/**************************************************************************//** * * @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2020-2-27 YHKuo First version * ******************************************************************************/ #include #if defined(BSP_USING_SPI) || defined(BSP_USING_QSPI) #include #include #include #include #if defined(BSP_USING_SPI_PDMA) || defined(BSP_USING_QSPI_PDMA) #include #endif /* Private define ---------------------------------------------------------------*/ #ifndef NU_SPI_USE_PDMA_MIN_THRESHOLD #define NU_SPI_USE_PDMA_MIN_THRESHOLD 128 #endif enum { SPI_START = -1, #if defined(BSP_USING_SPI0) SPI0_IDX, #endif #if defined(BSP_USING_SPI1) SPI1_IDX, #endif #if defined(BSP_USING_SPI2) SPI2_IDX, #endif #if defined(BSP_USING_SPI3) SPI3_IDX, #endif SPI_CNT }; /* Private typedef --------------------------------------------------------------*/ /* Private functions ------------------------------------------------------------*/ static void nu_spi_transmission_with_poll(struct nu_spi *spi_bus, uint8_t *send_addr, uint8_t *recv_addr, int length, uint8_t bytes_per_word); static int nu_spi_register_bus(struct nu_spi *spi_bus, const char *name); static rt_uint32_t nu_spi_bus_xfer(struct rt_spi_device *device, struct rt_spi_message *message); static rt_err_t nu_spi_bus_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration); #if defined(BSP_USING_SPI_PDMA) || defined(BSP_USING_QSPI_PDMA) static void nu_pdma_spi_rx_cb(void *pvUserData, uint32_t u32EventFilter); static void nu_pdma_spi_tx_cb(void *pvUserData, uint32_t u32EventFilter); static rt_err_t nu_pdma_spi_rx_config(struct nu_spi *spi_bus, uint8_t *pu8Buf, int32_t i32RcvLen, uint8_t bytes_per_word); static rt_err_t nu_pdma_spi_tx_config(struct nu_spi *spi_bus, const uint8_t *pu8Buf, int32_t i32SndLen, uint8_t bytes_per_word); static rt_size_t nu_spi_pdma_transmit(struct nu_spi *spi_bus, const uint8_t *send_addr, uint8_t *recv_addr, int length, uint8_t bytes_per_word); #endif /* Public functions -------------------------------------------------------------*/ void nu_spi_transfer(struct nu_spi *spi_bus, uint8_t *tx, uint8_t *rx, int length, uint8_t bytes_per_word); void nu_spi_drain_rxfifo(SPI_T *spi_base); #if defined(BSP_USING_SPI_PDMA) || defined(BSP_USING_QSPI_PDMA) rt_err_t nu_hw_spi_pdma_allocate(struct nu_spi *spi_bus); #endif /* Private variables ------------------------------------------------------------*/ static struct rt_spi_ops nu_spi_poll_ops = { .configure = nu_spi_bus_configure, .xfer = nu_spi_bus_xfer, }; static struct nu_spi nu_spi_arr [] = { #if defined(BSP_USING_SPI0) { .name = "spi0", .spi_base = SPI0, #if defined(BSP_USING_SPI_PDMA) #if defined(BSP_USING_SPI0_PDMA) .pdma_perp_tx = PDMA_SPI0_TX, .pdma_perp_rx = PDMA_SPI0_RX, #else .pdma_perp_tx = NU_PDMA_UNUSED, .pdma_perp_rx = NU_PDMA_UNUSED, #endif #endif }, #endif #if defined(BSP_USING_SPI1) { .name = "spi1", .spi_base = SPI1, #if defined(BSP_USING_SPI_PDMA) #if defined(BSP_USING_SPI1_PDMA) .pdma_perp_tx = PDMA_SPI1_TX, .pdma_perp_rx = PDMA_SPI1_RX, #else .pdma_perp_tx = NU_PDMA_UNUSED, .pdma_perp_rx = NU_PDMA_UNUSED, #endif #endif }, #endif #if defined(BSP_USING_SPI2) { .name = "spi2", .spi_base = SPI2, #if defined(BSP_USING_SPI_PDMA) #if defined(BSP_USING_SPI2_PDMA) .pdma_perp_tx = PDMA_SPI2_TX, .pdma_perp_rx = PDMA_SPI2_RX, #else .pdma_perp_tx = NU_PDMA_UNUSED, .pdma_perp_rx = NU_PDMA_UNUSED, #endif #endif }, #endif #if defined(BSP_USING_SPI3) { .name = "spi3", .spi_base = SPI3, #if defined(BSP_USING_SPI_PDMA) #if defined(BSP_USING_SPI3_PDMA) .pdma_perp_tx = PDMA_SPI3_TX, .pdma_perp_rx = PDMA_SPI3_RX, #else .pdma_perp_tx = NU_PDMA_UNUSED, .pdma_perp_rx = NU_PDMA_UNUSED, #endif #endif }, #endif {0} }; /* spi nu_spi */ static rt_err_t nu_spi_bus_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration) { struct nu_spi *spi_bus; uint32_t u32SPIMode; uint32_t u32BusClock; rt_err_t ret = RT_EOK; RT_ASSERT(device != RT_NULL); RT_ASSERT(configuration != RT_NULL); spi_bus = (struct nu_spi *) device->bus; /* Check mode */ switch (configuration->mode & RT_SPI_MODE_3) { case RT_SPI_MODE_0: u32SPIMode = SPI_MODE_0; break; case RT_SPI_MODE_1: u32SPIMode = SPI_MODE_1; break; case RT_SPI_MODE_2: u32SPIMode = SPI_MODE_2; break; case RT_SPI_MODE_3: u32SPIMode = SPI_MODE_3; break; default: ret = RT_EIO; goto exit_nu_spi_bus_configure; } /* Check data width */ if (!(configuration->data_width == 8 || configuration->data_width == 16 || configuration->data_width == 24 || configuration->data_width == 32)) { ret = RT_EINVAL; goto exit_nu_spi_bus_configure; } /* Try to set clock and get actual spi bus clock */ u32BusClock = SPI_SetBusClock(spi_bus->spi_base, configuration->max_hz); if (configuration->max_hz > u32BusClock) { rt_kprintf("%s clock max frequency is %dHz (!= %dHz)\n", spi_bus->name, u32BusClock, configuration->max_hz); configuration->max_hz = u32BusClock; } /* Need to initialize new configuration? */ if (rt_memcmp(configuration, &spi_bus->configuration, sizeof(*configuration)) != 0) { rt_memcpy(&spi_bus->configuration, configuration, sizeof(*configuration)); SPI_Open(spi_bus->spi_base, SPI_MASTER, u32SPIMode, configuration->data_width, u32BusClock); if (configuration->mode & RT_SPI_CS_HIGH) { /* Set CS pin to LOW */ SPI_SET_SS_LOW(spi_bus->spi_base); } else { /* Set CS pin to HIGH */ SPI_SET_SS_HIGH(spi_bus->spi_base); } if (configuration->mode & RT_SPI_MSB) { /* Set sequence to MSB first */ SPI_SET_MSB_FIRST(spi_bus->spi_base); } else { /* Set sequence to LSB first */ SPI_SET_LSB_FIRST(spi_bus->spi_base); } } /* Clear SPI RX FIFO */ nu_spi_drain_rxfifo(spi_bus->spi_base); exit_nu_spi_bus_configure: return -(ret); } #if defined(BSP_USING_SPI_PDMA) || defined(BSP_USING_QSPI_PDMA) static void nu_pdma_spi_rx_cb(void *pvUserData, uint32_t u32EventFilter) { struct nu_spi *spi_bus; spi_bus = (struct nu_spi *)pvUserData; RT_ASSERT(spi_bus != RT_NULL); /* Get base address of spi register */ SPI_T *spi_base = spi_bus->spi_base; if (u32EventFilter & NU_PDMA_EVENT_TRANSFER_DONE) { SPI_DISABLE_RX_PDMA(spi_base); // Stop DMA TX transfer } } static rt_err_t nu_pdma_spi_rx_config(struct nu_spi *spi_bus, uint8_t *pu8Buf, int32_t i32RcvLen, uint8_t bytes_per_word) { rt_err_t result = RT_EOK; rt_uint8_t *dst_addr = NULL; nu_pdma_memctrl_t memctrl = eMemCtl_Undefined; /* Get base address of spi register */ SPI_T *spi_base = spi_bus->spi_base; rt_uint8_t spi_pdma_rx_chid = spi_bus->pdma_chanid_rx; result = nu_pdma_callback_register(spi_pdma_rx_chid, nu_pdma_spi_rx_cb, (void *)spi_bus, NU_PDMA_EVENT_TRANSFER_DONE); if (result != RT_EOK) { goto exit_nu_pdma_spi_rx_config; } if (pu8Buf == RT_NULL) { memctrl = eMemCtl_SrcFix_DstFix; dst_addr = (rt_uint8_t *) &spi_bus->dummy; } else { memctrl = eMemCtl_SrcFix_DstInc; dst_addr = pu8Buf; } result = nu_pdma_channel_memctrl_set(spi_pdma_rx_chid, memctrl); if (result != RT_EOK) { goto exit_nu_pdma_spi_rx_config; } result = nu_pdma_transfer(spi_pdma_rx_chid, bytes_per_word * 8, (uint32_t)&spi_base->RX, (uint32_t)dst_addr, i32RcvLen / bytes_per_word, 0); exit_nu_pdma_spi_rx_config: return result; } static void nu_pdma_spi_tx_cb(void *pvUserData, uint32_t u32EventFilter) { struct nu_spi *spi_bus; spi_bus = (struct nu_spi *)pvUserData; RT_ASSERT(spi_bus != RT_NULL); /* Get base address of spi register */ SPI_T *spi_base = spi_bus->spi_base; if (u32EventFilter & NU_PDMA_EVENT_TRANSFER_DONE) { SPI_DISABLE_TX_PDMA(spi_base); // Stop DMA TX transfer } rt_sem_release(spi_bus->m_psSemBus); } static rt_err_t nu_pdma_spi_tx_config(struct nu_spi *spi_bus, const uint8_t *pu8Buf, int32_t i32SndLen, uint8_t bytes_per_word) { rt_err_t result = RT_EOK; rt_uint8_t *src_addr = NULL; nu_pdma_memctrl_t memctrl = eMemCtl_Undefined; /* Get base address of spi register */ SPI_T *spi_base = spi_bus->spi_base; rt_uint8_t spi_pdma_tx_chid = spi_bus->pdma_chanid_tx; result = nu_pdma_callback_register(spi_pdma_tx_chid, nu_pdma_spi_tx_cb, (void *)spi_bus, NU_PDMA_EVENT_TRANSFER_DONE); if (result != RT_EOK) { goto exit_nu_pdma_spi_tx_config; } if (pu8Buf == RT_NULL) { spi_bus->dummy = 0; memctrl = eMemCtl_SrcFix_DstFix; src_addr = (rt_uint8_t *)&spi_bus->dummy; } else { memctrl = eMemCtl_SrcInc_DstFix; src_addr = (rt_uint8_t *)pu8Buf; } result = nu_pdma_channel_memctrl_set(spi_pdma_tx_chid, memctrl); if (result != RT_EOK) { goto exit_nu_pdma_spi_tx_config; } result = nu_pdma_transfer(spi_pdma_tx_chid, bytes_per_word * 8, (uint32_t)src_addr, (uint32_t)&spi_base->TX, i32SndLen / bytes_per_word, 0); exit_nu_pdma_spi_tx_config: return result; } /** * SPI PDMA transfer */ static rt_size_t nu_spi_pdma_transmit(struct nu_spi *spi_bus, const uint8_t *send_addr, uint8_t *recv_addr, int length, uint8_t bytes_per_word) { rt_err_t result = RT_EOK; /* Get base address of spi register */ SPI_T *spi_base = spi_bus->spi_base; result = nu_pdma_spi_rx_config(spi_bus, recv_addr, length, bytes_per_word); RT_ASSERT(result == RT_EOK); result = nu_pdma_spi_tx_config(spi_bus, send_addr, length, bytes_per_word); RT_ASSERT(result == RT_EOK); /* Trigger TX/RX at the same time. */ SPI_TRIGGER_TX_PDMA(spi_base); SPI_TRIGGER_RX_PDMA(spi_base); /* Wait PDMA transfer done */ rt_sem_take(spi_bus->m_psSemBus, RT_WAITING_FOREVER); while (SPI_IS_BUSY(spi_base)); return