/*
 * Copyright (c) 2016, Freescale Semiconductor, Inc.
 * Copyright 2016-2017 NXP
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of the copyright holder nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "fsl_flexspi.h"

/*******************************************************************************
 * Definitations
 ******************************************************************************/

#define FREQ_1MHz (1000000UL)
#define FLEXSPI_DLLCR_DEFAULT (0x100UL)
#define FLEXSPI_LUT_KEY_VAL (0x5AF05AF0ul)

enum
{
    kFLEXSPI_DelayCellUnitMin = 75,  /* 75ps. */
    kFLEXSPI_DelayCellUnitMax = 225, /* 225ps. */
};

/*! @brief Common sets of flags used by the driver. */
enum _flexspi_flag_constants
{
    /*! IRQ sources enabled by the non-blocking transactional API. */
    kIrqFlags = kFLEXSPI_IpTxFifoWatermarkEmpltyFlag | kFLEXSPI_IpRxFifoWatermarkAvailableFlag |
                kFLEXSPI_SequenceExecutionTimeoutFlag | kFLEXSPI_IpCommandSequenceErrorFlag |
                kFLEXSPI_IpCommandGrantTimeoutFlag | kFLEXSPI_IpCommandExcutionDoneFlag,

    /*! Errors to check for. */
    kErrorFlags = kFLEXSPI_SequenceExecutionTimeoutFlag | kFLEXSPI_IpCommandSequenceErrorFlag |
                  kFLEXSPI_IpCommandGrantTimeoutFlag,
};

enum _flexspi_transfer_state
{
    kFLEXSPI_Idle = 0x0U,      /*!< Transfer is done. */
    kFLEXSPI_BusyWrite = 0x1U, /*!< FLEXSPI is busy write transfer. */
    kFLEXSPI_BusyRead = 0x2U,  /*!< FLEXSPI is busy write transfer. */
};

/*! @brief Typedef for interrupt handler. */
typedef void (*flexspi_isr_t)(FLEXSPI_Type *base, void *flexspiHandle);

/*******************************************************************************
 * Prototypes
 ******************************************************************************/
/*!
* @brief Get the instance number for FLEXSPI.
*
* @param base FLEXSPI base pointer.
*/
uint32_t FLEXSPI_GetInstance(FLEXSPI_Type *base);

/*!
* @brief Configure flash A/B sample clock DLL.
*
* @param base FLEXSPI base pointer.
* @param config Flash configuration parameters.
*/
static uint32_t FLEXSPI_ConfigureDll(FLEXSPI_Type *base, flexspi_device_config_t *config);

/*!
* @brief Check and clear IP command execution errors.
*
* @param base FLEXSPI base pointer.
* @param status interrupt status.
*/
status_t FLEXSPI_CheckAndClearError(FLEXSPI_Type *base, uint32_t status);

/*******************************************************************************
 * Variables
 ******************************************************************************/

/*! @brief Pointers to flexspi handles for each instance. */
static void *s_flexspiHandle[FSL_FEATURE_SOC_FLEXSPI_COUNT];

/*! @brief Pointers to flexspi bases for each instance. */
static FLEXSPI_Type *const s_flexspiBases[] = FLEXSPI_BASE_PTRS;

/*! @brief Pointers to flexspi IRQ number for each instance. */
static const IRQn_Type s_flexspiIrqs[] = FLEXSPI_IRQS;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
/* Clock name array */
static const clock_ip_name_t s_flexspiClock[] = FLEXSPI_CLOCKS;
#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

/*******************************************************************************
 * Code
 ******************************************************************************/

uint32_t FLEXSPI_GetInstance(FLEXSPI_Type *base)
{
    uint32_t instance;

