/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2020-10-27 bigmagic first version */ #include #include "mbox.h" #include "raspi4.h" #include "drv_sdio.h" #include "mmu.h" static rt_uint32_t mmc_base_clock = 0; static rt_uint32_t sdCommandTable[] = { SD_CMD_INDEX(0), SD_CMD_RESERVED(1), SD_CMD_INDEX(2) | SD_RESP_R2, SD_CMD_INDEX(3) | SD_RESP_R1, SD_CMD_INDEX(4), SD_CMD_RESERVED(5), //SD_CMD_INDEX(5) | SD_RESP_R4, SD_CMD_INDEX(6) | SD_RESP_R1, SD_CMD_INDEX(7) | SD_RESP_R1b, SD_CMD_INDEX(8) | SD_RESP_R1, SD_CMD_INDEX(9) | SD_RESP_R2, SD_CMD_INDEX(10) | SD_RESP_R2, SD_CMD_INDEX(11) | SD_RESP_R1, SD_CMD_INDEX(12) | SD_RESP_R1b | SD_CMD_TYPE_ABORT, SD_CMD_INDEX(13) | SD_RESP_R1, SD_CMD_RESERVED(14), SD_CMD_INDEX(15), SD_CMD_INDEX(16) | SD_RESP_R1, SD_CMD_INDEX(17) | SD_RESP_R1 | SD_DATA_READ, SD_CMD_INDEX(18) | SD_RESP_R1 | SD_DATA_READ | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN, SD_CMD_INDEX(19) | SD_RESP_R1 | SD_DATA_READ, SD_CMD_INDEX(20) | SD_RESP_R1b, SD_CMD_RESERVED(21), SD_CMD_RESERVED(22), SD_CMD_INDEX(23) | SD_RESP_R1, SD_CMD_INDEX(24) | SD_RESP_R1 | SD_DATA_WRITE, SD_CMD_INDEX(25) | SD_RESP_R1 | SD_DATA_WRITE | SD_CMD_MULTI_BLOCK | SD_CMD_BLKCNT_EN, SD_CMD_INDEX(26) | SD_RESP_R1 | SD_DATA_WRITE, // add SD_CMD_INDEX(27) | SD_RESP_R1 | SD_DATA_WRITE, SD_CMD_INDEX(28) | SD_RESP_R1b, SD_CMD_INDEX(29) | SD_RESP_R1b, SD_CMD_INDEX(30) | SD_RESP_R1 | SD_DATA_READ, SD_CMD_RESERVED(31), SD_CMD_INDEX(32) | SD_RESP_R1, SD_CMD_INDEX(33) | SD_RESP_R1, SD_CMD_RESERVED(34), SD_CMD_INDEX(35) | SD_RESP_R1, // add SD_CMD_INDEX(36) | SD_RESP_R1, // add SD_CMD_RESERVED(37), SD_CMD_INDEX(38) | SD_RESP_R1b, SD_CMD_INDEX(39) | SD_RESP_R4, // add SD_CMD_INDEX(40) | SD_RESP_R5, // add SD_CMD_INDEX(41) | SD_RESP_R3, // add, mov from harbote SD_CMD_RESERVED(42) | SD_RESP_R1, SD_CMD_RESERVED(43), SD_CMD_RESERVED(44), SD_CMD_RESERVED(45), SD_CMD_RESERVED(46), SD_CMD_RESERVED(47), SD_CMD_RESERVED(48), SD_CMD_RESERVED(49), SD_CMD_RESERVED(50), SD_CMD_INDEX(51) | SD_RESP_R1 | SD_DATA_READ, SD_CMD_RESERVED(52), SD_CMD_RESERVED(53), SD_CMD_RESERVED(54), SD_CMD_INDEX(55) | SD_RESP_R3, SD_CMD_INDEX(56) | SD_RESP_R1 | SD_CMD_ISDATA, SD_CMD_RESERVED(57), SD_CMD_RESERVED(58), SD_CMD_RESERVED(59), SD_CMD_RESERVED(60), SD_CMD_RESERVED(61), SD_CMD_RESERVED(62), SD_CMD_RESERVED(63) }; rt_inline rt_uint32_t read32(rt_ubase_t addr) { return (*((volatile unsigned int *)(addr))); } rt_inline void write32(rt_ubase_t addr, rt_uint32_t value) { (*((volatile unsigned int *)(addr))) = value; } rt_err_t sd_int(struct sdhci_pdata_t *pdat, rt_uint32_t mask) { rt_uint32_t r; rt_uint32_t m = mask | INT_ERROR_MASK; int cnt = 1000000; while (!