result; } rt_err_t nu_hw_spi_pdma_allocate(struct nu_spi *spi_bus) { /* Allocate SPI_TX nu_dma channel */ if ((spi_bus->pdma_chanid_tx = nu_pdma_channel_allocate(spi_bus->pdma_perp_tx)) < 0) { goto exit_nu_hw_spi_pdma_allocate; } /* Allocate SPI_RX nu_dma channel */ else if ((spi_bus->pdma_chanid_rx = nu_pdma_channel_allocate(spi_bus->pdma_perp_rx)) < 0) { nu_pdma_channel_free(spi_bus->pdma_chanid_tx); goto exit_nu_hw_spi_pdma_allocate; } spi_bus->m_psSemBus = rt_sem_create("spibus_sem", 0, RT_IPC_FLAG_FIFO); return RT_EOK; exit_nu_hw_spi_pdma_allocate: return -(RT_ERROR); } #endif /* #if defined(BSP_USING_SPI_PDMA) || defined(BSP_USING_QSPI_PDMA) */ void nu_spi_drain_rxfifo(SPI_T *spi_base) { while (SPI_IS_BUSY(spi_base)); // Drain SPI RX FIFO, make sure RX FIFO is empty while (!SPI_GET_RX_FIFO_EMPTY_FLAG(spi_base)) { SPI_ClearRxFIFO(spi_base); } } static int nu_spi_read(SPI_T *spi_base, uint8_t *recv_addr, uint8_t bytes_per_word) { int size = 0; uint32_t val; // Read RX data if (!SPI_GET_RX_FIFO_EMPTY_FLAG(spi_base)) { // Read data from SPI RX FIFO switch (bytes_per_word) { case 4: val = SPI_READ_RX(spi_base); nu_set32_le(recv_addr, val); break; case 3: val = SPI_READ_RX(spi_base); nu_set24_le(recv_addr, val); break; case 2: val = SPI_READ_RX(spi_base); nu_set16_le(recv_addr, val); break; case 1: *recv_addr = SPI_READ_RX(spi_base); break; } size = bytes_per_word; } return size; } static int nu_spi_write(SPI_T *spi_base, const uint8_t *send_addr, uint8_t bytes_per_word) { // Wait SPI TX send data while (SPI_GET_TX_FIFO_FULL_FLAG(spi_base)); // Input data to SPI TX switch (bytes_per_word) { case 4: SPI_WRITE_TX(spi_base, nu_get32_le(send_addr)); break; case 3: SPI_WRITE_TX(spi_base, nu_get24_le(send_addr)); break; case 2: SPI_WRITE_TX(spi_base, nu_get16_le(send_addr)); break; case 1: SPI_WRITE_TX(spi_base, *((uint8_t *)send_addr)); break; } return bytes_per_word; } /** * @brief SPI bus polling * @param dev : The pointer of the specified SPI module. * @param send_addr : Source address * @param recv_addr : Destination address * @param length : Data length */ static void nu_spi_transmission_with_poll(struct nu_spi *spi_bus, uint8_t *send_addr, uint8_t *recv_addr, int length, uint8_t bytes_per_word) { SPI_T *spi_base = spi_bus->spi_base; // Write-only if ((send_addr != RT_NULL) && (recv_addr == RT_NULL)) { while (length > 0) { send_addr += nu_spi_write(spi_base, send_addr, bytes_per_word); length -= bytes_per_word; } } // if (send_addr != RT_NULL && recv_addr == RT_NULL) // Read-only else if ((send_addr == RT_NULL) && (recv_addr != RT_NULL)) { spi_bus->dummy = 0; while (length > 0) { /* Input data to SPI TX FIFO */ length -= nu_spi_write(spi_base, (const uint8_t *)&spi_bus->dummy, bytes_per_word); /* Read data from RX FIFO */ recv_addr += nu_spi_read(spi_base, recv_addr, bytes_per_word); } } // else if (send_addr == RT_NULL && recv_addr != RT_NULL) // Read&Write else { while (length > 0) { /* Input data to SPI TX FIFO */ send_addr += nu_spi_write(spi_base, send_addr, bytes_per_word); length -= bytes_per_word; /* Read data