    /* Find the instance index from base address mappings. */
    for (instance = 0; instance < FSL_FEATURE_SOC_FLEXSPI_COUNT; instance++)
    {
        if (s_flexspiBases[instance] == base)
        {
            break;
        }
    }

    assert(instance < FSL_FEATURE_SOC_FLEXSPI_COUNT);

    return instance;
}

static uint32_t FLEXSPI_ConfigureDll(FLEXSPI_Type *base, flexspi_device_config_t *config)
{
    bool isUnifiedConfig = true;
    uint32_t flexspiDllValue;
    uint32_t dllValue;
    uint32_t temp;

    uint8_t rxSampleClock = (base->MCR0 & FLEXSPI_MCR0_RXCLKSRC_MASK) >> FLEXSPI_MCR0_RXCLKSRC_SHIFT;
    switch (rxSampleClock)
    {
        case kFLEXSPI_ReadSampleClkLoopbackInternally:
        case kFLEXSPI_ReadSampleClkLoopbackFromDqsPad:
        case kFLEXSPI_ReadSampleClkLoopbackFromSckPad:
            isUnifiedConfig = true;
            break;
        case kFLEXSPI_ReadSampleClkExternalInputFromDqsPad:
            if (config->isSck2Enabled)
            {
                isUnifiedConfig = true;
            }
            else
            {
                isUnifiedConfig = false;
            }
            break;
        default:
            break;
    }

    if (isUnifiedConfig)
    {
        flexspiDllValue = FLEXSPI_DLLCR_DEFAULT; /* 1 fixed delay cells in DLL delay chain) */
    }
    else
    {
        if (config->flexspiRootClk >= 100 * FREQ_1MHz)
        {
            /* DLLEN = 1, SLVDLYTARGET = 0xF, */
            flexspiDllValue = FLEXSPI_DLLCR_DLLEN(1) | FLEXSPI_DLLCR_SLVDLYTARGET(0x0F);
        }
        else
        {
            temp = config->dataValidTime * 1000; /* Convert data valid time in ns to ps. */
            dllValue = temp / kFLEXSPI_DelayCellUnitMin;
            if (dllValue * kFLEXSPI_DelayCellUnitMin < temp)
            {
                dllValue++;
            }
            flexspiDllValue = FLEXSPI_DLLCR_OVRDEN(1) | FLEXSPI_DLLCR_OVRDVAL(dllValue);
        }
    }
    return flexspiDllValue;
}

status_t FLEXSPI_CheckAndClearError(FLEXSPI_Type *base, uint32_t status)
{
    status_t result = kStatus_Success;

    /* Check for error. */
    status &= kErrorFlags;
    if (status)
    {
        /* Select the correct error code.. */
        if (status & kFLEXSPI_SequenceExecutionTimeoutFlag)
        {
            result = kStatus_FLEXSPI_SequenceExecutionTimeout;
        }
        else if (status & kFLEXSPI_IpCommandSequenceErrorFlag)
        {
            result = kStatus_FLEXSPI_IpCommandSequenceError;
        }
        else if (status & kFLEXSPI_IpCommandGrantTimeoutFlag)
        {
            result = kStatus_FLEXSPI_IpCommandGrantTimeout;
        }
        else
        {
            assert(false);
        }

        /* Clear the flags. */
        FLEXSPI_ClearInterruptStatusFlags(base, status);

        /* Reset fifos. These flags clear automatically. */
        base->IPTXFCR |= FLEXSPI_IPTXFCR_CLRIPTXF_MASK;
        base->IPRXFCR |= FLEXSPI_IPRXFCR_CLRIPRXF_MASK;
    }

    return result;
}

void FLEXSPI_Init(FLEXSPI_Type *base, const flexspi_config_t *config)
{
    uint32_t configValue = 0;
    uint8_t i = 0;

#if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
    /* Enable the flexspi clock */
    CLOCK_EnableClock(s_flexspiClock[FLEXSPI_GetInstance(base)]);

#endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */

    /* Reset peripheral before configuring it. */
    base->MCR0 &= ~FLEXSPI_MCR0_MDIS_MASK;
    FLEXSPI_SoftwareReset(base);