(read32(pdat->virt + EMMC_INTERRUPT) & (m | INT_ERROR_MASK)) && cnt--) { DELAY_MICROS(1); } r = read32(pdat->virt + EMMC_INTERRUPT); if (cnt <= 0 || (r & INT_CMD_TIMEOUT) || (r & INT_DATA_TIMEOUT)) { write32(pdat->virt + EMMC_INTERRUPT, r); /* qemu maybe can not use sdcard */ rt_kprintf("send cmd/data timeout wait for %x int: %x, status: %x\n", mask, r, read32(pdat->virt + EMMC_STATUS)); return -RT_ETIMEOUT; } else if (r & INT_ERROR_MASK) { write32(pdat->virt + EMMC_INTERRUPT, r); rt_kprintf("send cmd/data error %x -> %x\n", r, read32(pdat->virt + EMMC_INTERRUPT)); return -RT_ERROR; } write32(pdat->virt + EMMC_INTERRUPT, mask); return RT_EOK; } rt_err_t sd_status(struct sdhci_pdata_t *pdat, unsigned int mask) { int cnt = 500000; while ((read32(pdat->virt + EMMC_STATUS) & mask) && !(read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK) && cnt--) { DELAY_MICROS(1); } if (cnt <= 0) { return -RT_ETIMEOUT; } else if (read32(pdat->virt + EMMC_INTERRUPT) & INT_ERROR_MASK) { return -RT_ERROR; } return RT_EOK; } static rt_err_t raspi_transfer_command(struct sdhci_pdata_t *pdat, struct sdhci_cmd_t *cmd) { rt_uint32_t cmdidx; rt_err_t ret = RT_EOK; ret = sd_status(pdat, SR_CMD_INHIBIT); if (ret) { rt_kprintf("ERROR: EMMC busy %d\n", ret); return ret; } cmdidx = sdCommandTable[cmd->cmdidx]; if (cmdidx == 0xFFFFFFFF) { return -RT_EINVAL; } if (cmd->datarw == DATA_READ) { cmdidx |= SD_DATA_READ; } if (cmd->datarw == DATA_WRITE) { cmdidx |= SD_DATA_WRITE; } mmcsd_dbg("transfer cmd %x(%d) %x %x\n", cmdidx, cmd->cmdidx, cmd->cmdarg, read32(pdat->virt + EMMC_INTERRUPT)); write32(pdat->virt + EMMC_INTERRUPT, read32(pdat->virt + EMMC_INTERRUPT)); write32(pdat->virt + EMMC_ARG1, cmd->cmdarg); write32(pdat->virt + EMMC_CMDTM, cmdidx); if (cmd->cmdidx == SD_APP_OP_COND) { DELAY_MICROS(1000); } else if ((cmd->cmdidx == SD_SEND_IF_COND) || (cmd->cmdidx == APP_CMD)) { DELAY_MICROS(100); } ret = sd_int(pdat, INT_CMD_DONE); if (ret) { return ret; } if (cmd->resptype & RESP_MASK) { if (cmd->resptype & RESP_R2) { rt_uint32_t resp[4]; resp[0] = read32(pdat->virt + EMMC_RESP0); resp[1] = read32(pdat->virt + EMMC_RESP1); resp[2] = read32(pdat->virt + EMMC_RESP2); resp[3] = read32(pdat->virt + EMMC_RESP3); if (cmd->resptype == RESP_R2) { cmd->response[0] = resp[3] << 8 | ((resp[2] >> 24) & 0xff); cmd->response[1] = resp[2] << 8 | ((resp[1] >> 24) & 0xff); cmd->response[2] = resp[1] << 8 | ((resp[0] >> 24) & 0xff); cmd->response[3] = resp[0] << 8 ; } else { cmd->response[0] = resp[0]; cmd->response[1] = resp[1]; cmd->response[2] = resp[2]; cmd->response[3] = resp[3]; } } else { cmd->response[0] = read32(pdat->virt + EMMC_RESP0); } } mmcsd_dbg("response: %x: %x %x %x %x (%x, %x)\n", cmd->resptype, cmd->response[0], cmd->response[1], cmd->response[2], cmd->response[3], read32(pdat->virt + EMMC_STATUS), read32(pdat->virt + EMMC_INTERRUPT)); return ret; } static rt_err_t read_bytes(struct sdhci_pdata_t *pdat, rt_uint32_t *buf, rt_uint32_t blkcount, rt_uint32_t blksize) { int c = 0; rt_err_t ret; int d; while (c < blkcount) { if ((ret = sd_int(pdat, INT_READ_RDY))) { rt_kprintf("timeout happens when reading block %d\n", c); return ret; } for (d = 0; d < blksize / 4; d++) { if (read32(pdat->virt + EMMC_STATUS) & SR_READ_AVAILABLE) { buf[d] = read32(pdat->virt + EMMC_DATA); } } c++; buf += blksize / 4; } return RT_EOK; } static rt_err_t write_bytes(struct sdhci_pdata_t *pdat, rt_uint32_t *buf, rt_uint32_t blkcount, rt_uint32_t blksize) { int c = 0; rt_err_t ret; int d; while (c < blkcount) { if ((ret = sd_int(pdat, INT_WRITE_RDY))) { return ret; } for (d = 0; d < blksize / 4; d++) { write32(pdat->virt + EMMC_DATA, buf[d]); } c++; buf += blksize / 4; } if ((ret = sd_int(pdat, INT_DATA_DONE))) { return ret; } return RT_EOK; } static rt_err_t raspi_transfer_data(struct sdhci_pdata_t *pdat, struct sdhci_cmd_t *cmd, struct sdhci_data_t *dat) { rt_uint32_t dlen = (rt_uint32_t)(dat->blkcnt * dat->blksz); rt_err_t ret = sd_status(pdat, SR_DAT_INHIBIT); if (ret) { rt_kprintf("ERROR: EMMC busy\n"); return ret; } if (dat->blkcnt > 1) { struct sdhci_cmd_t newcmd; newcmd.cmdidx = SET_BLOCK_COUNT; newcmd.cmdarg = dat->blkcnt; newcmd.resptype = RESP_R1; ret = raspi_transfer_command(pdat, &newcmd); if (ret) { return ret; } } if (dlen < 512) { write32(pdat->virt + EMMC_BLKSIZECNT, dlen | 1 << 16); } else { write32(pdat->virt + EMMC_BLKSIZECNT, 512 | (dat->blkcnt) << 16); } if (dat->flag & DATA_DIR_READ) { cmd->datarw = DATA_READ; ret = raspi_transfer_command(pdat, cmd); if (ret) { return ret; } mmcsd_dbg("read_block %d, %d\n", dat->blkcnt, dat->blksz); ret = read_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz); } else if (dat->flag & DATA_DIR_WRITE) { cmd->datarw = DATA_WRITE; ret = raspi_transfer_command(pdat, cmd); if (ret) { return ret; } mmcsd_dbg("write_block %d, %d", dat->blkcnt, dat->blksz); ret = write_bytes(pdat, (rt_uint32_t *)dat->buf, dat->blkcnt, dat->blksz); } return ret; } static rt_err_t sdhci_transfer(struct sdhci_t *sdhci, struct sdhci_cmd_t *cmd, struct sdhci_data_t *dat) { struct sdhci_pdata_t *pdat = (struct sdhci_pdata_t *)sdhci->priv; if (!dat) { return raspi_transfer_command(pdat, cmd); } return raspi_transfer_data(pdat, cmd, dat); } static void mmc_request_send(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req) { struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data; struct sdhci_cmd_t cmd; struct sdhci_cmd_t stop; struct sdhci_data_t dat; rt_memset(&cmd, 0, sizeof(struct