/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 */ /* * File : memheap.c * * Change Logs: * Date Author Notes * 2012-04-10 Bernard first implementation * 2012-10-16 Bernard add the mutex lock for heap object. * 2012-12-29 Bernard memheap can be used as system heap. * change mutex lock to semaphore lock. * 2013-04-10 Bernard add rt_memheap_realloc function. * 2013-05-24 Bernard fix the rt_memheap_realloc issue. * 2013-07-11 Grissiom fix the memory block splitting issue. * 2013-07-15 Grissiom optimize rt_memheap_realloc * 2021-06-03 Flybreak Fix the crash problem after opening Oz optimization on ac6. */ #include #include #ifdef RT_USING_MEMHEAP /* dynamic pool magic and mask */ #define RT_MEMHEAP_MAGIC 0x1ea01ea0 #define RT_MEMHEAP_MASK 0xFFFFFFFE #define RT_MEMHEAP_USED 0x01 #define RT_MEMHEAP_FREED 0x00 #define RT_MEMHEAP_IS_USED(i) ((i)->magic & RT_MEMHEAP_USED) #define RT_MEMHEAP_MINIALLOC 12 #define RT_MEMHEAP_SIZE RT_ALIGN(sizeof(struct rt_memheap_item), RT_ALIGN_SIZE) #define MEMITEM_SIZE(item) ((rt_ubase_t)item->next - (rt_ubase_t)item - RT_MEMHEAP_SIZE) #define MEMITEM(ptr) (struct rt_memheap_item*)((rt_uint8_t*)ptr - RT_MEMHEAP_SIZE) static void _remove_next_ptr(struct rt_memheap_item *next_ptr) { /* Fix the crash problem after opening Oz optimization on ac6 */ /* Fix IAR compiler warning */ next_ptr->next_free->prev_free = next_ptr->prev_free; next_ptr->prev_free->next_free = next_ptr->next_free; next_ptr->next->prev = next_ptr->prev; next_ptr->prev->next = next_ptr->next; } /** * @brief This function initializes a piece of memory called memheap. * * @note The initialized memory pool will be: * +-----------------------------------+--------------------------+ * | whole freed memory block | Used Memory Block Tailer | * +-----------------------------------+--------------------------+ * * block_list --> whole freed memory block * * The length of Used Memory Block Tailer is 0, * which is prevents block merging across list * * @param memheap is a pointer of the memheap object. * * @param name is the name of the memheap. * * @param start_addr is the start address of the memheap. * * @param size is the size of the memheap. * * @return RT_EOK */ rt_err_t rt_memheap_init(struct rt_memheap *memheap, const char *name, void *start_addr, rt_size_t size) { struct rt_memheap_item *item; RT_ASSERT(memheap != RT_NULL); /* initialize pool object */ rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name); memheap->start_addr = start_addr; memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE); memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE); memheap->max_used_size = memheap->pool_size - memheap->available_size; /* initialize the free list header */ item = &(memheap->free_header); item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); item->pool_ptr = memheap; item->next = RT_NULL; item->prev = RT_NULL; item->next_free = item; item->prev_free = item; /* set the free list to free list header */ memheap->free_list = item; /* initialize the first big memory block */ item = (struct rt_memheap_item *)start_addr; item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); item->pool_ptr = memheap; item->next = RT_NULL; item->prev = RT_NULL; item->next_free = item; item->prev_free = item; #ifdef RT_USING_MEMTRACE rt_memset(item->owner_thread_name, ' ', sizeof(item->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ item->next = (struct rt_memheap_item *) ((rt_uint8_t *)item + memheap->available_size + RT_MEMHEAP_SIZE); item->prev = item->next; /* block list header */ memheap->block_list = item; /* place the big memory block to free list */ item->next_free = memheap->free_list->next_free; item->prev_free = memheap->free_list; memheap->free_list->next_free->prev_free = item; memheap->free_list->next_free = item; /* move to the end of memory pool to build a small tailer block, * which prevents block merging */ item = item->next; /* it's a used memory block */ item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED); item->pool_ptr = memheap; item->next = (struct rt_memheap_item *)start_addr; item->prev = (struct rt_memheap_item *)start_addr; /* not in free list */ item->next_free = item->prev_free = RT_NULL; /* initialize semaphore lock */ rt_sem_init(&(memheap->lock), name, 1, RT_IPC_FLAG_PRIO); memheap->locked = RT_FALSE; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("memory heap: start addr 0x%08x, size %d, free list header 0x%08x\n", start_addr, size, &(memheap->free_header))); return RT_EOK; } RTM_EXPORT(rt_memheap_init); /** * @brief This function will remove a memheap from the system. * * @param heap is a pointer of memheap object. * * @return RT_EOK */ rt_err_t rt_memheap_detach(struct rt_memheap *heap) { RT_ASSERT(heap); RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap); RT_ASSERT(rt_object_is_systemobject(&heap->parent)); rt_sem_detach(&heap->lock); rt_object_detach(&(heap->parent)); /* Return a successful completion. */ return RT_EOK; } RTM_EXPORT(rt_memheap_detach); /** * @brief Allocate a block of memory with a minimum of 'size' bytes on memheap. * * @param heap is a pointer for memheap object. * * @param size is the minimum size of the requested block in bytes. * * @return the pointer to allocated memory or NULL if no free memory was found. */ void *rt_memheap_alloc(struct rt_memheap *heap, rt_size_t size) { rt_err_t result; rt_size_t free_size; struct rt_memheap_item *header_ptr; RT_ASSERT(heap != RT_NULL); RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap); /* align allocated size */ size = RT_ALIGN(size, RT_ALIGN_SIZE); if (size < RT_MEMHEAP_MINIALLOC) size = RT_MEMHEAP_MINIALLOC; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate %d on heap:%8.*s", size, RT_NAME_MAX, heap->parent.name)); if (size < heap->available_size) { /* search on free list */ free_size = 0; /* lock memheap */ if (heap->locked == RT_FALSE) { result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER); if (result != RT_EOK) { rt_set_errno(result); return RT_NULL; } } /* get the first free memory block */ header_ptr = heap->free_list->next_free; while (header_ptr != heap->free_list && free_size < size) { /* get current freed memory block size */ free_size = MEMITEM_SIZE(header_ptr); if (free_size < size) { /* move to next free memory block */ header_ptr = header_ptr->next_free; } } /* determine if the memory is available. */ if (free_size >= size) { /* a block that satisfies the request has been found. */ /* determine if the block needs to be split. */ if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC)) { struct rt_memheap_item *new_ptr; /* split the block. */ new_ptr = (struct rt_memheap_item *) (((rt_uint8_t *)header_ptr) + size + RT_MEMHEAP_SIZE); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]\n", header_ptr, header_ptr->next, header_ptr->prev, new_ptr)); /* mark the new block as a memory block and freed. */ new_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); /* put the pool pointer into the new block. */ new_ptr->pool_ptr = heap; #ifdef RT_USING_MEMTRACE rt_memset(new_ptr->owner_thread_name, ' ', sizeof(new_ptr->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ /* break down the block list */ new_ptr->prev = header_ptr; new_ptr->next = header_ptr->next; header_ptr->next->prev = new_ptr; header_ptr->next = new_ptr; /* remove header ptr from free list */ header_ptr->next_free->prev_free = header_ptr->prev_free; header_ptr->prev_free->next_free = header_ptr->next_free; header_ptr->next_free = RT_NULL; header_ptr->prev_free = RT_NULL; /* insert new_ptr to free