/* * This file is part of FH8620 BSP for RT-Thread distribution. * * Copyright (c) 2016 Shanghai Fullhan Microelectronics Co., Ltd. * All rights reserved * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Visit http://www.fullhan.com to get contact with Fullhan. * * Change Logs: * Date Author Notes */ #include "string.h" #include "inc/fh_sdio.h" #include "fh_arch.h" //#include "interrupt.h" #define SDIO_PRINTF rt_kprintf #define SDC_USE_IDMA #define INSTRUCTIONS_PER_USEC 1000 #define CMD_TIMEOUT_USEC 100000 #define DATA_READY_TIMEOUT_USEC 200000 #define DMA_TRANSFER_TIMEOUT_TICKS 300 #define DATA_TRANSFER_OVER_TIMEOUT_USEC 1000 #define ACMD41_RETRY_COUNT 1000//100000 #define CIU_CLK 50000//25000//25000 //27MHz #define MMC_FOD_VALUE 125 /* 125 KHz */ #define NORM_FOD_VALUE 25000//5000//25000 /* 25 MHz */ #define MMC_FOD_DIVIDER_VALUE (((CIU_CLK+MMC_FOD_VALUE*2-1)/(MMC_FOD_VALUE*2))) #ifdef SDCARD_CLK_DIVIDER #define ONE_BIT_BUS_FREQ SDCARD_CLK_DIVIDER #else #define ONE_BIT_BUS_FREQ (((CIU_CLK)/(NORM_FOD_VALUE*2))) #endif static unsigned int sdc_clk_divider = ONE_BIT_BUS_FREQ; static sdc_t sdc_array[2]; static void plat_loop(unsigned int macrosecond) { unsigned int clk; while (macrosecond-- > 0) { for(clk=INSTRUCTIONS_PER_USEC; clk>0; clk--); } } static int synopmob_execute_command(unsigned int base, unsigned int cmd_register, unsigned int arg_register) { unsigned int retries = CMD_TIMEOUT_USEC; synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts, FIXME synopmob_set_register(base+CMDARG, arg_register); synopmob_set_register(base+CMD, cmd_register | (0x80000000|0x20000000/*fixed to use hold*/)); while (retries-- > 0) { if (!(synopmob_read_register(base+CMD) & 0x80000000/*CMD done bit*/)) return 0; plat_loop(1); } return ERRCMDRETRIESOVER; } static int synopmob_wait_command_done(unsigned int base, unsigned int* inst, unsigned int flag) { unsigned int retries = CMD_TIMEOUT_USEC; unsigned int sts; while (retries-- > 0) { sts = synopmob_read_register(base+RINTSTS); if (sts && ((sts & flag) == flag) ) { *inst = sts; return 0; } plat_loop(1); } return ERRCMDRETRIESOVER; } static int synopmob_wait_data_ready(unsigned int base) { unsigned int retries = DATA_READY_TIMEOUT_USEC; while (retries-- > 0) { if (!((synopmob_read_register(base+STATUS)) & 0x00000200)) { return 0; } plat_loop(1); } return ERRDATANOTREADY; } static int synopmob_handle_standard_rinsts(unsigned int raw_int_stat) { int error_status = 0; if ( raw_int_stat & INTMASK_ERROR) { if (raw_int_stat & INTMSK_RESP_ERR) { error_status = ERRRESPRECEP; } if (raw_int_stat & INTMSK_RCRC) { error_status = ERRRESPCRC; } if (raw_int_stat & INTMSK_DCRC) { error_status = ERRDCRC; } if (raw_int_stat & INTMSK_RTO) { error_status = ERRRESPTIMEOUT; } if (raw_int_stat & INTMSK_DTO) { error_status = ERRDRTIMEOUT; } if (raw_int_stat & INTMSK_HTO) { error_status = ERRUNDERWRITE; } if (raw_int_stat & INTMSK_FRUN) { error_status = ERROVERREAD; } if (raw_int_stat & INTMSK_HLE) { error_status = ERRHLE; } if (raw_int_stat & INTMSK_SBE) { error_status = ERRSTARTBIT; } if (raw_int_stat & INTMSK_EBE) { error_status = ERRENDBITERR; } } //SDIO_PRINTF("------- %s, line %d raw_int_stat = %08x-------\n", __FUNCTION__, __LINE__, raw_int_stat); return error_status; } static int synopmob_check_r1_resp(unsigned int the_response) { int retval = 0; if (the_response & R1CS_ERROR_OCCURED_MAP) { if (the_response & R1CS_ADDRESS_OUT_OF_RANGE) { retval = ERRADDRESSRANGE; } else if (the_response & R1CS_ADDRESS_MISALIGN) { retval = ERRADDRESSMISALIGN; } else if (the_response & R1CS_BLOCK_LEN_ERR) { retval = ERRBLOCKLEN; } else if (the_response & R1CS_ERASE_SEQ_ERR) { retval = ERRERASESEQERR; } else if (the_response & R1CS_ERASE_PARAM) { retval = ERRERASEPARAM; } else if (the_response & R1CS_WP_VIOLATION) { retval = ERRPROT; } else if (the_response & R1CS_CARD_IS_LOCKED) { retval = ERRCARDLOCKED; } else if (the_response & R1CS_LCK_UNLCK_FAILED) { retval = ERRCARDLOCKED; } else if (the_response & R1CS_COM_CRC_ERROR) { retval = ERRCRC; } else if (the_response & R1CS_ILLEGAL_COMMAND) { retval = ERRILLEGALCOMMAND; } else if (the_response & R1CS_CARD_ECC_FAILED) { retval = ERRECCFAILED; } else if (the_response & R1CS_CC_ERROR) { retval = ERRCCERR; } else if (the_response & R1CS_ERROR) { retval = ERRUNKNOWN; } else if (the_response & R1CS_UNDERRUN) { retval = ERRUNDERRUN; } else if (the_response & R1CS_OVERRUN) { retval = ERROVERRUN; } else if (the_response & R1CS_CSD_OVERWRITE) { retval = ERRCSDOVERWRITE; } else if (the_response & R1CS_WP_ERASE_SKIP) { retval = ERRPROT; } else if (the_response & R1CS_ERASE_RESET) { retval = ERRERASERESET; } else if (the_response & R1CS_SWITCH_ERROR) { retval = ERRFSMSTATE; } } return retval; } static int synopmob_check_r5_resp(unsigned int the_resp) { int ret = 0; if (the_resp & R5_IO_ERR_BITS) { if (the_resp & R5_IO_CRC_ERR) { ret = ERRDCRC; } else if (the_resp & R5_IO_BAD_CMD) { ret = ERRILLEGALCOMMAND; } else if (the_resp & R5_IO_GEN_ERR) { ret = ERRUNKNOWN; } else if (the_resp & R5_IO_FUNC_ERR) { ret = ERRBADFUNC; } else if (the_resp & R5_IO_OUT_RANGE) { ret = ERRADDRESSRANGE; } } return ret; } static int sd_send_cmd0(sdc_t* sdc) { int ret; unsigned int intst; unsigned int base = sdc->ip_base; ret = synopmob_execute_command(base, 0x4000, 0); if (!ret) { ret = synopmob_wait_command_done(base, &intst, INTMSK_CMD_DONE); if (!ret) { synopmob_set_register(base+RINTSTS, intst); return synopmob_handle_standard_rinsts(intst); } } return ret; } static int sd_send_cmd2(sdc_t* sdc) { int ret; unsigned int intst; unsigned int base = sdc->ip_base; ret = synopmob_execute_command(base, 0xC2, 0); if (!ret) { ret = synopmob_wait_command_done(base, &intst, INTMSK_CMD_DONE); if (!ret) { synopmob_set_register(base+RINTSTS, intst); return synopmob_handle_standard_rinsts(intst); } } return ret; } static int sd_send_cmd3(sdc_t* sdc) { int ret; unsigned int intst; unsigned int resp; unsigned int base = sdc->ip_base; ret = synopmob_execute_command(base, 0x43, 0); if (!ret) { ret = synopmob_wait_command_done(base, &intst, INTMSK_CMD_DONE); if (!ret) { synopmob_set_register(base+RINTSTS, intst); ret = synopmob_handle_standard_rinsts(intst); if (!ret) { resp = synopmob_read_register(base+RESP0); sdc->rca = resp >> 16; resp = (resp & 0x1fff) | (((resp>>13)&1)<<19) | (((resp>>14)&3)<<22); return synopmob_check_r1_resp(resp); } } } return ret; } static int sd_send_cmd_r1(sdc_t* sdc, unsigned int cmd, unsigned int arg, unsigned int buzy) { int ret; unsigned int intst; unsigned int resp; unsigned int base = sdc->ip_base; ret = synopmob_execute_command(base, cmd, arg); if (!ret) { ret = synopmob_wait_command_done(base, &intst, INTMSK_CMD_DONE); if (!ret) { synopmob_set_register(base+RINTSTS, intst); ret = synopmob_handle_standard_rinsts(intst); if (!ret) { resp = synopmob_read_register(base+RESP0); ret = synopmob_check_r1_resp(resp); if (buzy && !ret) { ret = synopmob_wait_data_ready(base); } } } } return ret; } static int sd_send_cmd7(sdc_t* sdc) { return sd_send_cmd_r1(sdc, 0x47, sdc->rca<<16, 1); } static int sd_send_uncmd7(sdc_t* sdc) { int ret; unsigned int intst; unsigned int base = sdc->ip_base; ret = synopmob_execute_command(base, 0x7, 0); if (!ret) { ret = synopmob_wait_command_done(base, &intst, INTMSK_CMD_DONE); if (!ret) { synopmob_set_register(base+RINTSTS, intst); ret = synopmob_handle_standard_rinsts(intst); } } return ret; } static int sd_send_cmd16(sdc_t* sdc) { return sd_send_cmd_r1(sdc, 0x50, 512, 0); } static int sd_send_cmd55(sdc_t* sdc) { return sd_send_cmd_r1(sdc, 0x77, sdc->rca<<16, 0); } static int sd_send_acmd6(sdc_t* sdc, unsigned int bitwidth) { unsigned int cmd_arg; int ret; unsigned int base = sdc->ip_base; ret = sd_send_cmd55(sdc); if (!ret) { cmd_arg = 0; //default to 1bit mode if (bitwidth == 4) { cmd_arg = 2; // 4bit mode } ret = sd_send_cmd_r1(sdc, 0x2046, cmd_arg, 0); if (!ret) { if (bitwidth == 4) { synopmob_set_register(base+CTYPE, FOUR_BIT_MODE); } else { synopmob_set_register(base+CTYPE, ONE_BIT_MODE); } } } return ret; } #ifdef SDC_USE_IDMA static int sdc_read_write_block(HSDC handle, unsigned int rw, unsigned int blk, unsigned int num, unsigned char* buffer) { sdc_t* sdc = (sdc_t*)handle; volatile DmaDesc *pDmaDesc = sdc->pDmaDesc; int ret; unsigned int intsts = 0; unsigned int cmd; unsigned int multi = 0; unsigned int base = sdc->ip_base; int loop_for_command_done_check = DATA_TRANSFER_OVER_TIMEOUT_USEC; rt_err_t err; // valid check if (synopmob_read_register(base+CDETECT) & 1) { return ERRCARDNOTCONN; } if (!num || num > 16) { return ERRNOTSUPPORTED; } if (blk + num > sdc->sectors) { return ERRADDRESSRANGE; } if ( rw ) { flush_dcache_range((unsigned long)buffer, num << 9); } else { // to avoid memset bug? inv_dcache_range((unsigned long)buffer, num << 9); } err = rt_sem_take(sdc->mutex, RT_WAITING_FOREVER); if (err != RT_EOK) { return ERRNORES; } // reset synopmob_set_bits(base+CTRL, FIFO_RESET); //reset FIFO while (synopmob_read_register(base+CTRL) & FIFO_RESET); synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts cmd = 0x2658; // write if ( !rw ) { cmd = 0x2251; //read } //if (num > 1) { if (num >= 1) { // some card fail on sigle-block mode, so use multi-block instead of sigle-block mode. cmd++; multi++; } if (sdc->card_type == SD_TYPE) { blk <<= 9; //SD stadand capability card use 512 unit. } num <<= 9; pDmaDesc->desc0 |= DescOwnByDma | DescFirstDesc | DescLastDesc; pDmaDesc->desc1 = ((num << DescBuf1SizeShift) & DescBuf1SizMsk); pDmaDesc->desc2 = (unsigned int)buffer; flush_dcache_range((unsigned long)pDmaDesc, sizeof(DmaDesc)); // add SZ_ADJUST synopmob_set_register(base + DBADDR, (unsigned int)(pDmaDesc)); // add SZ_ADJUST synopmob_set_register(base+BLKSIZ, 512); synopmob_set_register(base+BYTCNT, num); synopmob_set_bits(base + CTRL, CTRL_USE_IDMAC); synopmob_set_bits(base + BMOD,BMOD_DE); ret = synopmob_execute_command(base, cmd, blk); if ( !ret ) { ret = ERRIDMA; synopmob_set_bits(base+CTRL, INT_ENABLE); err = rt_sem_take(sdc->sem, DMA_TRANSFER_TIMEOUT_TICKS); if ( !err ) { while (--loop_for_command_done_check > 0) { intsts = synopmob_read_register(base+RINTSTS); if ((intsts & (INTMSK_CMD_DONE|INTMSK_DAT_OVER)) == (INTMSK_CMD_DONE|INTMSK_DAT_OVER)) { break; } plat_loop(1); } ret = synopmob_handle_standard_rinsts(intsts); if (!ret ) { if( !loop_for_command_done_check || !(sdc->idsts & 0x100)) { //normal interrupt ret = ERRIDMA; } } } } if (ret) { char* op = "read"; if (rw) op = "write"; SDIO_PRINTF("sdc_read_write_block(%s) fail:, ret = %d\n", op, ret); } synopmob_clear_bits(base+CTRL, INT_ENABLE); synopmob_clear_bits(base + CTRL, CTRL_USE_IDMAC); synopmob_clear_bits(base + BMOD,BMOD_DE); synopmob_set_register(base+BLKSIZ, 512); synopmob_set_register(base+BYTCNT, 512); synopmob_set_register(base + RINTSTS, 0xfffe); if ( !ret && rw) { ret = synopmob_wait_data_ready(base); } if (!ret && multi ) { //send STOP_TRANSACTION command ret = sd_send_cmd_r1(sdc, 0x404c, 0, 1); } rt_sem_release(sdc->mutex); if ( !rw && !ret ) { //read inv_dcache_range((unsigned long)buffer, num); } return ret; } #else //no IDMA static int sdc_read_write_block(HSDC handle, unsigned int rw, unsigned int blk, unsigned int num, unsigned char* buffer) { sdc_t* sdc = (sdc_t*)handle; volatile DmaDesc *pDmaDesc = sdc->pDmaDesc; int ret; unsigned int intsts = 0; unsigned int entries; unsigned int cmd; unsigned int multi = 0; unsigned int base = sdc->ip_base; int loop_for_command_done_check = DATA_TRANSFER_OVER_TIMEOUT_USEC; rt_err_t err; // valid check if (synopmob_read_register(base+CDETECT) & 1) { return ERRCARDNOTCONN; } if (!num || num > 16) { return ERRNOTSUPPORTED; } if (blk + num > sdc->sectors) { return ERRADDRESSRANGE; } if ( rw ) { flush_dcache_range((unsigned long)buffer, num << 9); } else { // to avoid memset bug? inv_dcache_range((unsigned long)buffer, num << 9); } err = rt_sem_take(sdc->mutex, RT_WAITING_FOREVER); if (err != RT_EOK) { return ERRNORES; } // reset synopmob_set_bits(base+CTRL, FIFO_RESET); //reset FIFO while (synopmob_read_register(base+CTRL) & FIFO_RESET); synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts cmd = 0x2658; // write if ( !rw ) { cmd = 0x2251; //read } if (num > 1) { cmd++; multi++; } if (sdc->card_type == SD_TYPE) { blk <<= 9; //SD stadand capability card use 512 unit. } num <<= 9; synopmob_set_register(base+BLKSIZ, 512); synopmob_set_register(base+BYTCNT, num); ret = synopmob_execute_command(base, cmd, blk); if ( !ret ) { while (1) { ret = synopmob_wait_command_done(base, &intsts, 0); if (ret) break; ret = synopmob_handle_standard_rinsts(intsts); if (ret) break; if (!rw && (intsts & (INTMSK_RXDR|INTMSK_DAT_OVER)) ){ while (num > 0 ) { entries = synopmob_read_register(base + STATUS); if (!GET_FIFO_COUNT(entries)) break; *((volatile unsigned int*)buffer) = synopmob_read_register(base + FIFODAT); buffer += 4; num -= 4; } } if (rw && ( intsts & INTMSK_TXDR ) ) { while (num > 0) { entries = synopmob_read_register(base+STATUS); if ( entries & 8 ) { //FIFO is full break; } synopmob_set_register(base+FIFODAT, *((volatile unsigned int*)buffer)); buffer += 4; num -= 4; } } if ( intsts & INTMSK_DAT_OVER ) { break; } if (intsts & INTMSK_CMD_DONE) { entries = synopmob_read_register(base+RESP0); ret = synopmob_check_r1_resp(entries); if (ret) { break; } } synopmob_set_register(base+RINTSTS, intsts); //write to clear intsts = 0; } if (intsts) { synopmob_set_register(base+RINTSTS, intsts); //write to clear } } synopmob_set_register(base+BLKSIZ, 512); synopmob_set_register(base+BYTCNT, 512); synopmob_set_register(base + RINTSTS, 0xfffe); if ( !ret && rw) { ret = synopmob_wait_data_ready(base); } if (!ret && multi ) { //send STOP_TRANSACTION command ret = sd_send_cmd_r1(sdc, 0x404c, 0, 1); } rt_sem_release(sdc->mutex); if ( !rw && !ret ) { //read inv_dcache_range((unsigned long)buffer, num); } return ret; } #endif //SDC_USE_IDMA int sdc_write_block(HSDC handle, unsigned int blk, unsigned int num, unsigned char* buffer) { return sdc_read_write_block(handle, 1, blk, num, buffer); } int sdc_read_block(HSDC handle, unsigned int blk, unsigned int num, unsigned char* buffer) { return sdc_read_write_block(handle, 0, blk, num, buffer); } int sdc_erase_block(HSDC handle, unsigned int blk, unsigned int num) { int ret; sdc_t* sdc = (sdc_t*)handle; if (sdc->card_type == SD_TYPE) { blk <<= 9; //SD stadand capability card use 512 unit. num = ((num-1)<<9) + blk; } else { num = blk + num - 1; } ret = sd_send_cmd_r1(sdc, 0x40|32, blk, 0); // cmd32 if (!ret) { ret = sd_send_cmd_r1(sdc, 0x40|33, num, 0); // cmd33 if (!ret) { ret = sd_send_cmd_r1(sdc, 0x40|38, 0, 1); // cmd38 } } return ret; } int sdc_get_sector_num(HSDC handle) { return ((sdc_t*)handle)->sectors; } static int sd_send_cmd9(sdc_t* sdc) { int ret; unsigned int intst; unsigned int resp0; unsigned int resp1; unsigned int resp2; unsigned int resp3; unsigned int base = sdc->ip_base; unsigned int C_SIZE; unsigned int C_SIZE_MULT; unsigned int READ_BL_LEN; ret = synopmob_execute_command(base, 0xC9, sdc->rca<<16); if (!ret) { ret = synopmob_wait_command_done(base, &intst, INTMSK_CMD_DONE); if (!ret) { synopmob_set_register(base+RINTSTS, intst); ret = synopmob_handle_standard_rinsts(intst); if (!ret) { sdc->csd[0] = resp0 = synopmob_read_register(base+RESP0); sdc->csd[1] = resp1 = synopmob_read_register(base+RESP1); sdc->csd[2] = resp2 = synopmob_read_register(base+RESP2); sdc->csd[3] = resp3 = synopmob_read_register(base+RESP3); if ((resp3>>30) == 0) { //CSD version 1.0 C_SIZE = (resp1 >> 30) | ((resp2 & 0x3ff)<<2); C_SIZE_MULT = ((resp1 >> 15) & 0x07); READ_BL_LEN = ((resp2 >> 16) & 0xf); sdc->sectors = ((((C_SIZE+1)<<(C_SIZE_MULT+2))<<(READ_BL_LEN))>>9); } else { //CSD version 2.0 sdc->sectors = (((resp1 >> 16)+1)<<10); } } } } return ret; } static int sd_send_cmd5(sdc_t* sdc, unsigned int arg, unsigned int* resp) { unsigned int cmd_reg = 0x45; unsigned int intst; int ret; unsigned int base = sdc->ip_base; ret = synopmob_execute_command(base, cmd_reg, arg); if (!ret) { ret = synopmob_wait_command_done(base, &intst, INTMSK_CMD_DONE); if (!ret) { synopmob_set_register(base+RINTSTS, intst); ret = synopmob_handle_standard_rinsts(intst); if (!ret) { *resp = synopmob_read_register(base+RESP0); } } } return ret; } static int sd_send_cmd8(sdc_t* sdc) { int ret; unsigned int cmd_reg = 0x48; unsigned int intst; unsigned int err = 0; unsigned int base = sdc->ip_base; ret = synopmob_execute_command(base, cmd_reg, 0x000001A5); if (!ret) { while (1) { ret = synopmob_wait_command_done(base, &intst, 0); if (!ret) { synopmob_set_register(base+RINTSTS, intst); err |= synopmob_handle_standard_rinsts(intst); if (intst & INTMSK_CMD_DONE) { break; } } } } return err; } static int sd_send_acmd41(sdc_t* sdc, int* hcs) { unsigned int cmd_reg = 0x69; unsigned int resp; int ret = 0; unsigned int count = ACMD41_RETRY_COUNT; unsigned int cmd_arg = 0xff8000; unsigned int base = sdc->ip_base; if (*hcs) { cmd_arg |= (1<<30); } while ( count > 0) { SDC_WHERE(); ret = sd_send_cmd55(sdc); if (ret) break; SDC_WHERE(); ret = synopmob_execute_command(base, cmd_reg, cmd_arg); if (ret) break; SDC_WHERE(); ret = synopmob_wait_command_done(base, &resp, INTMSK_CMD_DONE); if ( ret ) break; SDC_WHERE(); synopmob_set_register(base+RINTSTS, resp); ret = synopmob_handle_standard_rinsts(resp); if (!ret) { SDC_WHERE(); resp = synopmob_read_register(base+RESP0); if (resp & 0x80000000) { //card is ready. SDC_WHERE(); if ( !