    /* Configure MCR0 configuration items. */
    configValue = FLEXSPI_MCR0_RXCLKSRC(config->rxSampleClock) | FLEXSPI_MCR0_DOZEEN(config->enableDoze) |
                  FLEXSPI_MCR0_IPGRANTWAIT(config->ipGrantTimeoutCycle) |
                  FLEXSPI_MCR0_AHBGRANTWAIT(config->ahbConfig.ahbGrantTimeoutCycle) |
                  FLEXSPI_MCR0_SCKFREERUNEN(config->enableSckFreeRunning) |
                  FLEXSPI_MCR0_HSEN(config->enableHalfSpeedAccess) |
                  FLEXSPI_MCR0_COMBINATIONEN(config->enableCombination) |
                  FLEXSPI_MCR0_ATDFEN(config->ahbConfig.enableAHBWriteIpTxFifo) |
                  FLEXSPI_MCR0_ATDFEN(config->ahbConfig.enableAHBWriteIpRxFifo) | FLEXSPI_MCR0_MDIS_MASK;
    base->MCR0 = configValue;

    /* Configure MCR1 configurations. */
    configValue =
        FLEXSPI_MCR1_SEQWAIT(config->seqTimeoutCycle) | FLEXSPI_MCR1_AHBBUSWAIT(config->ahbConfig.ahbBusTimeoutCycle);
    base->MCR1 = configValue;

    /* Configure MCR2 configurations. */
    configValue = FLEXSPI_MCR2_RESUMEWAIT(config->ahbConfig.resumeWaitCycle) |
                  FLEXSPI_MCR2_SCKBDIFFOPT(config->enableSckBDiffOpt) |
                  FLEXSPI_MCR2_SAMEDEVICEEN(config->enableSameConfigForAll) |
                  FLEXSPI_MCR2_CLRAHBBUFOPT(config->ahbConfig.enableClearAHBBufferOpt);
    base->MCR2 = configValue;

    /* Configure AHB control items. */
    base->AHBCR = FLEXSPI_AHBCR_PREFETCHEN(config->ahbConfig.enableAHBPrefetch) |
                  FLEXSPI_AHBCR_BUFFERABLEEN(config->ahbConfig.enableAHBBufferable) |
                  FLEXSPI_AHBCR_CACHABLEEN(config->ahbConfig.enableAHBCachable);

    /* Configure AHB rx buffers. */
    for (i = 0; i < FSL_FEATURE_FLEXSPI_AHB_BUFFER_COUNT - 1; i++)
    {
        base->AHBRXBUFCR0[i] = FLEXSPI_AHBRXBUFCR0_PRIORITY(config->ahbConfig.buffer[i].priority) |
                               FLEXSPI_AHBRXBUFCR0_MSTRID(config->ahbConfig.buffer[i].masterIndex) |
                               FLEXSPI_AHBRXBUFCR0_BUFSZ(config->ahbConfig.buffer[i].bufferSize / 8);
    }

    /* Configure IP Fifo watermarks. */
    base->IPRXFCR |= FLEXSPI_IPRXFCR_RXWMRK(config->rxWatermark / 8 - 1);
    base->IPTXFCR |= FLEXSPI_IPRXFCR_RXWMRK(config->txWatermark / 8 - 1);
}