list */ new_ptr->next_free = heap->free_list->next_free; new_ptr->prev_free = heap->free_list; heap->free_list->next_free->prev_free = new_ptr; heap->free_list->next_free = new_ptr; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: next_free 0x%08x, prev_free 0x%08x\n", new_ptr->next_free, new_ptr->prev_free)); /* decrement the available byte count. */ heap->available_size = heap->available_size - size - RT_MEMHEAP_SIZE; if (heap->pool_size - heap->available_size > heap->max_used_size) heap->max_used_size = heap->pool_size - heap->available_size; } else { /* decrement the entire free size from the available bytes count. */ heap->available_size = heap->available_size - free_size; if (heap->pool_size - heap->available_size > heap->max_used_size) heap->max_used_size = heap->pool_size - heap->available_size; /* remove header_ptr from free list */ RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("one block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x\n", header_ptr, header_ptr->next_free, header_ptr->prev_free)); header_ptr->next_free->prev_free = header_ptr->prev_free; header_ptr->prev_free->next_free = header_ptr->next_free; header_ptr->next_free = RT_NULL; header_ptr->prev_free = RT_NULL; } /* Mark the allocated block as not available. */ header_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED); #ifdef RT_USING_MEMTRACE if (rt_thread_self()) rt_memcpy(header_ptr->owner_thread_name, rt_thread_self()->name, sizeof(header_ptr->owner_thread_name)); else rt_memcpy(header_ptr->owner_thread_name, "NONE", sizeof(header_ptr->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ if (heap->locked == RT_FALSE) { /* release lock */ rt_sem_release(&(heap->lock)); } /* Return a memory address to the caller. */ RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("alloc mem: memory[0x%08x], heap[0x%08x], size: %d\n", (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE), header_ptr, size)); return (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE); } if (heap->locked == RT_FALSE) { /* release lock */ rt_sem_release(&(heap->lock)); } } RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate memory: failed\n")); /* Return the completion status. */ return RT_NULL; } RTM_EXPORT(rt_memheap_alloc); /** * @brief This function will change the size of previously allocated memory block. * * @param heap is a pointer to the memheap object, which will reallocate * memory from the block * * @param ptr is a pointer to start address of memory. * * @param newsize is the required new size. * * @return the changed memory block address. */ void *rt_memheap_realloc(struct rt_memheap *heap, void *ptr, rt_size_t newsize) { rt_err_t result; rt_size_t oldsize; struct rt_memheap_item *header_ptr; struct rt_memheap_item *new_ptr; RT_ASSERT(heap); RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap); if (newsize == 0) { rt_memheap_free(ptr); return RT_NULL; } /* align allocated size */ newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE); if (newsize < RT_MEMHEAP_MINIALLOC) newsize = RT_MEMHEAP_MINIALLOC; if (ptr == RT_NULL) { return rt_memheap_alloc(heap, newsize); } /* get memory block header and get the size of memory block */ header_ptr = (struct rt_memheap_item *) ((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE); oldsize = MEMITEM_SIZE(header_ptr); /* re-allocate memory */ if (newsize > oldsize) { void *new_ptr; struct rt_memheap_item *next_ptr; if (heap->locked == RT_FALSE) { /* lock memheap */ result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER); if (result != RT_EOK) { rt_set_errno(result); return RT_NULL; } } next_ptr = header_ptr->next; /* header_ptr should not be the tail */ RT_ASSERT(next_ptr > header_ptr); /* check whether the following free space is enough to expand */ if (!RT_MEMHEAP_IS_USED(next_ptr)) { rt_int32_t nextsize; nextsize = MEMITEM_SIZE(next_ptr); RT_ASSERT(next_ptr > 0); /* Here is the ASCII art of the situation that we can make use of * the next free node without alloc/memcpy, |*| is the control * block: * * oldsize free node * |*|-----------|*|----------------------|*| * newsize >= minialloc * |*|----------------|*|-----------------|*| */ if (nextsize + oldsize > newsize + RT_MEMHEAP_MINIALLOC) { /* decrement the entire free size from the available bytes count. */ heap->available_size = heap->available_size - (newsize - oldsize); if (heap->pool_size - heap->available_size > heap->max_used_size) heap->max_used_size = heap->pool_size - heap->available_size; /* remove next_ptr from free list */ RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("remove block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x", next_ptr, next_ptr->next_free, next_ptr->prev_free)); _remove_next_ptr(next_ptr); /* build a new one on the right place */ next_ptr = (struct rt_memheap_item *)((char *)ptr + newsize); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new free block: block[0x%08x] nextm[0x%08x] prevm[0x%08x]", next_ptr, next_ptr->next, next_ptr->prev)); /* mark the new block as a memory block and freed. */ next_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); /* put the pool pointer into the new block. */ next_ptr->pool_ptr = heap; #ifdef RT_USING_MEMTRACE rt_memset((void *)next_ptr->owner_thread_name, ' ', sizeof(next_ptr->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ next_ptr->prev = header_ptr; next_ptr->next = header_ptr->next; header_ptr->next->prev = (struct rt_memheap_item *)next_ptr; header_ptr->next = (struct rt_memheap_item *)next_ptr; /* insert next_ptr to free list */ next_ptr->next_free = heap->free_list->next_free; next_ptr->prev_free = heap->free_list; heap->free_list->next_free->prev_free = (struct rt_memheap_item *)next_ptr; heap->free_list->next_free = (struct rt_memheap_item *)next_ptr; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: next_free 0x%08x, prev_free 0x%08x", next_ptr->next_free, next_ptr->prev_free)); if (heap->locked == RT_FALSE) { /* release lock */ rt_sem_release(&(heap->lock)); } return ptr; } } if (heap->locked == RT_FALSE) { /* release lock */ rt_sem_release(&(heap->lock)); } /* re-allocate a memory block */ new_ptr = (void *)rt_memheap_alloc(heap, newsize); if (new_ptr != RT_NULL) { rt_memcpy(new_ptr, ptr, oldsize < newsize ? oldsize : newsize); rt_memheap_free(ptr); } return new_ptr; } /* don't split when there is less than one node space left */ if (newsize + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC >= oldsize) return ptr; if (heap->locked == RT_FALSE) { /* lock memheap */ result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER); if (result != RT_EOK) { rt_set_errno(result); return RT_NULL; } } /* split the block. */ new_ptr = (struct rt_memheap_item *) (((rt_uint8_t *)header_ptr) + newsize + RT_MEMHEAP_SIZE); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]\n", header_ptr, header_ptr->next, header_ptr->prev, new_ptr)); /* mark the new block as a memory block and freed. */ new_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); /* put the pool pointer into the new block. */ new_ptr->pool_ptr = heap; #ifdef RT_USING_MEMTRACE rt_memset(new_ptr->owner_thread_name, ' ', sizeof(new_ptr->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ /* break down the block list */ new_ptr->prev = header_ptr; new_ptr->next = header_ptr->next; header_ptr->next->prev = new_ptr; header_ptr->next = new_ptr; /* determine if the block can be merged with the next neighbor. */ if (!RT_MEMHEAP_IS_USED(new_ptr->next)) { struct rt_memheap_item *free_ptr; /* merge block with next neighbor. */ free_ptr = new_ptr->next; heap->available_size = heap->available_size - MEMITEM_SIZE(free_ptr); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x\n", header_ptr, header_ptr->next_free, header_ptr->prev_free)); free_ptr->next->prev = new_ptr; new_ptr->next = free_ptr->next; /* remove free ptr from free list */ free_ptr->next_free->prev_free = free_ptr->prev_free; free_ptr->prev_free->next_free = free_ptr->next_free; } /* insert the split block to free list */ new_ptr->next_free = heap->free_list->next_free; new_ptr->prev_free = heap->free_list; heap->free_list->next_free->prev_free = new_ptr; heap->free_list->next_free = new_ptr; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new free ptr: next_free 0x%08x, prev_free 0x%08x\n", new_ptr->next_free, new_ptr->prev_free)); /* increment the available byte count. */ heap->available_size = heap->available_size + MEMITEM_SIZE(new_ptr); if (heap->locked == RT_FALSE) { /* release lock */ rt_sem_release(&(heap->lock)); } /* return the old memory block */ return ptr; } RTM_EXPORT(rt_memheap_realloc); /** * @brief This function will release the allocated memory block by * rt_malloc. The released memory block is taken back to system heap. * * @param ptr the address of memory which will be released. */ void rt_memheap_free(void *ptr) { rt_err_t result; struct rt_memheap *heap; struct rt_memheap_item *header_ptr, *new_ptr; rt_bool_t insert_header; /* NULL check */ if (ptr == RT_NULL) return; /* set initial status as OK */ insert_header = RT_TRUE; new_ptr = RT_NULL; header_ptr = (struct rt_memheap_item *) ((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("free memory: memory[0x%08x], block[0x%08x]\n", ptr, header_ptr)); /* check magic */ if (header_ptr->magic != (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED) || (header_ptr->next->magic & RT_MEMHEAP_MASK) != RT_MEMHEAP_MAGIC) { RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("bad magic:0x%08x @ memheap\n", header_ptr->magic)); RT_ASSERT(header_ptr->magic == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)); /* check whether this block of memory has been over-written. */ RT_ASSERT((header_ptr->next->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC); } /* get pool ptr */ heap = header_ptr->pool_ptr; RT_ASSERT(heap); RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap); if (heap->locked == RT_FALSE) { /* lock memheap */ result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER); if (result != RT_EOK) { rt_set_errno(result); return ; } } /* Mark the memory as available. */ header_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); /* Adjust the available number of bytes. */ heap->available_size += MEMITEM_SIZE(header_ptr); /* Determine if the block can be merged with the previous neighbor. */ if (!RT_MEMHEAP_IS_USED(header_ptr->prev)) { RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: left node 0x%08x\n", header_ptr->prev)); /* adjust the available number of bytes. */ heap->available_size += RT_MEMHEAP_SIZE; /* yes, merge block with previous neighbor. */ (header_ptr->prev)->next = header_ptr->next; (header_ptr->next)->prev = header_ptr->prev; /* move header pointer to previous. */ header_ptr = header_ptr->prev; /* don't insert header to free list */ insert_header = RT_FALSE; } /* determine if the block can be merged with the next neighbor. */ if (!RT_MEMHEAP_IS_USED(header_ptr->next)) { /* adjust the available number of bytes. */ heap->available_size += RT_MEMHEAP_SIZE; /* merge block with next neighbor. */ new_ptr = header_ptr->next; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x\n", new_ptr, new_ptr->next_free, new_ptr->prev_free)); new_ptr->next->prev = header_ptr; header_ptr->next = new_ptr->next; /* remove new ptr from free list */ new_ptr->next_free->prev_free = new_ptr->prev_free; new_ptr->prev_free->next_free = new_ptr->next_free; } if (insert_header) { struct rt_memheap_item *n = heap->free_list->next_free;; #if defined(RT_MEMHEAP_BSET_MODE) rt_size_t blk_size = MEMITEM_SIZE(header_ptr); for (;n != heap->free_list; n = n->next_free) { rt_size_t m = MEMITEM_SIZE(n); if (blk_size <= m) { break; } } #endif /* no left merge, insert to free list */ header_ptr->next_free = n; header_ptr->prev_free = n->prev_free; n->prev_free->next_free = header_ptr; n->prev_free = header_ptr; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("insert to free list: next_free 0x%08x, prev_free 0x%08x\n", header_ptr->next_free, header_ptr->prev_free)); } #ifdef RT_USING_MEMTRACE rt_memset(header_ptr->owner_thread_name, ' ', sizeof(header_ptr->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ if (heap->locked == RT_FALSE) { /* release lock */ rt_sem_release(&(heap->lock)); } } RTM_EXPORT(rt_memheap_free); /** * @brief This function will caculate the total memory, the used memory, and * the max used memory. * * @param heap is a pointer to the memheap object, which will reallocate * memory from the block * * @param total is a pointer to get the total size of the memory. * * @param used is a pointer to get the size of memory used. * * @param max_used is a pointer to get the maximum memory used. */ void rt_memheap_info(struct rt_memheap *heap, rt_size_t *total, rt_size_t *used, rt_size_t *max_used) { rt_err_t result; if (heap->locked == RT_FALSE) { /* lock memheap */ result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER); if (result != RT_EOK) { rt_set_errno(result); return; } } if (total != RT_NULL) *total = heap->pool_size; if (used != RT_NULL) *used = heap->pool_size - heap->available_size; if (max_used != RT_NULL) *max_used = heap->max_used_size; if (heap->locked == RT_FALSE) { /* release lock */ rt_sem_release(&(heap->lock)); } } #ifdef RT_USING_MEMHEAP_AS_HEAP /* * rt_malloc port function */ void *_memheap_alloc(struct rt_memheap *heap, rt_size_t size) { void *ptr; /* try to allocate in system heap */ ptr = rt_memheap_alloc(heap, size); #ifdef RT_USING_MEMHEAP_AUTO_BINDING if (ptr == RT_NULL) { struct rt_object *object; struct rt_list_node *node; struct rt_memheap *_heap; struct rt_object_information *information; /* try to allocate on other memory heap */ information = rt_object_get_information(RT_Object_Class_MemHeap); RT_ASSERT(information != RT_NULL); for (node = information->object_list.next; node != &(information->object_list); node = node->next) { object = rt_list_entry(node, struct rt_object, list); _heap = (struct rt_memheap *)object; /* not allocate in the default system heap */ if (heap == _heap) continue; ptr = rt_memheap_alloc(_heap, size); if (ptr != RT_NULL) break; } } #endif /* RT_USING_MEMHEAP_AUTO_BINDING */ return ptr; } /* * rt_free port function */ void _memheap_free(void *rmem) { rt_memheap_free(rmem); } /* * rt_realloc port function */ void *_memheap_realloc(struct rt_memheap *heap, void *rmem, rt_size_t newsize) { void *new_ptr; struct rt_memheap_item *header_ptr; if (rmem == RT_NULL) return _memheap_alloc(heap, newsize); if (newsize == 0) { _memheap_free(rmem); return RT_NULL; } /* get old memory item */ header_ptr = (struct rt_memheap_item *) ((rt_uint8_t *)rmem - RT_MEMHEAP_SIZE); new_ptr = rt_memheap_realloc(header_ptr->pool_ptr, rmem, newsize); if (new_ptr == RT_NULL && newsize != 0) { /* allocate memory block from other memheap */ new_ptr = _memheap_alloc(heap, newsize); if (new_ptr != RT_NULL && rmem != RT_NULL) { rt_size_t oldsize; /* get the size of old memory block */ oldsize = MEMITEM_SIZE(header_ptr); if (newsize > oldsize) rt_memcpy(new_ptr, rmem, oldsize); else rt_memcpy(new_ptr, rmem, newsize); _memheap_free(rmem); } } return new_ptr; } #endif #ifdef