(resp & (1<<30)) ) { SDC_WHERE(); *hcs = 0; } if ( (resp & 0x00ff8000) != 0x00ff8000 ) { //not supported voltage ret = ERRHARDWARE; } break; } } --count; plat_loop(1); } if (!count) ret = ERRACMD41TIMEOUT; return ret; } static int sd_send_acmd51(sdc_t* sdc) //Send SCR { unsigned int cmd_reg = 0x2273; unsigned int resp; int ret; unsigned int intst = 0; unsigned int entries; int count = 1; unsigned int base = sdc->ip_base; ret = sd_send_cmd55(sdc); if (!ret) { synopmob_set_register(base+BLKSIZ, 8); synopmob_set_register(base+BYTCNT, 8); ret = synopmob_execute_command(base, cmd_reg, 0); if (!ret) { while (1) { ret = synopmob_wait_command_done(base, &intst, 0); if (ret) { break; } ret = synopmob_handle_standard_rinsts(intst); if (ret) { break; } if (intst & INTMSK_CMD_DONE) { resp = synopmob_read_register(base+RESP0); ret = synopmob_check_r1_resp(resp); if (ret) break; } if (intst & INTMSK_DAT_OVER) { entries = synopmob_read_register(base + STATUS); if (GET_FIFO_COUNT(entries) == 2) { while (count >= 0) { entries = synopmob_read_register(base + FIFODAT); sdc->scr[count--] = BE32_TO_CPU(entries); } } break; } synopmob_set_register(base+RINTSTS, intst); intst = 0; } if (intst) { synopmob_set_register(base+RINTSTS, intst); } } synopmob_set_register(base+BLKSIZ, 512); synopmob_set_register(base+BYTCNT, 512); } return ret; } static int sd_send_cmd6(sdc_t* sdc, unsigned int cmd_arg, unsigned int* data_buff) { unsigned int cmd_reg = 0x2246; unsigned int resp; int ret; unsigned int intst = 0; unsigned int entries; int count = 64; unsigned int base = sdc->ip_base; synopmob_set_register(base+BLKSIZ, 64); synopmob_set_register(base+BYTCNT, 64); ret = synopmob_execute_command(base, cmd_reg, cmd_arg); if (!ret) { while (1) { ret = synopmob_wait_command_done(base, &intst, 0); if (ret) { break; } ret = synopmob_handle_standard_rinsts(intst); if (ret) { break; } if (intst & INTMSK_CMD_DONE) { resp = synopmob_read_register(base+RESP0); ret = synopmob_check_r1_resp(resp); if (ret) break; } while (count > 0) { entries = synopmob_read_register(base + STATUS); if ( !GET_FIFO_COUNT(entries) ) { break; } *(data_buff++) = synopmob_read_register(base + FIFODAT); count -= 4; } if (intst & INTMSK_DAT_OVER) { break; } synopmob_set_register(base+RINTSTS, intst); //write to clear intst = 0; } if (intst) { synopmob_set_register(base+RINTSTS, intst); //write to clear } } synopmob_set_register(base+BLKSIZ, 512); synopmob_set_register(base+BYTCNT, 512); return ret; } static int synopmob_send_clock_only_cmd(unsigned int base) { return synopmob_execute_command(base, 0x202000, 0); } static int synopmob_disable_all_clocks(unsigned int base) { synopmob_set_register(base+CLKENA, 0); return synopmob_send_clock_only_cmd(base); } static int synopmob_enable_clocks_with_val(unsigned int base, unsigned int val) { synopmob_set_register(base+CLKENA, val); return synopmob_send_clock_only_cmd(base); } static int synopmob_set_clk_freq(sdc_t* sdc, unsigned int divider) { #define MAX_DIVIDER_VALUE 0xff unsigned int orig_clkena; int retval; unsigned int base = sdc->ip_base; if (divider > MAX_DIVIDER_VALUE) { return 0xffffffff; } /* To make sure we dont disturb enable/disable settings of the cards*/ orig_clkena = synopmob_read_register(base+CLKENA); /* Disable all clocks before changing frequency the of card clocks */ if ((retval = synopmob_disable_all_clocks(base)) != 0) { return retval; } /* Program the clock divider in our case it is divider 0 */ synopmob_clear_bits(base+CLKDIV, MAX_DIVIDER_VALUE); synopmob_set_bits(base+CLKDIV, divider); /*Send the command to CIU using synopmob_send_clock_only_cmd and enable the clocks in CLKENA register */ if ((retval = synopmob_send_clock_only_cmd(base)) != 0) { synopmob_enable_clocks_with_val(base, orig_clkena); return retval; } return synopmob_enable_clocks_with_val(base, orig_clkena); } static int enum_sd_card(sdc_t* sdc) { int ret; int count = 1000; int hcs = 0; unsigned int buffer[16]; unsigned int base = sdc->ip_base; if (synopmob_read_register(base+CDETECT) & 1) { return ERRCARDNOTCONN; } #if 0 synopmob_set_bits(0x98500004, (1<<24)); //set to output mode synopmob_set_bits(0x98500000, (1<<24)); //power off plat_loop(1000000/5); //Lets give some ramp down period synopmob_clear_bits(0x98500000, (1<<24)); //power on plat_loop(1000000/5);//Lets give some ramp down period #endif synopmob_set_register(base+CTYPE, ONE_BIT_MODE); synopmob_set_register(base+CLKENA, 0x00000001); /*enable clock, non-low-power mode*/ ret = synopmob_set_clk_freq(sdc, MMC_FOD_DIVIDER_VALUE); if ( !ret ) { plat_loop(1000); //enough for 74 clock. SDC_WHERE(); ret = sd_send_cmd0(sdc); //CMD0 has no response } if ( !ret ) { SDC_WHERE(); ret = sd_send_cmd8(sdc); //even if CMD8 get response, it may be V1.0 card. if (!ret) { hcs = 1; } SDC_WHERE(); ret = sd_send_acmd41(sdc, &hcs); } if (!ret) { SDC_WHERE(); ret = sd_send_cmd2(sdc); //CID } if (!ret) { SDC_WHERE(); ret = sd_send_cmd3(sdc); //get RCA } if (!ret) { SDC_WHERE(); ret = sd_send_cmd9(sdc); //CSD } if (!ret) { SDC_WHERE(); ret = sd_send_cmd7(sdc); //select the card } if (!ret && (sdc->wkmod & SDC_WKMOD_4WIRE) ) { SDC_WHERE(); ret = sd_send_acmd51(sdc); //SCR if (!ret && (sdc->scr[1] & 0x00040000)) { // 4bit mode supported? ret = sd_send_acmd6(sdc, 4); //switch to 4bit mode } } if (!ret && (sdc->wkmod & SDC_WKMOD_50M_HI_SPEED) && (sdc->csd[2] & 0x40000000) ) { //judge whether class10 is supported? CMD6 is belonging to class10. SDC_WHERE(); ret = sd_send_cmd6(sdc, 0x00fffff1, buffer); //switch to high speed mode. if ( !ret && (*(((unsigned char*)buffer)+13)&0x02) ) { //the card support high speed mode? SDC_WHERE(); ret = sd_send_cmd6(sdc, 0x80fffff1, buffer); //switch to high speed mode. if (!ret && ((*(((unsigned char*)buffer)+16) & 0xf) == 1) ) { //switch to high speed mode sucess. sd_send_uncmd7(sdc); //deselect the card sd_send_cmd9(sdc); //CSD ret = sd_send_cmd7(sdc); //select the card } } } if (!ret && (sdc->wkmod & (SDC_WKMOD_50M_HI_SPEED|SDC_WKMOD_25M_STAND_SPEED))) { if ( (sdc->csd[3] & 0xff) == 0x5A ) { //50MHz high speed mode. SDC_WHERE(); ret = synopmob_set_clk_freq(sdc, (((CIU_CLK)/(50000*2)))); } else if ( (sdc->csd[3] & 0xff) == 0x32 ) { SDC_WHERE(); //25MHz standard speed mode. ret = synopmob_set_clk_freq(sdc, sdc_clk_divider/*ONE_BIT_BUS_FREQ*/); } } if (!ret) { sdc->card_type = SD_TYPE; if (hcs) { sdc->card_type = SD_2_0_TYPE; } } return ret; } int sdio_drv_creg_read(HSDC handle, int addr, int fn, unsigned int *resp) { sdc_t* sdc = (sdc_t*)handle; unsigned int arg; unsigned int cmd_reg = 0x74; unsigned int intst; int ret; unsigned int base = sdc->ip_base; rt_err_t err; if(resp) { *resp = 0; } err = rt_sem_take(sdc->mutex, RT_WAITING_FOREVER); if (err != RT_EOK) { return ERRNORES; } arg = (fn << 28) | (addr << 9); ret = synopmob_execute_command(base, cmd_reg, arg); if (!ret) { ret = synopmob_wait_command_done(base, &intst, INTMSK_CMD_DONE); if (!ret) { synopmob_set_register(base+RINTSTS, intst); //write to clear ret = synopmob_handle_standard_rinsts(intst); if (!ret) { *resp = synopmob_read_register(base+RESP0); ret = synopmob_check_r5_resp(*resp); } } } rt_sem_release(sdc->mutex); if (ret) { ret++; ret--; SDIO_PRINTF("sdio_drv_creg_read fail:, ret = %d\n", ret); } return ret; } int sdio_drv_creg_write(HSDC handle, int addr, int fn, unsigned char data, unsigned int *resp) { sdc_t* sdc = (sdc_t*)handle; unsigned int arg; unsigned int cmd_reg = 0x74; unsigned int intst; int ret; unsigned int base = sdc->ip_base; rt_err_t err; err = rt_sem_take(sdc->mutex, RT_WAITING_FOREVER); if (err != RT_EOK) { return ERRNORES; } arg = (1 << 31) | (fn << 28) | (1 << 27) | (addr << 9) | data; ret = synopmob_execute_command(base, cmd_reg, arg); if (!ret) { ret = synopmob_wait_command_done(base, &intst, INTMSK_CMD_DONE); if (!ret) { synopmob_set_register(base+RINTSTS, intst); //write to clear ret = synopmob_handle_standard_rinsts(intst); if (!ret) { *resp = synopmob_read_register(base+RESP0); ret = synopmob_check_r5_resp(*resp); } } } rt_sem_release(sdc->mutex); if (ret) { ret++; ret--; SDIO_PRINTF("sdio_drv_creg_write fail:, ret = %d\n", ret); } return ret; } #define ARC_REG_DC_IVDL 0x4A #define ARC_REG_DC_FLDL 0x4C #define ARC_REG_DC_CTRL 0x48 #define FS_FLAG 0x100 #define _psp_get_aux(aux_reg) \ (unsigned long)_lr((unsigned)(aux_reg)) #define _psp_set_aux(aux_reg,value) \ _sr((unsigned)(value),(unsigned)(aux_reg)) extern void mmu_clean_dcache(rt_uint32_t buffer, rt_uint32_t size); extern void mmu_invalidate_dcache(rt_uint32_t buffer, rt_uint32_t size); void inv_dcache_range(unsigned long start, unsigned long len) { mmu_invalidate_dcache(start, len); } void flush_dcache_range(unsigned long start, unsigned long len) { mmu_clean_dcache(start, len); } int g_use_bcm43362 = 0; static int sdio_drv_read_write(sdc_t* sdc, unsigned int rw, unsigned int addr, unsigned int fn, unsigned int bcnt, unsigned int bsize, unsigned char *buf) { volatile DmaDesc *pDmaDesc = sdc->pDmaDesc; int ret; unsigned int intsts = 0; unsigned int cmd = 0x2275; unsigned int base = sdc->ip_base; unsigned int arg; unsigned int num; int loop_for_command_done_check = 10000;//DATA_TRANSFER_OVER_TIMEOUT_USEC; rt_err_t err; //SDIO_PRINTF("------- %s, line %d buf = %08x size = %d -------\n", __FUNCTION__, __LINE__, buf, bsize); arg = (fn << 28) | (addr << 9); if (g_use_bcm43362) { arg |= (1 << 26); //OPcode = 1............, for AP6181. } if (bcnt == 1 && bsize <= 512) arg |= (bsize & 0x1ff); else arg |= ((1 << 27) | bcnt); if ( rw ) { cmd |= 0x400; arg |= (1 << 31); } num = bsize*bcnt; if ( rw ) { flush_dcache_range((unsigned long)buf, num); } else { inv_dcache_range((unsigned long)buf, num); } err = rt_sem_take(sdc->mutex, RT_WAITING_FOREVER); if (err != RT_EOK) { return ERRNORES; } //synopmob_set_bits(base+FIFOTH, 0x2 << 28); // reset synopmob_set_bits(base+CTRL, FIFO_RESET); //reset FIFO while (synopmob_read_register(base+CTRL) & FIFO_RESET); synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts //pDmaDesc->desc0 = 0; pDmaDesc->desc0 |= DescOwnByDma | DescFirstDesc | DescLastDesc; pDmaDesc->desc1 = ((num << DescBuf1SizeShift) & DescBuf1SizMsk); pDmaDesc->desc2 = (unsigned int)buf; //pDmaDesc->desc3 = 0; flush_dcache_range((unsigned int)pDmaDesc, sizeof(DmaDesc)); synopmob_set_register(base+DBADDR, (unsigned int)pDmaDesc); synopmob_set_register(base+BLKSIZ, bsize); synopmob_set_register(base+BYTCNT, num); synopmob_set_bits(base + CTRL, CTRL_USE_IDMAC); synopmob_set_bits(base + BMOD,BMOD_DE); //SDIO_PRINTF("pDmaDesc = %08x, %08x / %08x / %08x / %08x\n", pDmaDesc, pDmaDesc->desc0, pDmaDesc->desc1, pDmaDesc->desc2, pDmaDesc->desc3); ret = synopmob_execute_command(base, cmd, arg); if ( !ret ) { ret = ERRIDMA; err = rt_sem_take(sdc->sem, DMA_TRANSFER_TIMEOUT_TICKS); if ( !err ) { while (--loop_for_command_done_check > 0) { intsts = synopmob_read_register(base+RINTSTS); if ((intsts & (INTMSK_CMD_DONE|INTMSK_DAT_OVER)) == (INTMSK_CMD_DONE|INTMSK_DAT_OVER)) { break; } plat_loop(1); } ret = synopmob_handle_standard_rinsts(intsts); if (!ret ) { if( !loop_for_command_done_check || !(sdc->idsts & 0x100)) { //normal interrupt SDIO_PRINTF("------- %s, line %d idsts = %08x check = %d -------\n", __FUNCTION__, __LINE__, sdc->idsts, loop_for_command_done_check); ret = ERRIDMA; } } else SDIO_PRINTF("------- %s, line %d intsts = %08x buf = %08x -------\n", __FUNCTION__, __LINE__, intsts, buf); } } if (!ret) { synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts synopmob_clear_bits(base + CTRL, CTRL_USE_IDMAC); synopmob_clear_bits(base + BMOD,BMOD_DE); synopmob_set_register(base+BLKSIZ, 512); synopmob_set_register(base+BYTCNT, 512); } else { char* op = "read"; if (rw) op = "write"; SDIO_PRINTF("sdio_drv_read_write1(%s) fail:, ret = %d\n", op, ret); } if ( rw && !ret ) { //write ret = synopmob_wait_data_ready(base); } rt_sem_release(sdc->mutex); if ( !rw && !ret ) { //read inv_dcache_range((unsigned long)buf, num); } if (ret) { char* op = "read"; if (rw) op = "write"; SDIO_PRINTF("sdio_drv_read_write2(%s) fail:, ret = %d\n", op, ret); } return ret; //return ret ? 