sdhci_cmd_t)); rt_memset(&stop, 0, sizeof(struct sdhci_cmd_t)); rt_memset(&dat, 0, sizeof(struct sdhci_data_t)); cmd.cmdidx = req->cmd->cmd_code; cmd.cmdarg = req->cmd->arg; cmd.resptype = resp_type(req->cmd); if (req->data) { dat.buf = (rt_uint8_t *)req->data->buf; dat.flag = req->data->flags; dat.blksz = req->data->blksize; dat.blkcnt = req->data->blks; req->cmd->err = sdhci_transfer(sdhci, &cmd, &dat); } else { req->cmd->err = sdhci_transfer(sdhci, &cmd, RT_NULL); } req->cmd->resp[3] = cmd.response[3]; req->cmd->resp[2] = cmd.response[2]; req->cmd->resp[1] = cmd.response[1]; req->cmd->resp[0] = cmd.response[0]; if (req->stop) { stop.cmdidx = req->stop->cmd_code; stop.cmdarg = req->stop->arg; cmd.resptype = resp_type(req->stop); req->stop->err = sdhci_transfer(sdhci, &stop, RT_NULL); } mmcsd_req_complete(host); } rt_int32_t mmc_card_status(struct rt_mmcsd_host *host) { return 0; } static rt_err_t sdhci_detect(struct sdhci_t *sdhci) { return RT_EOK; } static rt_err_t sdhci_setwidth(struct sdhci_t *sdhci, rt_uint32_t width) { rt_uint32_t temp = 0; struct sdhci_pdata_t *pdat = (struct sdhci_pdata_t *)sdhci->priv; if (width == MMCSD_BUS_WIDTH_4) { temp = read32((pdat->virt + EMMC_CONTROL0)); temp |= C0_HCTL_HS_EN; temp |= C0_HCTL_DWITDH; // always use 4 data lines: write32((pdat->virt + EMMC_CONTROL0), temp); } return RT_EOK; } static uint32_t sd_get_clock_divider(rt_uint32_t sdHostVer, rt_uint32_t base_clock, rt_uint32_t target_rate) { rt_uint32_t targetted_divisor = 0; rt_uint32_t freq_select = 0; rt_uint32_t upper_bits = 0; rt_uint32_t ret = 0; int divisor = -1; if (target_rate > base_clock) { targetted_divisor = 1; } else { targetted_divisor = base_clock / target_rate; rt_uint32_t mod = base_clock % target_rate; if (mod) { targetted_divisor--; } } // Decide on the clock mode to use // Currently only 10-bit divided clock mode is supported // HCI version 3 or greater supports 10-bit divided clock mode // This requires a power-of-two divider // Find the first bit set for (int first_bit = 31; first_bit >= 0; first_bit--) { rt_uint32_t bit_test = (1 << first_bit); if (targetted_divisor & bit_test) { divisor = first_bit; targetted_divisor &= ~bit_test; if (targetted_divisor) { // The divisor is not a power-of-two, increase it divisor++; } break; } } if (divisor == -1) { divisor = 31; } if (divisor >= 32) { divisor = 31; } if (divisor != 0) { divisor = (1 << (divisor - 1)); } if (divisor >= 0x400) { divisor = 0x3ff; } freq_select = divisor & 0xff; upper_bits = (divisor >> 8) & 0x3; ret = (freq_select << 8) | (upper_bits << 6) | (0 << 5); return ret; } static rt_err_t sdhci_setclock(struct sdhci_t *sdhci, rt_uint32_t clock) { rt_uint32_t temp = 0; rt_uint32_t sdHostVer = 0; int count = 100000; struct sdhci_pdata_t *pdat = (struct sdhci_pdata_t *)(sdhci->priv); while ((read32(pdat->virt + EMMC_STATUS) & (SR_CMD_INHIBIT | SR_DAT_INHIBIT)) && (--count)) { DELAY_MICROS(1); } if (count <= 0) { rt_kprintf("EMMC: Set clock: timeout waiting for inhibit flags. Status %08x.