//***************************************************************************** // // ssi.c - Driver for Synchronous Serial Interface. // // Copyright (c) 2005-2017 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This is part of revision 2.1.4.178 of the Tiva Peripheral Driver Library. // //***************************************************************************** //***************************************************************************** // //! \addtogroup ssi_api //! @{ // //***************************************************************************** #include #include #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_ssi.h" #include "inc/hw_sysctl.h" #include "inc/hw_types.h" #include "driverlib/debug.h" #include "driverlib/interrupt.h" #include "driverlib/ssi.h" //***************************************************************************** // // A mapping of timer base address to interrupt number. // //***************************************************************************** static const uint32_t g_ppui32SSIIntMap[][2] = { { SSI0_BASE, INT_SSI0_TM4C123 }, { SSI1_BASE, INT_SSI1_TM4C123 }, { SSI2_BASE, INT_SSI2_TM4C123 }, { SSI3_BASE, INT_SSI3_TM4C123 }, }; static const uint_fast8_t g_ui8SSIIntMapRows = sizeof(g_ppui32SSIIntMap) / sizeof(g_ppui32SSIIntMap[0]); static const uint32_t g_ppui32SSIIntMapSnowflake[][2] = { { SSI0_BASE, INT_SSI0_TM4C129 }, { SSI1_BASE, INT_SSI1_TM4C129 }, { SSI2_BASE, INT_SSI2_TM4C129 }, { SSI3_BASE, INT_SSI3_TM4C129 }, }; static const uint_fast8_t g_ui8SSIIntMapSnowflakeRows = sizeof(g_ppui32SSIIntMapSnowflake) / sizeof(g_ppui32SSIIntMapSnowflake[0]); //***************************************************************************** // //! \internal //! Checks an SSI base address. //! //! \param ui32Base specifies the SSI module base address. //! //! This function determines if a SSI module base address is valid. //! //! \return Returns \b true if the base address is valid and \b false //! otherwise. // //***************************************************************************** #ifdef DEBUG static bool _SSIBaseValid(uint32_t ui32Base) { return((ui32Base == SSI0_BASE) || (ui32Base == SSI1_BASE) || (ui32Base == SSI2_BASE) || (ui32Base == SSI3_BASE)); } #endif //***************************************************************************** // //! Returns the interrupt number of SSI module . //! //! \param ui32Base is the base address of the SSI module. //! //! This function returns the interrupt number for the SSI module with the base //! address passed in the \e ui32Base parameter. //! //! \return Returns an SSI interrupt number, or 0 if the interrupt does not //! exist. // //***************************************************************************** static uint32_t _SSIIntNumberGet(uint32_t ui32Base) { uint_fast8_t ui8Idx, ui8Rows; const uint32_t (*ppui32SSIIntMap)[2]; // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); ppui32SSIIntMap = g_ppui32SSIIntMap; ui8Rows = g_ui8SSIIntMapRows; if(CLASS_IS_TM4C129) { ppui32SSIIntMap = g_ppui32SSIIntMapSnowflake; ui8Rows = g_ui8SSIIntMapSnowflakeRows; } // // Loop through the table that maps SSI base addresses to interrupt // numbers. // for(ui8Idx = 0; ui8Idx < ui8Rows; ui8Idx++) { // // See if this base address matches. // if(ppui32SSIIntMap[ui8Idx][0] == ui32Base) { // // Return the corresponding interrupt number. // return(ppui32SSIIntMap[ui8Idx][1]); } } // // The base address could not be found, so return an error. // return(0); } //***************************************************************************** // //! Configures the synchronous serial interface. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32SSIClk is the rate of the clock supplied to the SSI module. //! \param ui32Protocol specifies the data transfer protocol. //! \param ui32Mode specifies the mode of operation. //! \param ui32BitRate specifies the clock rate. //! \param ui32DataWidth specifies number of bits transferred per frame. //! //! This function configures the synchronous serial interface. It sets //! the SSI protocol, mode of operation, bit rate, and data width. //! //! The \e ui32Protocol parameter defines the data frame format. The //! \e ui32Protocol parameter can be one of the following values: //! \b SSI_FRF_MOTO_MODE_0, \b SSI_FRF_MOTO_MODE_1, \b SSI_FRF_MOTO_MODE_2, //! \b SSI_FRF_MOTO_MODE_3, \b SSI_FRF_TI, or \b SSI_FRF_NMW. Note that //! the \b SSI_FRF_NMW option is only available on some devices. Refer to the //! device data sheet to determine if the Microwire format is supported on //! a particular device. The Motorola frame formats encode the following //! polarity and phase configurations: //! //!