0/*false*/ : 1/*true*/; } int sdio_drv_read(HSDC handle, unsigned int addr, unsigned int fn, unsigned int bcnt, unsigned int bsize, unsigned char *buf) { return sdio_drv_read_write((sdc_t*)handle, 0, addr, fn, bcnt, bsize, buf); } int sdio_drv_write(HSDC handle, unsigned int addr, unsigned int fn, unsigned int bcnt, unsigned int bsize, unsigned char *buf) { return sdio_drv_read_write((sdc_t*)handle, 1, addr, fn, bcnt, bsize, buf); } static void dumpchain(DmaDesc *pChain) { int i = 0; DmaDesc *tmp_pChain = pChain; while(tmp_pChain && i < 10) { SDIO_PRINTF("[%d]: chain =%p, buf = %p, size = %d, csi = %08x, next = %p\n", i, tmp_pChain, (DmaDesc *)tmp_pChain->desc2, tmp_pChain->desc1, tmp_pChain->desc0, (DmaDesc *)tmp_pChain->desc3); tmp_pChain = (DmaDesc *)tmp_pChain->desc3; i++; if(tmp_pChain == pChain) break; } } #ifdef DONT_COPY_NET_PAYLOAD_TO_SEND #if 1 int sdio_drv_chain_write(sdc_t* sdc, unsigned int addr, unsigned int fn, unsigned int bcnt, unsigned int bsize, buf_chain_t *chain) { int ret; unsigned int intsts = 0; unsigned int cmd = 0x2275; unsigned int base = sdc->ip_base; unsigned int arg; unsigned int num; unsigned int chain_len = 0; int loop_for_command_done_check = DATA_TRANSFER_OVER_TIMEOUT_USEC; rt_err_t err; unsigned int rw = 1; DmaDesc *tmpDesc = (DmaDesc *)chain; DmaDesc *lastDesc = (void*)0; arg = (fn << 28) | (addr << 9); if (bcnt == 1 && bsize <= 512) arg |= (bsize & 0x1ff); else arg |= ((1 << 27) | bcnt); if ( rw ) { cmd |= 0x400; arg |= (1 << 31); } num = bsize*bcnt; err = rt_sem_take(sdc->mutex, RT_WAITING_FOREVER); if (err != RT_EOK) { return ERRNORES; } // reset synopmob_set_bits(base+CTRL, FIFO_RESET); //reset FIFO while (synopmob_read_register(base+CTRL) & FIFO_RESET); synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts while(tmpDesc != 0) { // make sure size is little than DescBuf1SizMsk if(tmpDesc->desc1 > (DescBuf1SizMsk >> DescBuf1SizeShift)) { // TBD... fix me rt_sem_release(sdc->mutex); return 0; } // TBD... fix me, we must align tmpDesc->desc2 to 4 ? tmpDesc->desc0 = DescOwnByDma | DescSecAddrChained; // is it last node? if(tmpDesc->desc3 == 0 || tmpDesc->desc3 == (unsigned int)chain) { tmpDesc->desc0 |= DescLastDesc; lastDesc = tmpDesc; } else { tmpDesc->desc0 |= DescDisInt; //disable interrupt... } // is it first node? if((char *)tmpDesc == (char *)chain) { tmpDesc->desc0 |= DescFirstDesc; } flush_dcache_range(tmpDesc->desc2, tmpDesc->desc1); tmpDesc = (DmaDesc *)tmpDesc->desc3; chain_len += sizeof(buf_chain_t); if((char *)tmpDesc == (char *)chain) { break; } } lastDesc->desc3 = (unsigned int)chain; //FIXME, chain must be continuous arrry. flush_dcache_range((unsigned long)chain, chain_len); synopmob_set_register(base+DBADDR, (unsigned int)(chain)); synopmob_set_register(base+BLKSIZ, bsize); synopmob_set_register(base+BYTCNT, num); synopmob_set_bits(base + CTRL, CTRL_USE_IDMAC); synopmob_set_bits(base + BMOD,BMOD_DE); ret = synopmob_execute_command(base, cmd, arg); if ( !ret ) { ret = ERRIDMA; err = rt_sem_take(sdc->sem, DMA_TRANSFER_TIMEOUT_TICKS); if ( !err ) { while (--loop_for_command_done_check > 0) { intsts = synopmob_read_register(base+RINTSTS); if ((intsts & (INTMSK_CMD_DONE|INTMSK_DAT_OVER)) == (INTMSK_CMD_DONE|INTMSK_DAT_OVER)) { break; } plat_loop(1); } ret = synopmob_handle_standard_rinsts(intsts); if (!ret ) { if( !loop_for_command_done_check || !(sdc->idsts & 0x100)) { //normal interrupt ret = ERRIDMA; } } } } if (!ret) { synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts synopmob_clear_bits(base + CTRL, CTRL_USE_IDMAC); synopmob_clear_bits(base + BMOD,BMOD_DE); synopmob_set_register(base+BLKSIZ, 512); synopmob_set_register(base+BYTCNT, 512); } else { char* op = "read"; if (rw) op = "write"; SDIO_PRINTF("sdio_drv_chain_write1(%s) fail:, ret = %d, bsize = %d * %d\n", op, ret, bsize, bcnt); dumpchain((DmaDesc *)chain); } if ( rw && !ret ) { ret = synopmob_wait_data_ready(base); } rt_sem_release(sdc->mutex); if (ret) { ret++; ret--; SDIO_PRINTF("sdio_drv_chain_write2, fail:, ret = %d\n", ret); } return ret; //return ret ? 0/*false*/ : 1/*true*/; } #elif 0 int sdio_drv_chain_write(sdc_t* sdc, unsigned int addr, unsigned int fn, unsigned int bcnt, unsigned int bsize, buf_chain_t *chain) { //static volatile DmaDesc __attribute__ ((aligned(32))) st_pchain[4]; volatile DmaDesc *st_pchain = (DmaDesc *)0x9a700000; int ret; unsigned int intsts = 0; unsigned int cmd = 0x2275; unsigned int base = sdc->ip_base; unsigned int arg; unsigned int num; unsigned int chain_len = 0; int loop_for_command_done_check = DATA_TRANSFER_OVER_TIMEOUT_USEC; char err; unsigned int rw = 1; buf_chain_t *usrchain; unsigned int desc0; unsigned int length = 0; if (!chain) { return 0; } arg = (fn << 28) | (addr << 9); if (bcnt == 1 && bsize <= 512) arg |= (bsize & 0x1ff); else arg |= ((1 << 27) | bcnt); if ( rw ) { cmd |= 0x400; arg |= (1 << 31); } num = bsize*bcnt; OSSemPend(sdc->mutex, 0, &err); if (err != OS_NO_ERR) { return ERRNORES; } // reset synopmob_set_bits(base+CTRL, FIFO_RESET); //reset FIFO while (synopmob_read_register(base+CTRL) & FIFO_RESET); synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts usrchain = chain; while (1) { if(usrchain->size > (DescBuf1SizMsk >> DescBuf1SizeShift)) { // TBD... fix me OSSemPost (sdc->mutex); return 0; } length += usrchain->size; desc0 = DescOwnByDma | DescSecAddrChained; if (!usrchain->next || usrchain->next == chain) { desc0 |= DescLastDesc; } else { desc0 |= DescDisInt; //disable interrupt... } if(usrchain == chain) { desc0 |= DescFirstDesc; } st_pchain[chain_len].desc0 = desc0; st_pchain[chain_len].desc1 = (unsigned int)usrchain->size; st_pchain[chain_len].desc2 = (unsigned int)usrchain->buf; st_pchain[chain_len].desc3 = (unsigned int)(&st_pchain[chain_len+1]); flush_dcache_range((unsigned int)usrchain->buf, usrchain->size); usrchain = usrchain->next; if( !usrchain || usrchain == chain) { break; } if (++chain_len >= 4) { while(1) SDIO_PRINTF("sdio_drv_chain_write:long chain!\n"); } } st_pchain[chain_len].desc3 = (unsigned int)(&st_pchain[0]); if (length != num) { while (1) SDIO_PRINTF("sdio_drv_chain_write:too long packet!