((timer->interval.tv_sec * NANOSECOND_PER_SECOND + timer->interval.tv_nsec) * RT_KTIME_RESMUL) / rt_ktime_cputimer_getres(); if (timer->reload) { rt_ktime_hrtimer_control(&timer->hrtimer, RT_TIMER_CTRL_SET_TIME, &(timer->reload)); rt_ktime_hrtimer_start(&timer->hrtimer); } #ifdef RT_USING_SMART /* this field is named as tid in musl */ int tid = *(int *)&timer->sigev_notify_function; struct lwp_timer_event_param *data = (void *)timer->work; data->signo = timer->sigev_signo; if (!tid) { data->pid = timer->pid; rt_work_init(timer->work, _lwp_timer_event_from_pid, 0); } else { data->tid = tid; rt_work_init(timer->work, _lwp_timer_event_from_tid, 0); } if (rt_work_submit(timer->work, 0)) RT_ASSERT(0); #else if(timer->sigev_notify_function != RT_NULL) { (timer->sigev_notify_function)(timer->val); } #endif } #define TIMER_ID_MAX 50 static struct timer_obj *_g_timerid[TIMER_ID_MAX]; static void *timer_id[TIMER_ID_MAX]; static resource_id_t id_timer = RESOURCE_ID_INIT(TIMER_ID_MAX, timer_id); /** * @brief Create a per-process timer. * * This API does not accept SIGEV_THREAD as valid signal event notification * type. * * See IEEE 1003.1 */ int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid) { static int num = 0; int _timerid = 0; struct timer_obj *timer; char timername[RT_NAME_MAX] = {0}; if (evp == RT_NULL || timerid == RT_NULL) { rt_set_errno(EINVAL); return -1; } if (evp->sigev_notify == SIGEV_THREAD) // TODO need to implement { rt_set_errno(EINVAL); return -1; } switch (clockid) { case CLOCK_REALTIME: case CLOCK_REALTIME_ALARM: case CLOCK_MONOTONIC: case CLOCK_BOOTTIME: case CLOCK_BOOTTIME_ALARM: case CLOCK_PROCESS_CPUTIME_ID: case CLOCK_THREAD_CPUTIME_ID: break; // Only these ids are supported default: rt_set_errno(EINVAL); return -1; } timer = rt_malloc(sizeof(struct timer_obj)); if(timer == RT_NULL) { rt_set_errno(ENOMEM); return -1; } rt_snprintf(timername, RT_NAME_MAX, "psx_tm%02d", num++); num %= 100; timer->sigev_signo = evp->sigev_signo; #ifdef RT_USING_SMART struct rt_work *work; struct rt_lwp *lwp = lwp_self(); work = rt_malloc(sizeof(struct lwp_timer_event_param)); if (!work) { rt_set_errno(ENOMEM); return -1; } if (lwp) { timer->pid = lwp_self()->pid; } else { timer->pid = 0; /* pid 0 is never used */ } timer->work = work; #endif timer->sigev_notify_function = evp->sigev_notify_function; timer->val = evp->sigev_value; timer->interval.tv_sec = 0; timer->interval.tv_nsec = 0; timer->reload = 0U; timer->status = NOT_ACTIVE; timer->clockid = clockid; rt_ktime_hrtimer_init(&timer->hrtimer, timername, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_HARD_TIMER, rtthread_timer_wrapper, timer); _timerid = resource_id_get(&id_timer); if (_timerid < 0) { LOG_E("_timerid overflow!"); return -1; /* todo:memory leak */ } _g_timerid[_timerid] = timer; *timerid = (timer_t)(rt_ubase_t)_timerid; return 0; } RTM_EXPORT(timer_create); /** * @brief Delete a per-process timer. * * See IEEE 1003.1 */ int timer_delete(timer_t timerid) { struct timer_obj *timer; rt_ubase_t ktimerid; ktimerid = (rt_ubase_t)timerid; if (ktimerid < 0 || ktimerid >= TIMER_ID_MAX) { rt_set_errno(EINVAL); return -1; } if (_g_timerid[ktimerid] == NULL) { rt_set_errno(EINVAL); LOG_E("can not find timer!"); return -1; } timer = _g_timerid[ktimerid]; resource_id_put(&id_timer, ktimerid); if (timer == RT_NULL) { rt_set_errno(EINVAL); return -1; } if (timer->status == ACTIVE) { timer->status = NOT_ACTIVE; rt_ktime_hrtimer_stop(&timer->hrtimer); } rt_ktime_hrtimer_detach(&timer->hrtimer); rt_free(timer); return 0; } RTM_EXPORT(timer_delete); /** * * Return the overrun count for the last timer expiration. * It is subefficient to create a new structure to get overrun count. **/ int timer_getoverrun(timer_t timerid) { rt_set_errno(ENOSYS); return -1; } /** * @brief Get amount of time left for expiration on a per-process timer. * * See IEEE 1003.1 */ int timer_gettime(timer_t timerid, struct itimerspec *its) { struct timer_obj *timer; rt_uint32_t seconds, nanoseconds; timer = _g_timerid[(rt_ubase_t)timerid]; if (timer == NULL) { rt_set_errno(EINVAL); return -1; } if (its == NULL) { rt_set_errno(EFAULT); return -1; } if (timer->status == ACTIVE) { unsigned long remain_cnt; rt_ktime_hrtimer_control(&timer->hrtimer, RT_TIMER_CTRL_GET_REMAIN_TIME, &remain_cnt); nanoseconds = ((remain_cnt - rt_ktime_cputimer_getcnt()) * rt_ktime_cputimer_getres()) / RT_KTIME_RESMUL; seconds = nanoseconds / NANOSECOND_PER_SECOND; nanoseconds = nanoseconds % NANOSECOND_PER_SECOND; its->it_value.tv_sec = (rt_int32_t)seconds; its->it_value.tv_nsec = (rt_int32_t)nanoseconds; } else { /* Timer is disarmed */ its->it_value.tv_sec = 0; its->it_value.tv_nsec = 0; } /* The interval last set by timer_settime() */ its->it_interval = timer->interval; return 0; } RTM_EXPORT(timer_gettime); /** * @brief Sets expiration time of per-process timer. * * See IEEE 1003.1 */ int timer_settime(timer_t timerid, int flags, const struct itimerspec *value, struct itimerspec *ovalue) { struct timespec ts = {0}; rt_err_t err = RT_EOK; struct timer_obj *timer; timer = _g_timerid[(rt_ubase_t)timerid]; if (timer == NULL || value->it_interval.tv_nsec < 0 || value->it_interval.tv_nsec >= NANOSECOND_PER_SECOND || value->it_interval.tv_sec < 0 || value->it_value.tv_nsec < 0 || value->it_value.tv_nsec >= NANOSECOND_PER_SECOND || value->it_value.tv_sec < 0) { rt_set_errno(EINVAL); return -1; } /* Save time to expire and old reload value. */ if (ovalue != NULL) { timer_gettime(timerid, ovalue); } /* Stop the timer if the value is 0 */ if ((value->it_value.tv_sec == 0) && (value->it_value.tv_nsec == 0)) { if (timer->status == ACTIVE) { rt_ktime_hrtimer_stop(&timer->hrtimer); } timer->status = NOT_ACTIVE; return 0; } switch (timer->clockid) { case CLOCK_REALTIME: case CLOCK_REALTIME_ALARM: if (flags & TIMER_ABSTIME) err = _control_rtc(RT_DEVICE_CTRL_RTC_GET_TIMESPEC, &ts); break; case CLOCK_MONOTONIC: case CLOCK_BOOTTIME: case CLOCK_BOOTTIME_ALARM: case CLOCK_PROCESS_CPUTIME_ID: case CLOCK_THREAD_CPUTIME_ID: if (flags & TIMER_ABSTIME) err = rt_ktime_boottime_get_ns(&ts); break; default: rt_set_errno(EINVAL); return -1; } if (err != RT_EOK) return err; int64_t ns = value->it_value.tv_nsec - ts.tv_nsec + (value->it_value.tv_sec - ts.tv_sec) * NANOSECOND_PER_SECOND; if (ns <= 0) return 0; unsigned long res = rt_ktime_cputimer_getres(); timer->reload = (ns * RT_KTIME_RESMUL) / res; timer->interval.tv_sec = value->it_interval.tv_sec; timer->interval.tv_nsec = value->it_interval.tv_nsec; timer->value.tv_sec = value->it_value.tv_sec; timer->value.tv_nsec = value->it_value.tv_nsec; if (timer->status == ACTIVE) { rt_ktime_hrtimer_stop(&timer->hrtimer); } timer->status = ACTIVE; if ((value->it_interval.tv_sec == 0) && (value->it_interval.tv_nsec == 0)) rt_ktime_hrtimer_control(&timer->hrtimer, RT_TIMER_CTRL_SET_ONESHOT, RT_NULL); else rt_ktime_hrtimer_control(&timer->hrtimer, RT_TIMER_CTRL_SET_PERIODIC, RT_NULL); rt_ktime_hrtimer_control(&timer->hrtimer, RT_TIMER_CTRL_SET_TIME, &(timer->reload)); rt_ktime_hrtimer_start(&timer->hrtimer); return 0; } RTM_EXPORT(timer_settime); #endif /* RT_USING_POSIX_TIMER && RT_USING_KTIME */ /* timezone */ #ifndef RT_LIBC_DEFAULT_TIMEZONE #define RT_LIBC_DEFAULT_TIMEZONE 8 #endif static volatile int8_t _current_timezone = RT_LIBC_DEFAULT_TIMEZONE; void tz_set(int8_t tz) { rt_base_t level; level = rt_hw_interrupt_disable(); _current_timezone = tz; rt_hw_interrupt_enable(level); } int8_t tz_get(void) { return _current_timezone; } int8_t tz_is_dst(void) { return 0; }