//! Polarity Phase       Mode
//!   0       0   SSI_FRF_MOTO_MODE_0
//!   0       1   SSI_FRF_MOTO_MODE_1
//!   1       0   SSI_FRF_MOTO_MODE_2
//!   1       1   SSI_FRF_MOTO_MODE_3
//! 
//! //! The \e ui32Mode parameter defines the operating mode of the SSI module. //! The SSI module can operate as a master or slave; if it is a slave, the SSI //! can be configured to disable output on its serial output line. The //! \e ui32Mode parameter can be one of the following values: //! \b SSI_MODE_MASTER, \b SSI_MODE_SLAVE, or \b SSI_MODE_SLAVE_OD. //! //! The \e ui32BitRate parameter defines the bit rate for the SSI. This bit //! rate must satisfy the following clock ratio criteria: //! //! - FSSI >= 2 * bit rate (master mode) //! - FSSI >= 12 * bit rate (slave modes) //! //! where FSSI is the frequency of the clock supplied to the SSI module. Note //! that there are frequency limits for FSSI that are described in the Bit Rate //! Generation section of the SSI chapter in the data sheet. //! //! The \e ui32DataWidth parameter defines the width of the data transfers and //! can be a value between 4 and 16, inclusive. //! //! The peripheral clock is the same as the processor clock. The frequency of //! the system clock is the value returned by SysCtlClockGet() for TM4C123x //! devices or the value returned by SysCtlClockFreqSet() for TM4C129x devices, //! or it can be explicitly hard coded if it is constant and known (to save the //! code/execution overhead of a call to SysCtlClockGet() or fetch of the //! variable call holding the return value of SysCtlClockFreqSet()). //! //! \return None. // //***************************************************************************** void SSIConfigSetExpClk(uint32_t ui32Base, uint32_t ui32SSIClk, uint32_t ui32Protocol, uint32_t ui32Mode, uint32_t ui32BitRate, uint32_t ui32DataWidth) { uint32_t ui32MaxBitRate; uint32_t ui32RegVal; uint32_t ui32PreDiv; uint32_t ui32SCR; uint32_t ui32SPH_SPO; // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); ASSERT((ui32Protocol == SSI_FRF_MOTO_MODE_0) || (ui32Protocol == SSI_FRF_MOTO_MODE_1) || (ui32Protocol == SSI_FRF_MOTO_MODE_2) || (ui32Protocol == SSI_FRF_MOTO_MODE_3) || (ui32Protocol == SSI_FRF_TI) || (ui32Protocol == SSI_FRF_NMW)); ASSERT((ui32Mode == SSI_MODE_MASTER) || (ui32Mode == SSI_MODE_SLAVE)); ASSERT(((ui32Mode == SSI_MODE_MASTER) && (ui32BitRate <= (ui32SSIClk / 2))) || ((ui32Mode != SSI_MODE_MASTER) && (ui32BitRate <= (ui32SSIClk / 12)))); ASSERT((ui32SSIClk / ui32BitRate) <= (254 * 256)); ASSERT((ui32DataWidth >= 4) && (ui32DataWidth <= 16)); // // Set the mode. // ui32RegVal = (ui32Mode == SSI_MODE_MASTER) ? 0 : SSI_CR1_MS; HWREG(ui32Base + SSI_O_CR1) = ui32RegVal; // // Set the clock predivider. // ui32MaxBitRate = ui32SSIClk / ui32BitRate; ui32PreDiv = 0; do { ui32PreDiv += 2; ui32SCR = (ui32MaxBitRate / ui32PreDiv) - 1; } while(ui32SCR > 255); HWREG(ui32Base + SSI_O_CPSR) = ui32PreDiv; // // Set protocol and clock rate. // ui32SPH_SPO = (ui32Protocol & 3) << 6; ui32Protocol &= SSI_CR0_FRF_M; ui32RegVal = (ui32SCR << 8) | ui32SPH_SPO | ui32Protocol | (ui32DataWidth - 1); HWREG(ui32Base + SSI_O_CR0) = ui32RegVal; } //***************************************************************************** // //! Enables the synchronous serial interface. //! //! \param ui32Base specifies the SSI module base address. //! //! This function enables operation of the synchronous serial interface. The //! synchronous serial interface must be configured before it is enabled. //! //! \return None. // //***************************************************************************** void SSIEnable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Read-modify-write the enable bit. // HWREG(ui32Base + SSI_O_CR1) |= SSI_CR1_SSE; } //***************************************************************************** // //! Disables the synchronous serial interface. //! //! \param ui32Base specifies the SSI module base address. //! //! This function disables operation of the synchronous serial interface. //! //! \return None. // //***************************************************************************** void SSIDisable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Read-modify-write