\n"); } synopmob_set_register(base+DBADDR, (unsigned int)(st_pchain)); synopmob_set_register(base+BLKSIZ, bsize); synopmob_set_register(base+BYTCNT, num); synopmob_set_bits(base + CTRL, CTRL_USE_IDMAC); synopmob_set_bits(base + BMOD,BMOD_DE); ret = synopmob_execute_command(base, cmd, arg); if ( !ret ) { ret = ERRIDMA; OSSemPend(sdc->sem, DMA_TRANSFER_TIMEOUT_TICKS, &err); if ( !err ) { while (--loop_for_command_done_check > 0) { intsts = synopmob_read_register(base+RINTSTS); if ((intsts & (INTMSK_CMD_DONE|INTMSK_DAT_OVER)) == (INTMSK_CMD_DONE|INTMSK_DAT_OVER)) { break; } plat_loop(1); } ret = synopmob_handle_standard_rinsts(intsts); if (!ret ) { if( !loop_for_command_done_check || !(sdc->idsts & 0x100)) { //normal interrupt ret = ERRIDMA; } } } } if (!ret) { synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts synopmob_clear_bits(base + CTRL, CTRL_USE_IDMAC); synopmob_clear_bits(base + BMOD,BMOD_DE); synopmob_set_register(base+BLKSIZ, 512); synopmob_set_register(base+BYTCNT, 512); } else { char* op = "read"; if (rw) op = "write"; SDIO_PRINTF("sdio_drv_chain_write1(%s) fail:, ret = %d\n", op, ret); } if ( rw && !ret ) { ret = synopmob_wait_data_ready(base); } OSSemPost (sdc->mutex); return ret; //return ret ? 0/*false*/ : 1/*true*/; } #else static unsigned char __attribute__ ((aligned(32))) st_net_buf[2*1024]; int sdio_drv_chain_write(sdc_t* sdc, unsigned int addr, unsigned int fn, unsigned int bcnt, unsigned int bsize, buf_chain_t *chain) { static volatile DmaDesc __attribute__ ((aligned(32))) st_pchain; int ret; unsigned int intsts = 0; unsigned int cmd = 0x2275; unsigned int base = sdc->ip_base; unsigned int arg; unsigned int num; int loop_for_command_done_check = DATA_TRANSFER_OVER_TIMEOUT_USEC; rt_err_t err; unsigned int rw = 1; buf_chain_t *usrchain; unsigned int length = 0; if (!chain) { return 0; } arg = (fn << 28) | (addr << 9); if (bcnt == 1 && bsize <= 512) arg |= (bsize & 0x1ff); else arg |= ((1 << 27) | bcnt); if ( rw ) { cmd |= 0x400; arg |= (1 << 31); } num = bsize*bcnt; err = rt_sem_take(sdc->mutex, RT_WAITING_FOREVER); if (err != RT_EOK) { return ERRNORES; } // reset synopmob_set_bits(base+CTRL, FIFO_RESET); //reset FIFO while (synopmob_read_register(base+CTRL) & FIFO_RESET); synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts usrchain = chain; while (1) { if (length + usrchain->size >= sizeof(st_net_buf)) { while(1) SDIO_PRINTF("too long net pkt\n"); } memcpy(st_net_buf + length, usrchain->buf, usrchain->size); length += usrchain->size; usrchain = usrchain->next; if (!usrchain || usrchain->next == chain) { break; } } st_pchain.desc0 = DescOwnByDma | DescSecAddrChained | DescLastDesc | DescFirstDesc; st_pchain.desc1 = length; st_pchain.desc2 = (unsigned int)st_net_buf; st_pchain.desc3 = (unsigned int)&st_pchain; flush_dcache_range((unsigned long)st_net_buf, length); if (length != num) { while (1) SDIO_PRINTF("sdio_drv_chain_write:too long packet!\n"); } synopmob_set_register(base+DBADDR, (unsigned int)(&st_pchain)); synopmob_set_register(base+BLKSIZ, bsize); synopmob_set_register(base+BYTCNT, num); synopmob_set_bits(base + CTRL, CTRL_USE_IDMAC); synopmob_set_bits(base + BMOD,BMOD_DE); ret = synopmob_execute_command(base, cmd, arg); if ( !ret ) { ret = ERRIDMA; err = rt_sem_take(sdc->sem, DMA_TRANSFER_TIMEOUT_TICKS); if ( !err ) { while (--loop_for_command_done_check > 0) { intsts = synopmob_read_register(base+RINTSTS); if ((intsts & (INTMSK_CMD_DONE|INTMSK_DAT_OVER)) == (INTMSK_CMD_DONE|INTMSK_DAT_OVER)) { break; } plat_loop(1); } ret = synopmob_handle_standard_rinsts(intsts); if (!ret ) { if( !loop_for_command_done_check || !(sdc->idsts & 0x100)) { //normal interrupt ret = ERRIDMA; } } } } if (!ret) { synopmob_set_register(base + RINTSTS, 0xfffe); //clear interrupts synopmob_clear_bits(base + CTRL, CTRL_USE_IDMAC); synopmob_clear_bits(base + BMOD,BMOD_DE); synopmob_set_register(base+BLKSIZ, 512); synopmob_set_register(base+BYTCNT, 512); } else { char* op = "read"; if (rw) op = "write"; SDIO_PRINTF("sdio_drv_chain_write1(%s) fail:, ret = %d\n", op, ret); } if ( rw && !ret ) { ret = synopmob_wait_data_ready(base); } rt_sem_release(sdc->mutex); return ret; //return ret ? 0/*false*/ : 1/*true*/; } #endif #endif static int sdio_card_reset(sdc_t* sdc) { unsigned int resp; int ret; /* Soft Reset card */ sdio_drv_creg_write(sdc, 0x6, 0, 0x8, &resp); return 0; } static int enum_sdio_card(sdc_t* sdc) { int ret; unsigned int resp; unsigned int base = sdc->ip_base; #if 0 synopmob_set_bits(0x98500004, (1<<24)); //set to output mode synopmob_set_bits(0x98500000, (1<<24)); //power off plat_loop(1000000/5); //Lets give some ramp down period synopmob_clear_bits(0x98500000, (1<<24)); //power on plat_loop(1000000/5);//Lets give some ramp down period #endif synopmob_set_register(base+CTYPE, ONE_BIT_MODE); synopmob_set_register(base+CLKENA, 0x00000001); /*enable clock, non-low-power mode*/ ret = synopmob_set_clk_freq(sdc, MMC_FOD_DIVIDER_VALUE); if ( !ret ) { plat_loop(100); //enough for 74 clock. #if 0 sdio_card_reset(sdc); plat_loop(100000); #endif ret = sd_send_cmd5(sdc, 0, &resp); if (!ret) { resp &= 0x00ffffff; ret = sd_send_cmd5(sdc, resp, &resp); } } if (!ret) { ret = sd_send_cmd3(sdc); //get RCA } if (!ret) { ret = sd_send_cmd7(sdc); //select the card } if (!g_use_bcm43362) { sdio_drv_creg_read(sdc, 0x13, 0, &resp); if ((resp & 1) && (sdc->wkmod & (SDC_WKMOD_4WIRE|SDC_WKMOD_25M_STAND_SPEED|SDC_WKMOD_50M_HI_SPEED))){ //high speed support? if (sdc->wkmod & SDC_WKMOD_4WIRE) { sdio_drv_creg_read(sdc, 0x7, 0, &resp); resp &= 0xfc; resp |= (1 << 1); sdio_drv_creg_write(sdc, 0x7, 0, resp, &resp); //switch to 4bit mode sdio_drv_creg_read(sdc, 0x7, 0, &resp); if ((resp & 0x3) != 0x2) { return ERRCARDINTERNAL; // 4bit mode failed } synopmob_set_register(base+CTYPE, FOUR_BIT_MODE); } if (sdc->wkmod & (SDC_WKMOD_25M_STAND_SPEED|SDC_WKMOD_50M_HI_SPEED)) { ret = synopmob_set_clk_freq(sdc, ONE_BIT_BUS_FREQ); //ret = synopmob_set_clk_freq(sdc, 0); } } sdio_drv_creg_read(sdc, 0x3, 0, &resp); if (!ret) { sdio_drv_creg_read(sdc, 0x0, 0, &resp); //card version sdio_drv_creg_write(sdc, 0x4, 0, 0x3, &resp); //enable interrupts in card sdio_drv_creg_write(sdc, 0x2, 0, 0x2, &resp); //Eable IO in card do { sdio_drv_creg_read(sdc, 0x3, 0, &resp); } while (!