void FLEXSPI_GetDefaultConfig(flexspi_config_t *config)
{
    config->rxSampleClock = kFLEXSPI_ReadSampleClkLoopbackInternally;
    config->enableSckFreeRunning = false;
    config->enableCombination = false;
    config->enableDoze = true;
    config->enableHalfSpeedAccess = false;
    config->enableSckBDiffOpt = false;
    config->enableSameConfigForAll = false;
    config->seqTimeoutCycle = 0xFFFFU;
    config->ipGrantTimeoutCycle = 0xFFU;
    config->txWatermark = 8;
    config->rxWatermark = 8;
    config->ahbConfig.enableAHBWriteIpTxFifo = false;
    config->ahbConfig.enableAHBWriteIpRxFifo = false;
    config->ahbConfig.ahbGrantTimeoutCycle = 0xFFU;
    config->ahbConfig.ahbBusTimeoutCycle = 0xFFFFU;
    config->ahbConfig.resumeWaitCycle = 0x20U;
    memset(config->ahbConfig.buffer, 0, sizeof(config->ahbConfig.buffer));
    config->ahbConfig.enableClearAHBBufferOpt = false;
    config->ahbConfig.enableAHBPrefetch = false;
    config->ahbConfig.enableAHBBufferable = false;
    config->ahbConfig.enableAHBCachable = false;
}

void FLEXSPI_Deinit(FLEXSPI_Type *base)
{
    /* Reset peripheral. */
    FLEXSPI_SoftwareReset(base);
}

void FLEXSPI_SetFlashConfig(FLEXSPI_Type *base, flexspi_device_config_t *config, flexspi_port_t port)
{
    uint32_t configValue = 0;
    uint8_t index = port >> 1; /* PortA with index 0, PortB with index 1. */

    /* Wait for bus idle before change flash configuration. */
    while (!FLEXSPI_GetBusIdleStatus(base))
    {
    }

    /* Configure flash size. */
    base->FLSHCR0[index] = 0;
    base->FLSHCR0[port] = config->flashSize;

    /* Configure flash parameters. */
    base->FLSHCR1[port] = FLEXSPI_FLSHCR1_CSINTERVAL(config->CSInterval) |
                          FLEXSPI_FLSHCR1_CSINTERVALUNIT(config->CSIntervalUnit) |
                          FLEXSPI_FLSHCR1_TCSH(config->CSHoldTime) | FLEXSPI_FLSHCR1_TCSS(config->CSSetupTime) |
                          FLEXSPI_FLSHCR1_CAS(config->columnspace) | FLEXSPI_FLSHCR1_WA(config->enableWordAddress);

    /* Configure AHB operation items. */
    configValue = base->FLSHCR2[port];

    configValue &= ~(FLEXSPI_FLSHCR2_AWRWAITUNIT_MASK | FLEXSPI_FLSHCR2_AWRWAIT_MASK | FLEXSPI_FLSHCR2_AWRSEQNUM_MASK |
                     FLEXSPI_FLSHCR2_AWRSEQID_MASK | FLEXSPI_FLSHCR2_ARDSEQNUM_MASK | FLEXSPI_FLSHCR2_AWRSEQID_MASK);

    configValue |=
        FLEXSPI_FLSHCR2_AWRWAITUNIT(config->AHBWriteWaitUnit) | FLEXSPI_FLSHCR2_AWRWAIT(config->AHBWriteWaitInterval);

    if (config->AWRSeqNumber > 0U)
    {
        configValue |=
            FLEXSPI_FLSHCR2_AWRSEQID(config->AWRSeqIndex) | FLEXSPI_FLSHCR2_AWRSEQNUM(config->AWRSeqNumber - 1U);
    }

    if (config->ARDSeqNumber > 0U)
    {
        configValue |=
            FLEXSPI_FLSHCR2_ARDSEQID(config->ARDSeqIndex) | FLEXSPI_FLSHCR2_ARDSEQNUM(config->ARDSeqNumber - 1U);
    }

    base->FLSHCR2[port] = configValue;

    /* Configure DLL. */
    base->DLLCR[index] = FLEXSPI_ConfigureDll(base, config);

    /* Configure write mask. */
    if (index == 0) /*PortA*/
    {
        base->FLSHCR4 &= ~FLEXSPI_FLSHCR4_WMENA_MASK;
        base->FLSHCR4 |= FLEXSPI_FLSHCR4_WMENA(config->enableWriteMask);
    }
    else
    {
        base->FLSHCR4 &= ~FLEXSPI_FLSHCR4_WMENB_MASK;
        base->FLSHCR4 |= FLEXSPI_FLSHCR4_WMENB(config->enableWriteMask);
    }