\n", read32(pdat->virt + EMMC_STATUS)); return RT_ERROR; } // Switch clock off. temp = read32((pdat->virt + EMMC_CONTROL1)); temp &= ~C1_CLK_EN; write32((pdat->virt + EMMC_CONTROL1), temp); DELAY_MICROS(10); // Request the new clock setting and enable the clock temp = read32(pdat->virt + EMMC_SLOTISR_VER); sdHostVer = (temp & HOST_SPEC_NUM) >> HOST_SPEC_NUM_SHIFT; int cdiv = sd_get_clock_divider(sdHostVer, mmc_base_clock, clock); temp = read32((pdat->virt + EMMC_CONTROL1)); temp |= 1; temp |= cdiv; temp |= (7 << 16); temp = (temp & 0xffff003f) | cdiv; write32((pdat->virt + EMMC_CONTROL1), temp); DELAY_MICROS(10); // Enable the clock. temp = read32(pdat->virt + EMMC_CONTROL1); temp |= C1_CLK_EN; write32((pdat->virt + EMMC_CONTROL1), temp); DELAY_MICROS(10); // wait for clock to be stable. count = 10000; while (!(read32(pdat->virt + EMMC_CONTROL1) & C1_CLK_STABLE) && count--) { DELAY_MICROS(10); } if (count <= 0) { rt_kprintf("EMMC: ERROR: failed to get stable clock %d.\n", clock); return RT_ERROR; } mmcsd_dbg("set stable clock %d.\n", clock); return RT_EOK; } static void mmc_set_iocfg(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg) { struct sdhci_t *sdhci = (struct sdhci_t *)host->private_data; sdhci_setclock(sdhci, io_cfg->clock); sdhci_setwidth(sdhci, io_cfg->bus_width); } static const struct rt_mmcsd_host_ops ops = { mmc_request_send, mmc_set_iocfg, RT_NULL, RT_NULL, }; static rt_err_t reset_emmc(struct sdhci_pdata_t *pdat) { rt_uint32_t control1; int cnt = 10000; /* reset the controller */ control1 = read32((pdat->virt + EMMC_CONTROL1)); control1 |= (1 << 24); /* disable clock */ control1 &= ~(1 << 2); control1 &= ~(1 << 0); /* temp |= C1_CLK_INTLEN | C1_TOUNIT_MAX; */ write32((pdat->virt + EMMC_CONTROL1), control1); do { DELAY_MICROS(10); --cnt; if (cnt == 0) { break; } } while ((read32(pdat->virt + EMMC_CONTROL1) & (0x7 << 24)) != 0); // Enable SD Bus Power VDD1 at 3.3V rt_uint32_t control0 = read32(pdat->virt + EMMC_CONTROL0); control0 |= 0x0F << 8; write32(pdat->virt + EMMC_CONTROL0, control0); rt_thread_delay(100); /* check for a valid card */ mmcsd_dbg("EMMC: checking for an inserted card\n"); cnt = 10000; do { DELAY_MICROS(10); --cnt; if (cnt == 0) { break; } } while ((read32(pdat->virt + EMMC_STATUS) & (0x1 << 16)) == 0); rt_uint32_t status_reg = read32(pdat->virt + EMMC_STATUS); if ((status_reg & (1 << 16)) == 0) { rt_kprintf("EMMC: no card inserted\n"); return -1; } else { mmcsd_dbg("EMMC: status: %08x\n", status_reg); } /* clear control2 */ write32(pdat->virt + EMMC_CONTROL2, 0); /* get the base clock rate */ mmc_base_clock = bcm271x_mbox_clock_get_rate(EMMC_CLK_ID); if (mmc_base_clock == 0) { rt_kprintf("EMMC: assuming clock rate to be 100MHz\n"); mmc_base_clock = 100000000; } mmcsd_dbg("EMMC: setting clock rate is %d\n", mmc_base_clock); return RT_EOK; } #ifdef RT_MMCSD_DBG void dump_registers(struct sdhci_pdata_t *pdat) { int i = EMMC_ARG2; rt_kprintf("EMMC registers:"); for (; i <= EMMC_CONTROL2; i += 4) { rt_kprintf("\t%x:%x\n", i, read32(pdat->virt + i)); } rt_kprintf("\t%x:%x\n", 0x50, read32(pdat->virt + 0x50)); rt_kprintf("\t%x:%x\n", 0x70, read32(pdat->virt + 0x70)); rt_kprintf("\t%x:%x\n", 0x74, read32(pdat->virt + 0x74)); rt_kprintf("\t%x:%x\n", 0x80, read32(pdat->virt + 0x80)); rt_kprintf("\t%x:%x\n", 0x84, read32(pdat->virt + 0x84)); rt_kprintf("\t%x:%x\n", 0x88, read32(pdat->virt + 0x88)); rt_kprintf("\t%x:%x\n", 0x8c, read32(pdat->virt + 0x8c)); rt_kprintf("\t%x:%x\n", 0x90, read32(pdat->virt + 0x90)); rt_kprintf("\t%x:%x\n", 0xf0, read32(pdat->virt + 0xf0)); rt_kprintf("\t%x:%x\n", 0xfc, read32(pdat->virt + 0xfc)); } #endif int raspi_sdmmc_init(void) { size_t virt; struct rt_mmcsd_host *host = RT_NULL; struct sdhci_pdata_t *pdat = RT_NULL; struct sdhci_t *sdhci = RT_NULL; #ifdef BSP_USING_SDIO0 host = mmcsd_alloc_host(); if (!host) { rt_kprintf("alloc host failed"); goto err; } sdhci = rt_malloc(sizeof(struct sdhci_t)); if (!sdhci) { rt_kprintf("alloc sdhci failed"); goto err; } rt_memset(sdhci, 0, sizeof(struct sdhci_t)); virt = MMC2_BASE_ADDR; pdat = (struct sdhci_pdata_t *)rt_malloc(sizeof(struct sdhci_pdata_t)); RT_ASSERT(pdat != RT_NULL); pdat->virt = virt; reset_emmc(pdat); sdhci->name = "sd0"; sdhci->voltages = VDD_33_34; sdhci->width = MMCSD_BUSWIDTH_4; sdhci->clock = 1000 * 1000 * 1000; sdhci->removeable = RT_TRUE; sdhci->detect = sdhci_detect; sdhci->setwidth = sdhci_setwidth; sdhci->setclock = sdhci_setclock; sdhci->transfer = sdhci_transfer; sdhci->priv = pdat; host->ops = &ops; host->freq_min = 400000; host->freq_max = 50000000; host->valid_ocr = VDD_32_33 | VDD_33_34; host->flags = MMCSD_MUTBLKWRITE | MMCSD_SUP_HIGHSPEED | MMCSD_SUP_SDIO_IRQ | MMCSD_BUSWIDTH_4; host->max_seg_size = 2048; host->max_dma_segs = 10; host->max_blk_size = 512; host->max_blk_count = 1; host->private_data = sdhci; write32((pdat->virt + EMMC_IRPT_EN), 0xffffffff); write32((pdat->virt + EMMC_IRPT_MASK), 0xffffffff); #ifdef RT_MMCSD_DBG dump_registers(pdat); #endif mmcsd_change(host); #endif return RT_EOK; err: if (host) rt_free(host); if (sdhci) rt_free(sdhci); return -RT_EIO; } INIT_DEVICE_EXPORT(raspi_sdmmc_init);