(resp & 2)); } } //g_use_bcm43362 sdc->card_type = SDIO_TYPE; synopmob_set_bits(base+CTRL, INT_ENABLE); return ret; } int sdio_high_speed_mode(HSDC handle, int bitwidth, int freq) { int ret; sdc_t* sdc = (sdc_t*)handle; if (bitwidth == 4) { synopmob_set_register(sdc->ip_base+CTYPE, FOUR_BIT_MODE); } ret = synopmob_set_clk_freq(sdc, /*ONE_BIT_BUS_FREQ*/1); if (ret != 0) { SDIO_PRINTF("sdio_high_speed_mode fail:, ret = %d\n", ret); } return ret; } static int common_init(unsigned int which, unsigned int sdio, unsigned int wkmod, unsigned int* dma_desc, HSDC* phandle) { int ret = ERRNORES; sdc_t* sdc; unsigned int base; unsigned int temp; unsigned int fifo_thresh; volatile DmaDesc *pDmaDesc; rt_sem_t sem; rt_sem_t mutex; base = SDC0_REG_BASE; temp = PMU_SDC0_RST_BIT; if (which > 0) { base = SDC1_REG_BASE; temp = PMU_SDC1_RST_BIT; } #if 0 //PMU_RST_MODULE(temp); plat_loop(1); temp = synopmob_read_register(PMU_REG_CLK_DIV3); temp &= (~(0x0f<<8)); temp |= (0xf<<8); synopmob_set_register(PMU_REG_CLK_DIV3, temp); #endif *phandle = (HSDC)0; sdc = &sdc_array[which]; sem = sdc->sem; mutex = sdc->mutex; memset((void *)sdc, 0, sizeof(*sdc)); sdc->wkmod = wkmod; sdc->idma_support = 0; sdc->ip_base = base; sdc->rca = 0; sdc->card_type = NONE_TYPE; if (!sem) { sem = rt_sem_create("fh_sdio_sem", 0, RT_IPC_FLAG_PRIO);//OSSemCreate (0); if ( !sem ) { return ret; } } sdc->sem = sem; if (!mutex) { mutex = rt_sem_create("fh_sdio_mutex", 1, RT_IPC_FLAG_PRIO);//OSSemCreate (1); if ( !mutex ) { return ret; } } sdc->mutex = mutex; synopmob_set_bits(base + CTRL, CTRL_RESET); //reset host controller plat_loop(100); synopmob_clear_bits(base + CTRL,CTRL_USE_IDMAC); sdc->idma_support = 1; //fixed to support IDMA pDmaDesc = (volatile DmaDesc *)dma_desc; sdc->pDmaDesc = pDmaDesc; if (sdc->idma_support) { synopmob_set_bits(base + CTRL, DMA_RESET); plat_loop(100); synopmob_set_bits(base + CTRL, FIFO_RESET); plat_loop(100); synopmob_set_bits(base + BMOD, BMOD_SWR); plat_loop(100); //synopmob_set_bits(base + BMOD,BMOD_DE); pDmaDesc->desc0 = DescSecAddrChained; pDmaDesc->desc1 = 0; pDmaDesc->desc2 = 0; pDmaDesc->desc3 = (unsigned int)(pDmaDesc); synopmob_set_register(base + DBADDR, (unsigned int)(pDmaDesc)); } synopmob_set_register(base+CTYPE, ONE_BIT_MODE); synopmob_set_register(base+RINTSTS, 0xffffffff);//clear interrupt. synopmob_clear_bits(base+CTRL, INT_ENABLE); synopmob_set_register(base+INTMSK, 0); // mask all INTR synopmob_set_register(base+IDINTEN, IDMAINTBITS); //Enable DMA INTR synopmob_set_register(base+TMOUT, 0xffffffff); /* Set Data and Response timeout to Maximum Value*/ /* Set the card Debounce to allow the CDETECT fluctuations to settle down*/ synopmob_set_register(base+DEBNCE, 0x0FFFFF); fifo_thresh = synopmob_read_register(base+FIFOTH); //fifo_thresh = GET_FIFO_DEPTH(fifo_thresh) / 2; fifo_thresh = (GET_FIFO_DEPTH(fifo_thresh) + 1) / 2; sdc->fifo_depth = fifo_thresh * 2; sdc->fifo_threth = fifo_thresh; /* Tx Watermark */ synopmob_clear_bits(base+FIFOTH, 0xfff); synopmob_set_bits(base+FIFOTH, fifo_thresh); /* Rx Watermark */ synopmob_clear_bits(base+FIFOTH, 0x0fff0000); synopmob_set_bits(base+FIFOTH, (fifo_thresh-1) << 16); //synopmob_set_bits(base+FIFOTH, 2<< 28); if (!sdio) { ret = enum_sd_card(sdc); } else { ret = enum_sdio_card(sdc); } if (!ret) { *phandle = (HSDC)sdc; } return ret; } int sdc_is_connected(unsigned int which) { unsigned int base = SDC0_REG_BASE; if (which > 0) base = SDC1_REG_BASE; return !(synopmob_read_register(base+CDETECT) & 1); } int sdc_init(unsigned int which, unsigned int wkmod, unsigned int* dma_desc, HSDC* phandle) { return common_init(which, 0, wkmod, dma_desc, phandle); } int sdio_init(unsigned int which, unsigned int wkmod, unsigned int* dma_desc, HSDC* phandle) { return common_init(which, 1, wkmod, dma_desc, phandle); } int sdio_enable_card_int(HSDC handle, int enable) { unsigned int base = ((sdc_t*)handle)->ip_base; if (enable) { //synopmob_set_register(base+INTMSK, INTMSK_SDIO); synopmob_set_register(base+INTMSK, (synopmob_read_register(base+INTMSK) | INTMSK_SDIO )); } else { //synopmob_set_register(base+INTMSK, 0); synopmob_set_register(base+INTMSK, (synopmob_read_register(base+INTMSK) & ~INTMSK_SDIO )); } return 0; } int sdio_set_card_int_cb(HSDC handle, void (*cb)(void)) { ((sdc_t*)handle)->cb = cb; return 0; } static void OSSDCISR(sdc_t* sdc) { unsigned int sts; unsigned int base; base = sdc->ip_base; sts = synopmob_read_register(base+IDSTS); if ( sts ) { synopmob_set_register(base+IDSTS, sts); sdc->idsts = sts; rt_sem_release(sdc->sem); } //sts = synopmob_read_register(base+RINTSTS); sts = synopmob_read_register(base+MINTSTS); sts &= INTMSK_SDIO; if ( sts ) { //interrupt from WIFI card. //synopmob_set_register(base+INTMSK, 0); //mask all the interrupt synopmob_set_register(base+INTMSK, synopmob_read_register(base+INTMSK) & ~INTMSK_SDIO ); //mask sdio interrupt synopmob_set_register(base+RINTSTS, sts); synopmob_set_register(base+MINTSTS, sts); if (sdc->cb) { sdc->cb(); } } } void OSSDCINTR_0(int vector, void *param) { OSSDCISR(&sdc_array[0]); } void OSSDCINTR_1(int vector, void *param) { OSSDCISR(&sdc_array[1]); } void fh_sdio0_init(void) { int sd0_irq = SDC0_IRQn; rt_hw_interrupt_install(sd0_irq, OSSDCINTR_0, NULL, NULL); rt_hw_interrupt_umask(sd0_irq); } void fh_sdio1_init(void) { int sd1_irq = SDC1_IRQn; rt_hw_interrupt_install(sd1_irq, OSSDCINTR_1, NULL, NULL); rt_hw_interrupt_umask(sd1_irq); } void fh_sdio_init(void) { fh_sdio0_init(); fh_sdio1_init(); } int sdc_deinit(HSDC handle) { return -1; // TBD... fix me } int sdc_set_clk_divider(unsigned int divider) { if(divider > 255) return -1; sdc_clk_divider = divider; return 0; }