    /* Exit stop mode. */
    base->MCR0 &= ~FLEXSPI_MCR0_MDIS_MASK;
}

void FLEXSPI_UpdateLUT(FLEXSPI_Type *base, uint32_t index, const uint32_t *cmd, uint32_t count)
{
    assert(index < 64U);

    uint8_t i = 0;
    volatile uint32_t *lutBase;

    /* Wait for bus idle before change flash configuration. */
    while (!FLEXSPI_GetBusIdleStatus(base))
    {
    }

    /* Unlock LUT for update. */
    base->LUTKEY = FLEXSPI_LUT_KEY_VAL;
    base->LUTCR = 0x02;

    lutBase = &base->LUT[index];
    for (i = index; i < count; i++)
    {
        *lutBase++ = *cmd++;
    }

    /* Lock LUT. */
    base->LUTKEY = FLEXSPI_LUT_KEY_VAL;
    base->LUTCR = 0x01;
}

status_t FLEXSPI_WriteBlocking(FLEXSPI_Type *base, uint32_t *buffer, size_t size)
{
    uint8_t txWatermark = ((base->IPTXFCR & FLEXSPI_IPTXFCR_TXWMRK_MASK) >> FLEXSPI_IPTXFCR_TXWMRK_SHIFT) + 1;
    uint32_t status;
    status_t result = kStatus_Success;
    uint32_t i = 0;

    /* Send data buffer */
    while (size)
    {
        /* Wait until there is room in the fifo. This also checks for errors. */
        while (!((status = base->INTR) & kFLEXSPI_IpTxFifoWatermarkEmpltyFlag))
        {
        }

        result = FLEXSPI_CheckAndClearError(base, status);

        if (result)
        {
            return result;
        }

        /* Write watermark level data into tx fifo . */
        if (size >= 8 * txWatermark)
        {
            for (i = 0; i < 2 * txWatermark; i++)
            {
                base->TFDR[i] = *buffer++;
            }

            size = size - 8 * txWatermark;
        }
        else
        {
            for (i = 0; i < (size / 4 + 1); i++)
            {
                base->TFDR[i] = *buffer++;
            }
            size = 0;
        }

        /* Push a watermark level datas into IP TX FIFO. */
        base->INTR |= kFLEXSPI_IpTxFifoWatermarkEmpltyFlag;
    }

    return result;
}

status_t FLEXSPI_ReadBlocking(FLEXSPI_Type *base, uint32_t *buffer, size_t size)
{
    uint8_t rxWatermark = ((base->IPRXFCR & FLEXSPI_IPRXFCR_RXWMRK_MASK) >> FLEXSPI_IPRXFCR_RXWMRK_SHIFT) + 1;
    uint32_t status;
    status_t result = kStatus_Success;
    uint32_t i = 0;

    /* Send data buffer */
    while (size)
    {
        if (size >= 8 * rxWatermark)
        {
            /* Wait until there is room in the fifo. This also checks for errors. */
            while (!((status = base->INTR) & kFLEXSPI_IpRxFifoWatermarkAvailableFlag))
            {
                result = FLEXSPI_CheckAndClearError(base, status);

                if (result)
                {
                    return result;
                }
            }
        }
        else
        {
            /* Wait fill level. This also checks for errors. */
            while (size > ((((base->IPRXFSTS) & FLEXSPI_IPRXFSTS_FILL_MASK) >> FLEXSPI_IPRXFSTS_FILL_SHIFT) * 8U))
            {
                result = FLEXSPI_CheckAndClearError(base, base->INTR);

                if (result)
                {
                    return result;
                }
            }
        }

        result = FLEXSPI_CheckAndClearError(base, base->INTR);

        if (result)
        {
            return result;
        }

        /* Read watermark level data from rx fifo . */
        if (size >= 8 * rxWatermark)
        {
            for (i = 0; i < 2 * rxWatermark; i++)
            {
                *buffer++ = base->RFDR[i];
            }

            size = size - 8 * rxWatermark;
        }
        else
        {
            for (i = 0; i < (size / 4 + 1); i++)
            {
                *buffer++ = base->RFDR[i];
            }
            size = 0;
        }