the enable bit. // HWREG(ui32Base + SSI_O_CR1) &= ~(SSI_CR1_SSE); } //***************************************************************************** // //! Registers an interrupt handler for the synchronous serial interface. //! //! \param ui32Base specifies the SSI module base address. //! \param pfnHandler is a pointer to the function to be called when the //! synchronous serial interface interrupt occurs. //! //! This function registers the handler to be called when an SSI interrupt //! occurs. This function enables the global interrupt in the interrupt //! controller; specific SSI interrupts must be enabled via SSIIntEnable(). If //! necessary, it is the interrupt handler's responsibility to clear the //! interrupt source via SSIIntClear(). //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void SSIIntRegister(uint32_t ui32Base, void (*pfnHandler)(void)) { uint32_t ui32Int; // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Determine the interrupt number based on the SSI module. // ui32Int = _SSIIntNumberGet(ui32Base); ASSERT(ui32Int != 0); // // Register the interrupt handler, returning an error if an error occurs. // IntRegister(ui32Int, pfnHandler); // // Enable the synchronous serial interface interrupt. // IntEnable(ui32Int); } //***************************************************************************** // //! Unregisters an interrupt handler for the synchronous serial interface. //! //! \param ui32Base specifies the SSI module base address. //! //! This function clears the handler to be called when an SSI interrupt //! occurs. This function also masks off the interrupt in the interrupt //! controller so that the interrupt handler no longer is called. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void SSIIntUnregister(uint32_t ui32Base) { uint32_t ui32Int; // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Determine the interrupt number based on the SSI module. // ui32Int = _SSIIntNumberGet(ui32Base); ASSERT(ui32Int != 0); // // Disable the interrupt. // IntDisable(ui32Int); // // Unregister the interrupt handler. // IntUnregister(ui32Int); } //***************************************************************************** // //! Enables individual SSI interrupt sources. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32IntFlags is a bit mask of the interrupt sources to be enabled. //! //! This function enables the indicated SSI interrupt sources. Only the //! sources that are enabled can be reflected to the processor interrupt; //! disabled sources have no effect on the processor. The \e ui32IntFlags //! parameter can be any of the \b SSI_TXFF, \b SSI_RXFF, \b SSI_RXTO, or //! \b SSI_RXOR values. //! //! \return None. // //***************************************************************************** void SSIIntEnable(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Enable the specified interrupts. // HWREG(ui32Base + SSI_O_IM) |= ui32IntFlags; } //***************************************************************************** // //! Disables individual SSI interrupt sources. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32IntFlags is a bit mask of the interrupt sources to be disabled. //! //! This function disables the indicated SSI interrupt sources. The //! \e ui32IntFlags parameter can be any of the \b SSI_TXFF, \b SSI_RXFF, //! \b SSI_RXTO, or \b SSI_RXOR values. //! //! \return None. // //***************************************************************************** void SSIIntDisable(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Disable the specified interrupts. // HWREG(ui32Base + SSI_O_IM) &= ~(ui32IntFlags); } //***************************************************************************** // //! Gets the current interrupt status. //! //! \param ui32Base specifies the SSI module base address. //! \param bMasked is \b false if the raw interrupt status is required or //! \b true if the masked interrupt status is required. //! //! This function returns the interrupt status for the SSI module. Either the //! raw interrupt status or the status of interrupts that are allowed to //! reflect to the processor can be returned. //! //! \return The current interrupt status, enumerated as a bit field of //! \b SSI_TXFF, \b SSI_RXFF, \b SSI_RXTO, and \b SSI_RXOR. // //***************************************************************************** uint32_t SSIIntStatus(uint32_t ui32Base, bool bMasked) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Return either the interrupt status or the raw interrupt status as // requested. // if(bMasked) { return(HWREG(ui32Base + SSI_O_MIS)); } else { return(HWREG(ui32Base + SSI_O_RIS)); } } //***************************************************************************** // //! Clears SSI interrupt sources. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32IntFlags is a bit mask of the interrupt sources to be cleared. //! //! This function clears the specified SSI interrupt sources so that they no //! longer assert. This function must be called in the interrupt handler to //! keep the interrupts from being triggered again immediately upon exit. The //! \e ui32IntFlags parameter can consist of either or both the \b SSI_RXTO and //! \b SSI_RXOR values. //! //! \note Because there is a write buffer in the Cortex-M processor, it may //! take several clock cycles before the interrupt source is actually cleared. //! Therefore, it is recommended that the interrupt source be cleared early in //! the interrupt handler (as opposed to the very last action) to avoid //! returning from the interrupt handler before the interrupt source is //! actually cleared. Failure to do so may result in the interrupt handler //! being immediately reentered (because the interrupt controller still sees //! the interrupt source asserted). //! //! \return None. // //***************************************************************************** void SSIIntClear(uint32_t ui32Base, uint32_t ui32IntFlags) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Clear the requested interrupt sources. // HWREG(ui32Base + SSI_O_ICR) = ui32IntFlags; } //***************************************************************************** // //! Puts a data element into the SSI transmit FIFO. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32Data is the data to be transmitted over the SSI interface. //! //! This function places the supplied data into the transmit FIFO of the //! specified SSI module. If there is no space available in the transmit FIFO, //! this function waits until there is space available before returning. //! //! \note The upper 32 - N bits of \e ui32Data are discarded by the hardware, //! where N is the data width as configured by SSIConfigSetExpClk(). For //! example, if the interface is configured for 8-bit data width, the upper 24 //! bits of \e ui32Data are discarded. //! //! \return None. // //***************************************************************************** void SSIDataPut(uint32_t ui32Base, uint32_t ui32Data) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); ASSERT((ui32Data & (0xfffffffe << (HWREG(ui32Base + SSI_O_CR0) & SSI_CR0_DSS_M))) == 0); // // Wait until there is space. // while(!(HWREG(ui32Base + SSI_O_SR) & SSI_SR_TNF)) { } // // Write the data to the SSI. // HWREG(ui32Base + SSI_O_DR) = ui32Data; } //***************************************************************************** // //! Puts a data element into the SSI transmit FIFO. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32Data is the data to be transmitted over the SSI interface. //! //! This function places the supplied data into the transmit FIFO of the //! specified SSI module. If there is no space in the FIFO, then this function //! returns a zero. //! //! \note The upper 32 - N bits of \e ui32Data are discarded by the hardware, //! where N is the data width as configured by SSIConfigSetExpClk(). For //! example, if the interface is configured for 8-bit data width, the upper 24 //! bits of \e ui32Data are discarded. //! //! \return Returns the number of elements written to the SSI transmit FIFO. // //***************************************************************************** int32_t SSIDataPutNonBlocking(uint32_t ui32Base, uint32_t ui32Data) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); ASSERT((ui32Data & (0xfffffffe << (HWREG(ui32Base + SSI_O_CR0) & SSI_CR0_DSS_M))) == 0); // // Check for space to write. // if(HWREG(ui32Base + SSI_O_SR) & SSI_SR_TNF) { HWREG(ui32Base + SSI_O_DR) = ui32Data; return(1); } else { return(0); } } //***************************************************************************** // //! Gets a data element from the SSI receive FIFO. //! //! \param ui32Base specifies the SSI module base address. //! \param pui32Data is a pointer to a storage location for data that was //! received over the SSI interface. //! //! This function gets received data from the receive FIFO of the specified //! SSI module and places that data into the location specified by the //! \e pui32Data parameter. If there is no data available, this function waits //! until data is received before returning. //! //! \note Only the lower N bits of the value written to \e pui32Data contain //! valid data, where N is the data width as configured by //! SSIConfigSetExpClk(). For example, if the interface is configured for //! 8-bit data width, only the lower 8 bits of the value written to //! \e pui32Data contain valid data. //! //! \return None. // //***************************************************************************** void SSIDataGet(uint32_t ui32Base, uint32_t *pui32Data) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Wait until there is data to be read. // while(!(HWREG(ui32Base + SSI_O_SR) & SSI_SR_RNE)) { } // // Read data from SSI. // *pui32Data = HWREG(ui32Base + SSI_O_DR); } //***************************************************************************** // //! Gets a data element from the SSI receive FIFO. //! //! \param ui32Base specifies the SSI module base address. //! \param pui32Data is a pointer to a storage location for data that was //! received over the SSI interface. //! //! This function gets received data from the receive FIFO of the specified SSI //! module and places that data into the location specified by the \e ui32Data //! parameter. If there is no data in the FIFO, then this function returns a //! zero. //! //! \note Only the lower N bits of the value written to \e pui32Data contain //! valid data, where N is the data width as configured by //! SSIConfigSetExpClk(). For example, if the interface is configured for //! 8-bit data width, only the lower 8 bits of the value written to //! \e pui32Data contain valid data. //! //! \return Returns the number of elements read from the SSI receive FIFO. // //***************************************************************************** int32_t SSIDataGetNonBlocking(uint32_t ui32Base, uint32_t *pui32Data) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Check for data to read. // if(HWREG(ui32Base + SSI_O_SR) & SSI_SR_RNE) { *pui32Data = HWREG(ui32Base + SSI_O_DR); return(1); } else { return(0); } } //***************************************************************************** // //! Enables SSI DMA operation. //! //! \param ui32Base is the base address of the SSI module. //! \param ui32DMAFlags is a bit mask of the DMA features to enable. //! //! This function enables the specified SSI DMA features. The SSI can be //! configured to use DMA for transmit and/or receive data transfers. //! The \e ui32DMAFlags parameter is the logical OR of any of the following //! values: //! //! - SSI_DMA_RX - enable DMA for receive //! - SSI_DMA_TX - enable DMA for transmit //! //! \note The uDMA controller must also be set up before DMA can be used //! with the SSI. //! //! \return None. // //***************************************************************************** void SSIDMAEnable(uint32_t ui32Base, uint32_t ui32DMAFlags) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Set the requested bits in the SSI DMA control register. // HWREG(ui32Base + SSI_O_DMACTL) |= ui32DMAFlags; } //***************************************************************************** // //! Disables SSI DMA operation. //! //! \param ui32Base is the base address of the SSI module. //! \param ui32DMAFlags is a bit mask of the DMA features to disable. //! //! This function is used to disable SSI DMA features that were enabled //! by SSIDMAEnable(). The specified SSI DMA features are disabled. The //! \e ui32DMAFlags