#include "rt_stm32f10x_spi.h" static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration); static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message); static struct rt_spi_ops stm32_spi_ops = { configure, xfer }; #ifdef USING_SPI1 static struct stm32_spi_bus stm32_spi_bus_1; #endif /* #ifdef USING_SPI1 */ #ifdef USING_SPI2 static struct stm32_spi_bus stm32_spi_bus_2; #endif /* #ifdef USING_SPI2 */ #ifdef USING_SPI3 static struct stm32_spi_bus stm32_spi_bus_3; #endif /* #ifdef USING_SPI3 */ //------------------ DMA ------------------ #ifdef SPI_USE_DMA static uint8_t dummy = 0xFF; #endif #ifdef SPI_USE_DMA static void DMA_Configuration(struct stm32_spi_bus * stm32_spi_bus, const void * send_addr, void * recv_addr, rt_size_t size) { DMA_InitTypeDef DMA_InitStructure; DMA_ClearFlag(stm32_spi_bus->DMA_Channel_RX_FLAG_TC | stm32_spi_bus->DMA_Channel_RX_FLAG_TE | stm32_spi_bus->DMA_Channel_TX_FLAG_TC | stm32_spi_bus->DMA_Channel_TX_FLAG_TE); /* RX channel configuration */ DMA_Cmd(stm32_spi_bus->DMA_Channel_RX, DISABLE); DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&(stm32_spi_bus->SPI->DR)); DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_InitStructure.DMA_BufferSize = size; if(recv_addr != RT_NULL) { DMA_InitStructure.DMA_MemoryBaseAddr = (u32) recv_addr; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; } else { DMA_InitStructure.DMA_MemoryBaseAddr = (u32) (&dummy); DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; } DMA_Init(stm32_spi_bus->DMA_Channel_RX, &DMA_InitStructure); DMA_Cmd(stm32_spi_bus->DMA_Channel_RX, ENABLE); /* TX channel configuration */ DMA_Cmd(stm32_spi_bus->DMA_Channel_TX, DISABLE); DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&(stm32_spi_bus->SPI->DR)); DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_InitStructure.DMA_BufferSize = size; if(send_addr != RT_NULL) { DMA_InitStructure.DMA_MemoryBaseAddr = (u32)send_addr; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; } else { DMA_InitStructure.DMA_MemoryBaseAddr = (u32)(&dummy);; DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable; } DMA_Init(stm32_spi_bus->DMA_Channel_TX, &DMA_InitStructure); DMA_Cmd(stm32_spi_bus->DMA_Channel_TX, ENABLE); } #endif rt_inline uint16_t get_spi_BaudRatePrescaler(rt_uint32_t max_hz) { uint16_t SPI_BaudRatePrescaler; /* STM32F10x SPI MAX 18Mhz */ if(max_hz >= SystemCoreClock/2 && SystemCoreClock/2 <= 18000000) { SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_2; } else if(max_hz >= SystemCoreClock/4) { SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_4; } else if(max_hz >= SystemCoreClock/8) { SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8; } else if(max_hz >= SystemCoreClock/16) { SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16; } else if(max_hz >= SystemCoreClock/32) { SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_32; } else if(max_hz >= SystemCoreClock/64) { SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_64; } else if(max_hz >= SystemCoreClock/128) { SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128; } else { /* min prescaler 256 */ SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; } return SPI_BaudRatePrescaler; } static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration) { struct stm32_spi_bus * stm32_spi_bus = (struct stm32_spi_bus *)device->bus; SPI_InitTypeDef SPI_InitStructure; SPI_StructInit(&SPI_InitStructure); /* data_width */ if(configuration->data_width <= 8) { SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; } else if(configuration->data_width <= 16) { SPI_InitStructure.SPI_DataSize = SPI_DataSize_16b; } else { return RT_EIO; } /* baudrate */ SPI_InitStructure.SPI_BaudRatePrescaler = get_spi_BaudRatePrescaler(configuration->max_hz); /* CPOL */ if(configuration->mode & RT_SPI_CPOL) { SPI_InitStructure.SPI_CPOL = SPI_CPOL_High; } else { SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low; } /* CPHA */ if(configuration->mode & RT_SPI_CPHA) { SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge; } else { SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge; } /* MSB or LSB */ if(configuration->mode & RT_SPI_MSB) { SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; } else { SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_LSB; } SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; SPI_InitStructure.SPI_Mode = SPI_Mode_Master; SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; /* init SPI */ SPI_I2S_DeInit(stm32_spi_bus->SPI); SPI_Init(stm32_spi_bus->SPI, &SPI_InitStructure); /* Enable SPI_MASTER */ SPI_Cmd(stm32_spi_bus->SPI, ENABLE); SPI_CalculateCRC(stm32_spi_bus->SPI, DISABLE); return RT_EOK; }; static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message) { struct stm32_spi_bus * stm32_spi_bus = (struct stm32_spi_bus *)device->bus; struct rt_spi_configuration * config = &device->config; SPI_TypeDef * SPI = stm32_spi_bus->SPI; struct stm32_spi_cs * stm32_spi_cs = device->parent.user_data; rt_uint32_t size = message->length; /* take CS */ if(message->cs_take) { GPIO_ResetBits(stm32_spi_cs->GPIOx, stm32_spi_cs->GPIO_Pin); } #ifdef SPI_USE_DMA if(message->length > 32) { if(config->data_width <= 8) { DMA_Configuration(stm32_spi_bus, message->send_buf, message->recv_buf, message->length); SPI_I2S_DMACmd(SPI, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, ENABLE); while (DMA_GetFlagStatus(stm32_spi_bus->DMA_Channel_RX_FLAG_TC) == RESET || DMA_GetFlagStatus(stm32_spi_bus->DMA_Channel_TX_FLAG_TC) == RESET); SPI_I2S_DMACmd(SPI, SPI_I2S_DMAReq_Tx | SPI_I2S_DMAReq_Rx, DISABLE); } // rt_memcpy(buffer,_spi_flash_buffer,DMA_BUFFER_SIZE); // buffer += DMA_BUFFER_SIZE; } else #endif { if(config->data_width <= 8) { const rt_uint8_t * send_ptr = message->send_buf; rt_uint8_t * recv_ptr = message->recv_buf; while(size--) { rt_uint8_t data = 0xFF; if(send_ptr != RT_NULL) { data = *send_ptr++; } //Wait until the transmit buffer is empty while (SPI_I2S_GetFlagStatus(SPI, SPI_I2S_FLAG_TXE) == RESET); // Send the byte SPI_I2S_SendData(SPI, data); //Wait until a data is received while (SPI_I2S_GetFlagStatus(SPI, SPI_I2S_FLAG_RXNE) == RESET); // Get the received data data = SPI_I2S_ReceiveData(SPI); if(recv_ptr != RT_NULL) { *recv_ptr++ = data; } } } else if(config->data_width <= 16) { const rt_uint16_t * send_ptr = message->send_buf; rt_uint16_t * recv_ptr = message->recv_buf; while(size--) { rt_uint16_t data = 0xFF; if(send_ptr != RT_NULL) { data = *send_ptr++; } //Wait until the transmit buffer is empty while (SPI_I2S_GetFlagStatus(SPI, SPI_I2S_FLAG_TXE) == RESET); // Send the byte SPI_I2S_SendData(SPI, data); //Wait until a data is received while (SPI_I2S_GetFlagStatus(SPI, SPI_I2S_FLAG_RXNE) == RESET); // Get the received data data = SPI_I2S_ReceiveData(SPI); if(recv_ptr != RT_NULL) { *recv_ptr++ = data; } } } } /* release CS */ if(message->cs_release) { GPIO_SetBits(stm32_spi_cs->GPIOx, stm32_spi_cs->GPIO_Pin); } return message->length; }; /** \brief init and register stm32 spi bus. * * \param SPI: STM32 SPI, e.g: SPI1,SPI2,SPI3. * \param stm32_spi: stm32 spi bus struct. * \param spi_bus_name: spi bus name, e.g: "spi1" * \return * */ rt_err_t stm32_spi_register(SPI_TypeDef * SPI, struct stm32_spi_bus * stm32_spi, const char * spi_bus_name) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE); if(SPI == SPI1) { stm32_spi->SPI = SPI1; #ifdef SPI_USE_DMA /* Enable the DMA1 Clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); stm32_spi->DMA_Channel_RX = DMA1_Channel2; stm32_spi->DMA_Channel_TX = DMA1_Channel3; stm32_spi->DMA_Channel_RX_FLAG_TC = DMA1_FLAG_TC2; stm32_spi->DMA_Channel_RX_FLAG_TE = DMA1_FLAG_TE2; stm32_spi->DMA_Channel_TX_FLAG_TC = DMA1_FLAG_TC3; stm32_spi->DMA_Channel_TX_FLAG_TE = DMA1_FLAG_TE3; #endif RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE); } else if(SPI == SPI2) { stm32_spi->SPI = SPI2; #ifdef SPI_USE_DMA /* Enable the DMA1 Clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); stm32_spi->DMA_Channel_RX = DMA1_Channel4; stm32_spi->DMA_Channel_TX = DMA1_Channel5; stm32_spi->DMA_Channel_RX_FLAG_TC = DMA1_FLAG_TC4; stm32_spi->DMA_Channel_RX_FLAG_TE = DMA1_FLAG_TE4; stm32_spi->DMA_Channel_TX_FLAG_TC = DMA1_FLAG_TC5; stm32_spi->DMA_Channel_TX_FLAG_TE = DMA1_FLAG_TE5; #endif RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE); } else if(SPI == SPI3) { stm32_spi->SPI = SPI3; #ifdef SPI_USE_DMA /* Enable the DMA2 Clock */ RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA2, ENABLE); stm32_spi->DMA_Channel_RX = DMA2_Channel1; stm32_spi->DMA_Channel_TX = DMA2_Channel2; stm32_spi->DMA_Channel_RX_FLAG_TC = DMA2_FLAG_TC1; stm32_spi->DMA_Channel_RX_FLAG_TE = DMA2_FLAG_TE1; stm32_spi->DMA_Channel_TX_FLAG_TC = DMA2_FLAG_TC2; stm32_spi->DMA_Channel_TX_FLAG_TE = DMA2_FLAG_TE2; #endif RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI3, ENABLE); } else { return RT_ENOSYS; } return rt_spi_bus_register(&stm32_spi->parent, spi_bus_name, &stm32_spi_ops); }