        /* Pop out a watermark level datas from IP RX FIFO. */
        base->INTR |= kFLEXSPI_IpRxFifoWatermarkAvailableFlag;
    }

    return result;
}

status_t FLEXSPI_TransferBlocking(FLEXSPI_Type *base, flexspi_transfer_t *xfer)
{
    uint32_t configValue = 0;
    status_t result = kStatus_Success;

    /* Clear sequence pointer before sending data to external devices. */
    base->FLSHCR2[xfer->port] |= FLEXSPI_FLSHCR2_CLRINSTRPTR_MASK;

    /* Clear former pending status before start this tranfer. */
    base->INTR |= FLEXSPI_INTR_AHBCMDERR_MASK | FLEXSPI_INTR_IPCMDERR_MASK | FLEXSPI_INTR_AHBCMDGE_MASK |
                  FLEXSPI_INTR_IPCMDGE_MASK;

    /* Configure base addresss. */
    base->IPCR0 = xfer->deviceAddress;

    /* Reset fifos. */
    base->IPTXFCR |= FLEXSPI_IPTXFCR_CLRIPTXF_MASK;
    base->IPRXFCR |= FLEXSPI_IPRXFCR_CLRIPRXF_MASK;

    /* Configure data size. */
    if ((xfer->cmdType == kFLEXSPI_Read) || (xfer->cmdType == kFLEXSPI_Write) || (xfer->cmdType == kFLEXSPI_Config))
    {
        configValue = FLEXSPI_IPCR1_IDATSZ(xfer->dataSize);
    }

    /* Configure sequence ID. */
    configValue |= FLEXSPI_IPCR1_ISEQID(xfer->seqIndex) | FLEXSPI_IPCR1_ISEQNUM(xfer->SeqNumber - 1);
    base->IPCR1 = configValue;

    /* Start Transfer. */
    base->IPCMD |= FLEXSPI_IPCMD_TRG_MASK;

    if ((xfer->cmdType == kFLEXSPI_Write) || (xfer->cmdType == kFLEXSPI_Config))
    {
        result = FLEXSPI_WriteBlocking(base, xfer->data, xfer->dataSize);
    }
    else if (xfer->cmdType == kFLEXSPI_Read)
    {
        result = FLEXSPI_ReadBlocking(base, xfer->data, xfer->dataSize);
    }
    else
    {
    }

    /* Wait for bus idle. */
    while (!FLEXSPI_GetBusIdleStatus(base))
    {
    }

    if (xfer->cmdType == kFLEXSPI_Command)
    {
        result = FLEXSPI_CheckAndClearError(base, base->INTR);
    }

    return result;
}

void FLEXSPI_TransferCreateHandle(FLEXSPI_Type *base,
                                  flexspi_handle_t *handle,
                                  flexspi_transfer_callback_t callback,
                                  void *userData)
{
    assert(handle);

    uint32_t instance = FLEXSPI_GetInstance(base);

    /* Zero handle. */
    memset(handle, 0, sizeof(*handle));

    /* Set callback and userData. */
    handle->completionCallback = callback;
    handle->userData = userData;

    /* Save the context in global variables to support the double weak mechanism. */
    s_flexspiHandle[instance] = handle;

    /* Enable NVIC interrupt. */
    EnableIRQ(s_flexspiIrqs[instance]);
}

status_t FLEXSPI_TransferNonBlocking(FLEXSPI_Type *base, flexspi_handle_t *handle, flexspi_transfer_t *xfer)
{
    uint32_t configValue = 0;
    status_t result = kStatus_Success;

    assert(handle);
    assert(xfer);