RT_USING_MEMTRACE int memheapcheck(int argc, char *argv[]) { struct rt_object_information *info; struct rt_list_node *list; struct rt_memheap *heap; struct rt_list_node *node; struct rt_memheap_item *item; rt_bool_t has_bad = RT_FALSE; rt_base_t level; char *name; name = argc > 1 ? argv[1] : RT_NULL; level = rt_hw_interrupt_disable(); info = rt_object_get_information(RT_Object_Class_MemHeap); list = &info->object_list; for (node = list->next; node != list; node = node->next) { heap = (struct rt_memheap *)rt_list_entry(node, struct rt_object, list); /* find the specified object */ if (name != RT_NULL && rt_strncmp(name, heap->parent.name, RT_NAME_MAX) != 0) continue; /* check memheap */ for (item = heap->block_list; item->next != heap->block_list; item = item->next) { /* check magic */ if (!((item->magic & (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED)) == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED) || (item->magic & (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)) == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED))) { has_bad = RT_TRUE; break; } /* check pool_ptr */ if (heap != item->pool_ptr) { has_bad = RT_TRUE; break; } /* check next and prev */ if (!((rt_ubase_t)item->next <= (rt_ubase_t)((rt_ubase_t)heap->start_addr + heap->pool_size) && (rt_ubase_t)item->prev >= (rt_ubase_t)heap->start_addr) && (rt_ubase_t)item->next == RT_ALIGN((rt_ubase_t)item->next, RT_ALIGN_SIZE) && (rt_ubase_t)item->prev == RT_ALIGN((rt_ubase_t)item->prev, RT_ALIGN_SIZE)) { has_bad = RT_TRUE; break; } /* check item */ if (item->next == item->next->prev) { has_bad = RT_TRUE; break; } } } rt_hw_interrupt_enable(level); if (has_bad) { rt_kprintf("Memory block wrong:\n"); rt_kprintf("name: %s\n", heap->parent.name); rt_kprintf("item: 0x%p\n", item); } return 0; } MSH_CMD_EXPORT(memheapcheck, check memory for memheap); int memheaptrace(int argc, char *argv[]) { struct rt_object_information *info; struct rt_list_node *list; struct rt_memheap *mh; struct rt_list_node *node; char *name; name = argc > 1 ? argv[1] : RT_NULL; info = rt_object_get_information(RT_Object_Class_MemHeap); list = &info->object_list; for (node = list->next; node != list; node = node->next) { struct rt_memheap_item *header_ptr; long block_size; mh = (struct rt_memheap *)rt_list_entry(node, struct rt_object, list); /* find the specified object */ if (name != RT_NULL && rt_strncmp(name, mh->parent.name, RT_NAME_MAX) != 0) continue; /* memheap dump */ rt_kprintf("\nmemory heap address:\n"); rt_kprintf("name : %s\n", mh->parent.name); rt_kprintf("heap_ptr: 0x%p\n", mh->start_addr); rt_kprintf("free : 0x%08x\n", mh->available_size); rt_kprintf("max_used: 0x%08x\n", mh->max_used_size); rt_kprintf("size : 0x%08x\n", mh->pool_size); rt_kprintf("\n--memory used information --\n"); /* memheap item */ for (header_ptr = mh->block_list; header_ptr->next != mh->block_list; header_ptr = header_ptr->next) { if ((header_ptr->magic & RT_MEMHEAP_MASK) != RT_MEMHEAP_MAGIC) { rt_kprintf("[0x%p - incorrect magic: 0x%08x\n", header_ptr, header_ptr->magic); break; } /* get current memory block size */ block_size = MEMITEM_SIZE(header_ptr); if (block_size < 0) break; rt_kprintf("[0x%p - ", header_ptr); if (block_size < 1024) rt_kprintf("%5d", block_size); else if (block_size < 1024 * 1024) rt_kprintf("%4dK", block_size / 1024); else rt_kprintf("%4dM", block_size / (1024 * 1024)); /* dump thread name */ rt_kprintf("] %c%c%c%c\n", header_ptr->owner_thread_name[0], header_ptr->owner_thread_name[1], header_ptr->owner_thread_name[2], header_ptr->owner_thread_name[3]); } } return 0; } #ifdef RT_USING_FINSH #include MSH_CMD_EXPORT(memheaptrace, dump memory trace for memheap); #endif /* RT_USING_FINSH */ #endif /* RT_USING_MEMTRACE */ #endif /* RT_USING_MEMHEAP */