parameter is the logical OR of any of the following values: //! //! - SSI_DMA_RX - disable DMA for receive //! - SSI_DMA_TX - disable DMA for transmit //! //! \return None. // //***************************************************************************** void SSIDMADisable(uint32_t ui32Base, uint32_t ui32DMAFlags) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Clear the requested bits in the SSI DMA control register. // HWREG(ui32Base + SSI_O_DMACTL) &= ~ui32DMAFlags; } //***************************************************************************** // //! Determines whether the SSI transmitter is busy or not. //! //! \param ui32Base is the base address of the SSI module. //! //! This function allows the caller to determine whether all transmitted bytes //! have cleared the transmitter hardware. If \b false is returned, then the //! transmit FIFO is empty and all bits of the last transmitted word have left //! the hardware shift register. //! //! \return Returns \b true if the SSI is transmitting or \b false if all //! transmissions are complete. // //***************************************************************************** bool SSIBusy(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Determine if the SSI is busy. // return((HWREG(ui32Base + SSI_O_SR) & SSI_SR_BSY) ? true : false); } //***************************************************************************** // //! Sets the data clock source for the specified SSI peripheral. //! //! \param ui32Base is the base address of the SSI module. //! \param ui32Source is the baud clock source for the SSI. //! //! This function allows the baud clock source for the SSI to be selected. //! The possible clock source are the system clock (\b SSI_CLOCK_SYSTEM) or //! the precision internal oscillator (\b SSI_CLOCK_PIOSC). //! //! Changing the baud clock source changes the data rate generated by the //! SSI. Therefore, the data rate should be reconfigured after any change to //! the SSI clock source. //! //! \note The ability to specify the SSI baud clock source varies with the //! Tiva part and SSI in use. Please consult the data sheet for the part //! in use to determine whether this support is available. //! //! \return None. // //***************************************************************************** void SSIClockSourceSet(uint32_t ui32Base, uint32_t ui32Source) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); ASSERT((ui32Source == SSI_CLOCK_SYSTEM) || (ui32Source == SSI_CLOCK_PIOSC)); // // Set the SSI clock source. // HWREG(ui32Base + SSI_O_CC) = ui32Source; } //***************************************************************************** // //! Gets the data clock source for the specified SSI peripheral. //! //! \param ui32Base is the base address of the SSI module. //! //! This function returns the data clock source for the specified SSI. //! //! \note The ability to specify the SSI data clock source varies with the //! Tiva part and SSI in use. Please consult the data sheet for the part //! in use to determine whether this support is available. //! //! \return Returns the current clock source, which is either //! \b SSI_CLOCK_SYSTEM or \b SSI_CLOCK_PIOSC. // //***************************************************************************** uint32_t SSIClockSourceGet(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Return the SSI clock source. // return(HWREG(ui32Base + SSI_O_CC)); } //***************************************************************************** // //! Selects the advanced mode of operation for the SSI module. //! //! \param ui32Base is the base address of the SSI module. //! \param ui32Mode is the mode of operation to use. //! //! This function selects the mode of operation for the SSI module, which is //! needed when using the advanced operation modes (Bi- or Quad-SPI). One of //! the following modes can be selected: //! //! - \b SSI_ADV_MODE_LEGACY - Disables the advanced modes of operation, //! resulting in legacy, or backwards-compatible, operation. When this mode //! is selected, it is not valid to switch to Bi- or Quad-SPI operation. //! This mode is the default. //! - \b SSI_ADV_MODE_WRITE - The advanced mode of