    /* Check if the I2C bus is idle - if not return busy status. */
    if (handle->state != kFLEXSPI_Idle)
    {
        result = kStatus_FLEXSPI_Busy;
    }
    else
    {
        handle->data = xfer->data;
        handle->dataSize = xfer->dataSize;
        handle->transferTotalSize = xfer->dataSize;
        handle->state = (xfer->cmdType == kFLEXSPI_Read) ? kFLEXSPI_BusyRead : kFLEXSPI_BusyWrite;

        /* Clear sequence pointer before sending data to external devices. */
        base->FLSHCR2[xfer->port] |= FLEXSPI_FLSHCR2_CLRINSTRPTR_MASK;

        /* Clear former pending status before start this tranfer. */
        base->INTR |= FLEXSPI_INTR_AHBCMDERR_MASK | FLEXSPI_INTR_IPCMDERR_MASK | FLEXSPI_INTR_AHBCMDGE_MASK |
                      FLEXSPI_INTR_IPCMDGE_MASK;

        /* Configure base addresss. */
        base->IPCR0 = xfer->deviceAddress;

        /* Reset fifos. */
        base->IPTXFCR |= FLEXSPI_IPTXFCR_CLRIPTXF_MASK;
        base->IPRXFCR |= FLEXSPI_IPRXFCR_CLRIPRXF_MASK;

        /* Configure data size. */
        if ((xfer->cmdType == kFLEXSPI_Read) || (xfer->cmdType == kFLEXSPI_Write))
        {
            configValue = FLEXSPI_IPCR1_IDATSZ(xfer->dataSize);
        }

        /* Configure sequence ID. */
        configValue |= FLEXSPI_IPCR1_ISEQID(xfer->seqIndex) | FLEXSPI_IPCR1_ISEQNUM(xfer->SeqNumber - 1);
        base->IPCR1 = configValue;

        /* Start Transfer. */
        base->IPCMD |= FLEXSPI_IPCMD_TRG_MASK;

        if (handle->state == kFLEXSPI_BusyRead)
        {
            FLEXSPI_EnableInterrupts(base, kFLEXSPI_IpRxFifoWatermarkAvailableFlag |
                                               kFLEXSPI_SequenceExecutionTimeoutFlag |
                                               kFLEXSPI_IpCommandSequenceErrorFlag |
                                               kFLEXSPI_IpCommandGrantTimeoutFlag | kFLEXSPI_IpCommandExcutionDoneFlag);
        }
        else
        {
            FLEXSPI_EnableInterrupts(base, kFLEXSPI_IpTxFifoWatermarkEmpltyFlag |
                                               kFLEXSPI_SequenceExecutionTimeoutFlag |
                                               kFLEXSPI_IpCommandSequenceErrorFlag |
                                               kFLEXSPI_IpCommandGrantTimeoutFlag | kFLEXSPI_IpCommandExcutionDoneFlag);
        }
    }

    return result;
}

status_t FLEXSPI_TransferGetCount(FLEXSPI_Type *base, flexspi_handle_t *handle, size_t *count)
{
    assert(handle);

    status_t result = kStatus_Success;

    if (handle->state == kFLEXSPI_Idle)
    {
        result = kStatus_NoTransferInProgress;
    }
    else
    {
        *count = handle->transferTotalSize - handle->dataSize;
    }

    return result;
}

void FLEXSPI_TransferAbort(FLEXSPI_Type *base, flexspi_handle_t *handle)
{
    assert(handle);

