/* * Copyright (c) 2006-2024, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023/06/25 flyingcys first version */ #include #include #include #include "board.h" #include "drv_uart.h" #include "drv_pinmux.h" #define DBG_TAG "DRV.UART" #define DBG_LVL DBG_WARNING #include /* * Divide positive or negative dividend by positive divisor and round * to closest integer. Result is undefined for negative divisors and * for negative dividends if the divisor variable type is unsigned. */ #define DIV_ROUND_CLOSEST(x, divisor)( \ { \ typeof(x) __x = x; \ typeof(divisor) __d = divisor; \ (((typeof(x))-1) > 0 || \ ((typeof(divisor))-1) > 0 || (__x) > 0) ? \ (((__x) + ((__d) / 2)) / (__d)) : \ (((__x) - ((__d) / 2)) / (__d)); \ } \ ) #define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE) struct hw_uart_device { rt_ubase_t hw_base; rt_uint32_t irqno; }; #define BSP_DEFINE_UART_DEVICE(no) \ static struct hw_uart_device _uart##no##_device = \ { \ UART##no##_BASE, \ UART##no##_IRQ \ }; \ static struct rt_serial_device _serial##no; #ifdef BSP_USING_UART0 BSP_DEFINE_UART_DEVICE(0); #endif #ifdef BSP_USING_UART1 BSP_DEFINE_UART_DEVICE(1); #endif #ifdef BSP_USING_UART2 BSP_DEFINE_UART_DEVICE(2); #endif #ifdef BSP_USING_UART3 BSP_DEFINE_UART_DEVICE(3); #endif rt_inline rt_uint32_t dw8250_read32(rt_ubase_t addr, rt_ubase_t offset) { return *((volatile rt_uint32_t *)(addr + (offset << UART_REG_SHIFT))); } rt_inline void dw8250_write32(rt_ubase_t addr, rt_ubase_t offset, rt_uint32_t value) { *((volatile rt_uint32_t *)(addr + (offset << UART_REG_SHIFT))) = value; if (offset == UART_LCR) { int tries = 1000; /* Make sure LCR write wasn't ignored */ while (tries--) { unsigned int lcr = dw8250_read32(addr, UART_LCR); if ((value & ~UART_LCR_STKP) == (lcr & ~UART_LCR_STKP)) { return; } dw8250_write32(addr, UART_FCR, UART_FCR_DEFVAL); dw8250_read32(addr, UART_RX); *((volatile rt_uint32_t *)(addr + (offset << UART_REG_SHIFT))) = value; } } } static void dw8250_uart_setbrg(rt_ubase_t addr, int baud_divisor) { /* to keep serial format, read lcr before writing BKSE */ int lcr_val = dw8250_read32(addr, UART_LCR) & ~UART_LCR_BKSE; dw8250_write32(addr, UART_LCR, UART_LCR_BKSE | lcr_val); dw8250_write32(addr, UART_DLL, baud_divisor & 0xff); dw8250_write32(addr, UART_DLM, (baud_divisor >> 8) & 0xff); dw8250_write32(addr, UART_LCR, lcr_val); } static rt_err_t dw8250_uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg) { rt_base_t base; struct hw_uart_device *uart; int clock_divisor; RT_ASSERT(serial != RT_NULL); uart = (struct hw_uart_device *)serial->parent.user_data; base = uart->hw_base; while (!(dw8250_read32(base, UART_LSR) & UART_LSR_TEMT)); dw8250_write32(base, UART_IER, 0); dw8250_write32(base, UART_MCR, UART_MCRVAL); dw8250_write32(base, UART_FCR, UART_FCR_DEFVAL); /* initialize serial config to 8N1 before writing baudrate */ dw8250_write32(base, UART_LCR, UART_LCR_8N1); clock_divisor = DIV_ROUND_CLOSEST(UART_INPUT_CLK, 16 * serial->config.baud_rate); dw8250_uart_setbrg(base, clock_divisor); return RT_EOK; } static rt_err_t dw8250_uart_control(struct rt_serial_device *serial, int