operation where data is only //! written to the slave; any data clocked in via the \b SSIRx pin is thrown //! away (instead of being placed into the SSI Rx FIFO). //! - \b SSI_ADV_MODE_READ_WRITE - The advanced mode of operation where data is //! written to and read from the slave; this mode is the same as //! \b SSI_ADV_MODE_LEGACY but allows transitions to Bi- or Quad-SPI //! operation. //! - \b SSI_ADV_MODE_BI_READ - The advanced mode of operation where data is //! read from the slave in Bi-SPI mode, with two bits of data read on every //! SSI clock. //! - \b SSI_ADV_MODE_BI_WRITE - The advanced mode of operation where data is //! written to the slave in Bi-SPI mode, with two bits of data written on //! every SSI clock. //! - \b SSI_ADV_MODE_QUAD_READ - The advanced mode of operation where data is //! read from the slave in Quad-SPI mode, with four bits of data read on //! every SSI clock. //! - \b SSI_ADV_MODE_QUAD_WRITE - The advanced mode of operation where data is //! written to the slave in Quad-SPI mode, with four bits of data written on //! every SSI clock. //! //! The following mode transitions are valid (other transitions produce //! undefined results): //! //! \verbatim //! +----------+-------------------------------------------------------------+ //! |FROM | TO | //! | |Legacy|Write|Read Write|Bi Read|Bi Write|Quad Read|Quad Write| //! +----------+------+-----+----------+-------+--------+---------+----------+ //! |Legacy | yes | yes | yes | | | | | //! |Write | yes | yes | yes | yes | yes | yes | yes | //! |Read/Write| yes | yes | yes | yes | yes | yes | yes | //! |Bi Read | | yes | yes | yes | yes | | | //! |Bi write | | yes | yes | yes | yes | | | //! |Quad read | | yes | yes | | | yes | yes | //! |Quad write| | yes | yes | | | yes | yes | //! +----------+------+-----+----------+-------+--------+---------+----------+ //! \endverbatim //! //! When using an advanced mode of operation, the SSI module must have been //! configured for eight data bits and the \b SSI_FRF_MOTO_MODE_0 protocol. //! The advanced mode operation that is selected applies only to data newly //! written into the FIFO; the data that is already present in the FIFO is //! handled using the advanced mode of operation in effect when that data was //! written. //! //! Switching into and out of legacy mode should only occur when the FIFO is //! empty. //! //! \note The availability of the advanced mode of SSI operation varies with //! the Tiva part and SSI in use. Please consult the data sheet for the //! part in use to determine whether this support is available. //! //! \return None. // //***************************************************************************** void SSIAdvModeSet(uint32_t ui32Base, uint32_t ui32Mode) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); ASSERT((ui32Mode == SSI_ADV_MODE_LEGACY) || (ui32Mode == SSI_ADV_MODE_WRITE) || (ui32Mode == SSI_ADV_MODE_READ_WRITE) || (ui32Mode == SSI_ADV_MODE_BI_READ) || (ui32Mode == SSI_ADV_MODE_BI_WRITE) || (ui32Mode == SSI_ADV_MODE_QUAD_READ) || (ui32Mode == SSI_ADV_MODE_QUAD_WRITE)); // // Set the SSI mode of operation. // HWREG(ui32Base + SSI_O_CR1) = ((HWREG(ui32Base + SSI_O_CR1) & ~(SSI_CR1_DIR | SSI_CR1_MODE_M)) | ui32Mode); } //***************************************************************************** // //! Puts a data element into the SSI transmit FIFO as the end of a frame. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32Data is the data to be transmitted over the SSI interface. //! //! This function places the supplied data into the transmit FIFO of the //! specified SSI module, marking it as the end of a frame. If there is no //! space available in the transmit FIFO, this function waits until there is //! space available before returning. After this byte is transmitted by the //! SSI module, the FSS signal de-asserts for at least one SSI clock. //! //! \note The upper 24 bits of \e ui32Data are discarded by the hardware. //! //! \note The availability of the advanced mode of SSI operation varies with //! the Tiva part and SSI in use. Please consult the data sheet for the //! part in use to determine whether this support is available. //! //! \return None. // //***************************************************************************** void SSIAdvDataPutFrameEnd(uint32_t ui32Base, uint32_t ui32Data) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); ASSERT((ui32Data & 0xff) == 0); // // Wait until there is space. // while(!