    FLEXSPI_DisableInterrupts(base, kIrqFlags);
    handle->state = kFLEXSPI_Idle;
}

void FLEXSPI_TransferHandleIRQ(FLEXSPI_Type *base, flexspi_handle_t *handle)
{
    uint8_t status;
    status_t result;
    uint8_t txWatermark;
    uint8_t rxWatermark;
    uint8_t i = 0;

    status = base->INTR;

    result = FLEXSPI_CheckAndClearError(base, status);

    if ((result != kStatus_Success) && (handle->completionCallback != NULL))
    {
        FLEXSPI_TransferAbort(base, handle);
        if (handle->completionCallback)
        {
            handle->completionCallback(base, handle, result, handle->userData);
        }
        return;
    }

    if ((status & kFLEXSPI_IpRxFifoWatermarkAvailableFlag) && (handle->state == kFLEXSPI_BusyRead))
    {
        rxWatermark = ((base->IPRXFCR & FLEXSPI_IPRXFCR_RXWMRK_MASK) >> FLEXSPI_IPRXFCR_RXWMRK_SHIFT) + 1;

        /* Read watermark level data from rx fifo . */
        if (handle->dataSize >= 8 * rxWatermark)
        {
            /* Read watermark level data from rx fifo . */
            for (i = 0; i < 2 * rxWatermark; i++)
            {
                *handle->data++ = base->RFDR[i];
            }

            handle->dataSize = handle->dataSize - 8 * rxWatermark;
        }
        else
        {
            for (i = 0; i < (handle->dataSize / 4 + 1); i++)
            {
                *handle->data++ = base->RFDR[i];
            }
            handle->dataSize = 0;
        }
        /* Pop out a watermark level datas from IP RX FIFO. */
        base->INTR |= kFLEXSPI_IpRxFifoWatermarkAvailableFlag;
    }

    if (status & kFLEXSPI_IpCommandExcutionDoneFlag)
    {
        base->INTR |= kFLEXSPI_IpCommandExcutionDoneFlag;

        FLEXSPI_TransferAbort(base, handle);

        if (handle->completionCallback)
        {
            handle->completionCallback(base, handle, kStatus_Success, handle->userData);
        }
    }

    /* TX FIFO empty interrupt, push watermark level data into tx FIFO. */
    if ((status & kFLEXSPI_IpTxFifoWatermarkEmpltyFlag) && (handle->state == kFLEXSPI_BusyWrite))
    {
        if (handle->dataSize)
        {
            txWatermark = ((base->IPTXFCR & FLEXSPI_IPTXFCR_TXWMRK_MASK) >> FLEXSPI_IPTXFCR_TXWMRK_SHIFT) + 1;
            /* Write watermark level data into tx fifo . */
            if (handle->dataSize >= 8 * txWatermark)
            {
                for (i = 0; i < 2 * txWatermark; i++)
                {
                    base->TFDR[i] = *handle->data++;
                }

                handle->dataSize = handle->dataSize - 8 * txWatermark;
            }
            else
            {
                for (i = 0; i < (handle->dataSize / 4 + 1); i++)
                {
                    base->TFDR[i] = *handle->data++;
                }
                handle->dataSize = 0;
            }

            /* Push a watermark level datas into IP TX FIFO. */
            base->INTR |= kFLEXSPI_IpTxFifoWatermarkEmpltyFlag;
        }
    }
    else
    {
    }
}

#if defined(FLEXSPI)
void FLEXSPI_DriverIRQHandler(void)
{
    FLEXSPI_TransferHandleIRQ(FLEXSPI, s_flexspiHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif

#if defined(FLEXSPI0)
void FLEXSPI0_DriverIRQHandler(void)
{
    FLEXSPI_TransferHandleIRQ(FLEXSPI0, s_flexspiHandle[0]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif
#if defined(FLEXSPI1)
void FLEXSPI1_DriverIRQHandler(void)
{
    FLEXSPI_TransferHandleIRQ(FLEXSPI1, s_flexspiHandle[1]);
/* Add for ARM errata 838869, affects Cortex-M4, Cortex-M4F Store immediate overlapping
  exception return operation might vector to incorrect interrupt */
#if defined __CORTEX_M && (__CORTEX_M == 4U)
    __DSB();
#endif
}
#endif