from RX FIFO */ recv_addr += nu_spi_read(spi_base, recv_addr, bytes_per_word); } } // else /* Wait RX or drian RX-FIFO */ if (recv_addr) { // Wait SPI transmission done while (SPI_IS_BUSY(spi_base)) { while (!SPI_GET_RX_FIFO_EMPTY_FLAG(spi_base)) { recv_addr += nu_spi_read(spi_base, recv_addr, bytes_per_word); } } while (!SPI_GET_RX_FIFO_EMPTY_FLAG(spi_base)) { recv_addr += nu_spi_read(spi_base, recv_addr, bytes_per_word); } } else { /* Clear SPI RX FIFO */ nu_spi_drain_rxfifo(spi_base); } } void nu_spi_transfer(struct nu_spi *spi_bus, uint8_t *tx, uint8_t *rx, int length, uint8_t bytes_per_word) { RT_ASSERT(spi_bus != RT_NULL); #if defined(BSP_USING_SPI_PDMA) /* DMA transfer constrains */ if ((spi_bus->pdma_chanid_rx >= 0) && (!(uint32_t)tx % bytes_per_word) && (!(uint32_t)rx % bytes_per_word) && (bytes_per_word != 3) && (length >= NU_SPI_USE_PDMA_MIN_THRESHOLD)) nu_spi_pdma_transmit(spi_bus, tx, rx, length, bytes_per_word); else nu_spi_transmission_with_poll(spi_bus, tx, rx, length, bytes_per_word); #else nu_spi_transmission_with_poll(spi_bus, tx, rx, length, bytes_per_word); #endif } static rt_uint32_t nu_spi_bus_xfer(struct rt_spi_device *device, struct rt_spi_message *message) { struct nu_spi *spi_bus; struct rt_spi_configuration *configuration; uint8_t bytes_per_word; RT_ASSERT(device != RT_NULL); RT_ASSERT(device->bus != RT_NULL); RT_ASSERT(message != RT_NULL); spi_bus = (struct nu_spi *) device->bus; configuration = (struct rt_spi_configuration *)&spi_bus->configuration; bytes_per_word = configuration->data_width / 8; if ((message->length % bytes_per_word) != 0) { /* Say bye. */ rt_kprintf("%s: error payload length(%d%%%d != 0).\n", spi_bus->name, message->length, bytes_per_word); return 0; } if (message->length > 0) { if (message->cs_take && !(configuration->mode & RT_SPI_NO_CS)) { if (configuration->mode & RT_SPI_CS_HIGH) { SPI_SET_SS_HIGH(spi_bus->spi_base); } else { SPI_SET_SS_LOW(spi_bus->spi_base); } } nu_spi_transfer(spi_bus, (uint8_t *)message->send_buf, (uint8_t *)message->recv_buf, message->length, bytes_per_word); if (message->cs_release && !(configuration->mode & RT_SPI_NO_CS)) { if (configuration->mode & RT_SPI_CS_HIGH) { SPI_SET_SS_LOW(spi_bus->spi_base); } else { SPI_SET_SS_HIGH(spi_bus->spi_base); } } } return message->length; } static int nu_spi_register_bus(struct nu_spi *spi_bus, const char *name) { return rt_spi_bus_register(&spi_bus->dev, name, &nu_spi_poll_ops); } /** * Hardware SPI Initial */ static int rt_hw_spi_init(void) { int i; for (i = (SPI_START + 1); i < SPI_CNT; i++) { nu_spi_register_bus(&nu_spi_arr[i], nu_spi_arr[i].name); #if defined(BSP_USING_SPI_PDMA) nu_spi_arr[i].pdma_chanid_tx = -1; nu_spi_arr[i].pdma_chanid_rx = -1; if ((nu_spi_arr[i].pdma_perp_tx != NU_PDMA_UNUSED) && (nu_spi_arr[i].pdma_perp_rx != NU_PDMA_UNUSED)) { if (nu_hw_spi_pdma_allocate(&nu_spi_arr[i]) != RT_EOK) { rt_kprintf("Failed to allocate DMA channels for %s. We will use poll-mode for this bus.\n", nu_spi_arr[i].name); } } #endif } return 0; } INIT_DEVICE_EXPORT(rt_hw_spi_init); #endif //#if defined(BSP_USING_SPI)