(HWREG(ui32Base + SSI_O_SR) & SSI_SR_TNF)) { } // // Write the data to the SSI. // HWREG(ui32Base + SSI_O_CR1) |= SSI_CR1_EOM; HWREG(ui32Base + SSI_O_DR) = ui32Data; } //***************************************************************************** // //! Puts a data element into the SSI transmit FIFO as the end of a frame. //! //! \param ui32Base specifies the SSI module base address. //! \param ui32Data is the data to be transmitted over the SSI interface. //! //! This function places the supplied data into the transmit FIFO of the //! specified SSI module, marking it as the end of a frame. After this byte is //! transmitted by the SSI module, the FSS signal de-asserts for at least one //! SSI clock. If there is no space in the FIFO, then this function returns a //! zero. //! //! \note The upper 24 bits of \e ui32Data are discarded by the hardware. //! //! \note The availability of the advanced mode of SSI operation varies with //! the Tiva part and SSI in use. Please consult the data sheet for the //! part in use to determine whether this support is available. //! //! \return Returns the number of elements written to the SSI transmit FIFO. // //***************************************************************************** int32_t SSIAdvDataPutFrameEndNonBlocking(uint32_t ui32Base, uint32_t ui32Data) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); ASSERT((ui32Data & 0xff) == 0); // // Check for space to write. // if(HWREG(ui32Base + SSI_O_SR) & SSI_SR_TNF) { HWREG(ui32Base + SSI_O_CR1) |= SSI_CR1_EOM; HWREG(ui32Base + SSI_O_DR) = ui32Data; return(1); } else { return(0); } } //***************************************************************************** // //! Configures the SSI advanced mode to hold the SSIFss signal during the full //! transfer. //! //! \param ui32Base is the base address of the SSI module. //! //! This function configures the SSI module to de-assert the SSIFss signal //! during the entire data transfer when using one of the advanced modes //! (instead of briefly de-asserting it after every byte). When using this //! mode, SSIFss can be directly controlled via SSIAdvDataPutFrameEnd() and //! SSIAdvDataPutFrameEndNonBlocking(). //! //! \note The availability of the advanced mode of SSI operation varies with //! the Tiva part and SSI in use. Please consult the data sheet for the //! part in use to determine whether this support is available. //! //! \return None. // //***************************************************************************** void SSIAdvFrameHoldEnable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Set the hold frame bit. // HWREG(ui32Base + SSI_O_CR1) |= SSI_CR1_FSSHLDFRM; } //***************************************************************************** // //! Configures the SSI advanced mode to de-assert the SSIFss signal after every //! byte transfer. //! //! \param ui32Base is the base address of the SSI module. //! //! This function configures the SSI module to de-assert the SSIFss signal //! for one SSI clock cycle after every byte is transferred using one of the //! advanced modes (instead of leaving it asserted for the entire transfer). //! This mode is the default operation. //! //! \note The availability of the advanced mode of SSI operation varies with //! the Tiva part and SSI in use. Please consult the data sheet for the //! part in use to determine whether this support is available. //! //! \return None. // //***************************************************************************** void SSIAdvFrameHoldDisable(uint32_t ui32Base) { // // Check the arguments. // ASSERT(_SSIBaseValid(ui32Base)); // // Clear the hold frame bit. // HWREG(ui32Base + SSI_O_CR1) &= ~(SSI_CR1_FSSHLDFRM); } //***************************************************************************** // // Close the Doxygen group. //! @} // //*****************************************************************************