cmd, void *arg) { struct hw_uart_device *uart; RT_ASSERT(serial != RT_NULL); uart = (struct hw_uart_device *)serial->parent.user_data; switch (cmd) { case RT_DEVICE_CTRL_CLR_INT: /* Disable rx irq */ dw8250_write32(uart->hw_base, UART_IER, !UART_IER_RDI); rt_hw_interrupt_mask(uart->irqno); break; case RT_DEVICE_CTRL_SET_INT: /* Enable rx irq */ dw8250_write32(uart->hw_base, UART_IER, UART_IER_RDI); rt_hw_interrupt_umask(uart->irqno); break; } return RT_EOK; } static int dw8250_uart_putc(struct rt_serial_device *serial, char c) { rt_base_t base; struct hw_uart_device *uart; RT_ASSERT(serial != RT_NULL); uart = (struct hw_uart_device *)serial->parent.user_data; base = uart->hw_base; while ((dw8250_read32(base, UART_LSR) & BOTH_EMPTY) != BOTH_EMPTY); dw8250_write32(base, UART_TX, c); return 1; } static int dw8250_uart_getc(struct rt_serial_device *serial) { int ch = -1; rt_base_t base; struct hw_uart_device *uart; RT_ASSERT(serial != RT_NULL); uart = (struct hw_uart_device *)serial->parent.user_data; base = uart->hw_base; if (dw8250_read32(base, UART_LSR) & UART_LSR_DR) { ch = dw8250_read32(base, UART_RX) & 0xff; } return ch; } static const struct rt_uart_ops _uart_ops = { dw8250_uart_configure, dw8250_uart_control, dw8250_uart_putc, dw8250_uart_getc, }; static void rt_hw_uart_isr(int irqno, void *param) { unsigned int iir, status; struct rt_serial_device *serial = (struct rt_serial_device *)param; struct hw_uart_device *uart = (struct hw_uart_device *)serial->parent.user_data; iir = dw8250_read32(uart->hw_base, UART_IIR); /* If don't do this in non-DMA mode then the "RX TIMEOUT" interrupt will fire forever. */ if ((iir & 0x3f) == UART_IIR_RX_TIMEOUT) { status = dw8250_read32(uart->hw_base, UART_LSR); if (!(status & (UART_LSR_DR | UART_LSR_BI))) { dw8250_read32(uart->hw_base, UART_RX); } } if (!(iir & UART_IIR_NO_INT)) { rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND); } if ((iir & UART_IIR_BUSY) == UART_IIR_BUSY) { /* Clear the USR */ dw8250_read32(uart->hw_base, UART_USR); return; } } #if defined(BOARD_TYPE_MILKV_DUO) || defined(BOARD_TYPE_MILKV_DUO_SPINOR) #ifdef BSP_USING_UART0 static const char *pinname_whitelist_uart0_rx[] = { "UART0_RX", NULL, }; static const char *pinname_whitelist_uart0_tx[] = { "UART0_TX", NULL, }; #endif #ifdef BSP_USING_UART1 static const char *pinname_whitelist_uart1_rx[] = { "IIC0_SDA", "UART0_RX", NULL, }; static const char *pinname_whitelist_uart1_tx[] = { "IIC0_SCL", "UART0_TX", NULL, }; #endif #ifdef BSP_USING_UART2 static const char *pinname_whitelist_uart2_rx[] = { "IIC0_SDA", "SD1_D1", NULL, }; static const char *pinname_whitelist_uart2_tx[] = { "IIC0_SCL", "SD1_D2", NULL, }; #endif #ifdef BSP_USING_UART3 static const char *pinname_whitelist_uart3_rx[] = { "SD1_D1", NULL, }; static const char *pinname_whitelist_uart3_tx[] = { "SD1_D2", NULL, }; #endif #ifdef BSP_USING_UART4 static const char *pinname_whitelist_uart4_rx[] = { "SD1_GPIO0", NULL, }; static const char *pinname_whitelist_uart4_tx[] = { "SD1_GPIO1", NULL, }; #endif #elif defined(BOARD_TYPE_MILKV_DUO256M) || defined(BOARD_TYPE_MILKV_DUO256M_SPINOR) #ifdef BSP_USING_UART0 static const char *pinname_whitelist_uart0_rx[] = { "UART0_RX", NULL, }; static const char *pinname_whitelist_uart0_tx[] = { "UART0_TX", NULL, }; #endif #ifdef BSP_USING_UART1 static const char *pinname_whitelist_uart1_rx[] = { "IIC0_SDA", "JTAG_CPU_TCK", "UART0_RX", NULL, }; static const char *pinname_whitelist_uart1_tx[] = { "IIC0_SCL", "JTAG_CPU_TMS", "UART0_TX", NULL, }; #endif #ifdef BSP_USING_UART2 static const char *pinname_whitelist_uart2_rx[] = { "IIC0_SDA", "SD1_D1", NULL, }; static const char *pinname_whitelist_uart2_tx[] = { "IIC0_SCL", "SD1_D2", NULL, }; #endif #ifdef BSP_USING_UART3 static const char *pinname_whitelist_uart3_rx[] = { "SD1_D1", NULL, }; static const char *pinname_whitelist_uart3_tx[] = { "SD1_D2", NULL, }; #endif #ifdef BSP_USING_UART4 static const char *pinname_whitelist_uart4_rx[] = { NULL, }; static const char *pinname_whitelist_uart4_tx[] = { NULL, }; #endif #else #error "Unsupported board type!" #endif int rt_hw_uart_init(void) { struct hw_uart_device* uart; struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT; config.baud_rate = 115200; #define BSP_INSTALL_UART_DEVICE(no) \ uart = &_uart##no##_device; \ _serial##no.ops = &_uart_ops; \ _serial##no.config = config; \ rt_hw_serial_register(&_serial##no, "uart" #no, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX, uart); \ rt_hw_interrupt_install(uart->irqno, rt_hw_uart_isr, &_serial##no, "uart" #no); #ifdef BSP_USING_UART0 pinmux_config(BSP_UART0_RX_PINNAME, UART0_RX, pinname_whitelist_uart0_rx); pinmux_config(BSP_UART0_TX_PINNAME, UART0_TX, pinname_whitelist_uart0_tx); BSP_INSTALL_UART_DEVICE(0); #if defined(ARCH_ARM) uart->hw_base = (rt_size_t)rt_ioremap((void*)uart->hw_base, 0x10000); #endif /* defined(ARCH_ARM) */ #endif #ifdef BSP_USING_UART1 pinmux_config(BSP_UART1_RX_PINNAME, UART1_RX, pinname_whitelist_uart1_rx); pinmux_config(BSP_UART1_TX_PINNAME, UART1_TX, pinname_whitelist_uart1_tx); BSP_INSTALL_UART_DEVICE(1); #if defined(ARCH_ARM) uart->hw_base = (rt_size_t)rt_ioremap((void*)uart->hw_base, 0x10000); #endif /* defined(ARCH_ARM) */ #endif #ifdef BSP_USING_UART2 pinmux_config(BSP_UART2_RX_PINNAME, UART2_RX, pinname_whitelist_uart2_rx); pinmux_config(BSP_UART2_TX_PINNAME, UART2_TX, pinname_whitelist_uart2_tx); BSP_INSTALL_UART_DEVICE(2); #if defined(ARCH_ARM) uart->hw_base = (rt_size_t)rt_ioremap((void*)uart->hw_base, 0x10000); #endif /* defined(ARCH_ARM) */ #endif #ifdef BSP_USING_UART3 pinmux_config(BSP_UART3_RX_PINNAME, UART3_RX, pinname_whitelist_uart3_rx); pinmux_config(BSP_UART3_TX_PINNAME, UART3_TX, pinname_whitelist_uart3_tx); BSP_INSTALL_UART_DEVICE(3); #if defined(ARCH_ARM) uart->hw_base = (rt_size_t)rt_ioremap((void*)uart->hw_base, 0x10000); #endif /* defined(ARCH_ARM) */ #endif #ifdef BSP_USING_UART4 pinmux_config(BSP_UART4_RX_PINNAME, UART4_RX, pinname_whitelist_uart4_rx); pinmux_config(BSP_UART4_TX_PINNAME, UART4_TX, pinname_whitelist_uart4_tx); BSP_INSTALL_UART_DEVICE(4); #if defined(ARCH_ARM) uart->hw_base = (rt_size_t)rt_ioremap((void*)uart->hw_base, 0x10000); #endif /* defined(ARCH_ARM) */ #endif return 0; }