//***************************************************************************** // // sysctl.c - Driver for the system controller. // // Copyright (c) 2005-2020 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // Neither the name of Texas Instruments Incorporated nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // This is part of revision 2.2.0.295 of the Tiva Peripheral Driver Library. // //***************************************************************************** //***************************************************************************** // //! \addtogroup sysctl_api //! @{ // //***************************************************************************** #include #include #include "inc/hw_ints.h" #include "inc/hw_nvic.h" #include "inc/hw_sysctl.h" #include "inc/hw_types.h" #include "inc/hw_flash.h" #include "driverlib/cpu.h" #include "driverlib/debug.h" #include "driverlib/interrupt.h" #include "driverlib/sysctl.h" //***************************************************************************** // // The flash shift used in the math to calculate the flash sector size. // //***************************************************************************** #ifndef FLASH_PP_MAINSS_S #define FLASH_PP_MAINSS_S 16 #endif //***************************************************************************** // // This macro converts the XTAL value provided in the ui32Config parameter to // an index to the g_pui32Xtals array. // //***************************************************************************** #define SysCtlXtalCfgToIndex(a) ((a & 0x7c0) >> 6) //***************************************************************************** // // An array that maps the crystal number in RCC to a frequency. // //***************************************************************************** static const uint32_t g_pui32Xtals[] = { 1000000, 1843200, 2000000, 2457600, 3579545, 3686400, 4000000, 4096000, 4915200, 5000000, 5120000, 6000000, 6144000, 7372800, 8000000, 8192000, 10000000, 12000000, 12288000, 13560000, 14318180, 16000000, 16384000, 18000000, 20000000, 24000000, 25000000 }; //***************************************************************************** // // Maximum number of VCO entries in the g_pui32XTALtoVCO and // g_pui32VCOFrequencies structures for a device. // //***************************************************************************** #define MAX_VCO_ENTRIES 2 #define MAX_XTAL_ENTRIES 18 //***************************************************************************** // // These macros are used in the g_pui32XTALtoVCO table to make it more // readable. // //***************************************************************************** #define PLL_M_TO_REG(mi, mf) \ ((uint32_t)mi | (uint32_t)(mf << SYSCTL_PLLFREQ0_MFRAC_S)) #define PLL_N_TO_REG(n) \ ((uint32_t)(n - 1) << SYSCTL_PLLFREQ1_N_S) #define PLL_Q_TO_REG(q) \ ((uint32_t)(q - 1) << SYSCTL_PLLFREQ1_Q_S) //***************************************************************************** // // Look up of the values that go into the PLLFREQ0 and PLLFREQ1 registers. // //***************************************************************************** static const uint32_t g_pppui32XTALtoVCO[MAX_VCO_ENTRIES][MAX_XTAL_ENTRIES][3] = { { // // VCO 320 MHz // { PLL_M_TO_REG(64, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 5 MHz { PLL_M_TO_REG(62, 512), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 5.12 MHz { PLL_M_TO_REG(160, 0), PLL_N_TO_REG(3), PLL_Q_TO_REG(2) }, // 6 MHz { PLL_M_TO_REG(52, 85), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 6.144 MHz { PLL_M_TO_REG(43, 412), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 7.3728 MHz { PLL_M_TO_REG(40, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 8 MHz { PLL_M_TO_REG(39, 64), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 8.192 MHz { PLL_M_TO_REG(32, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 10 MHz { PLL_M_TO_REG(80, 0), PLL_N_TO_REG(3), PLL_Q_TO_REG(2) }, // 12 MHz { PLL_M_TO_REG(26, 43), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 12.288 MHz { PLL_M_TO_REG(23, 613), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 13.56 MHz { PLL_M_TO_REG(22, 358), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 14.318180 MHz { PLL_M_TO_REG(20, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 16 MHz { PLL_M_TO_REG(19, 544), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 16.384 MHz { PLL_M_TO_REG(160, 0), PLL_N_TO_REG(9), PLL_Q_TO_REG(2) }, // 18 MHz { PLL_M_TO_REG(16, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 20 MHz { PLL_M_TO_REG(40, 0), PLL_N_TO_REG(3), PLL_Q_TO_REG(2) }, // 24 MHz { PLL_M_TO_REG(64, 0), PLL_N_TO_REG(5), PLL_Q_TO_REG(2) }, // 25 MHz }, { // // VCO 480 MHz // { PLL_M_TO_REG(96, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 5 MHz { PLL_M_TO_REG(93, 768), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 5.12 MHz { PLL_M_TO_REG(80, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 6 MHz { PLL_M_TO_REG(78, 128), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 6.144 MHz { PLL_M_TO_REG(65, 107), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 7.3728 MHz { PLL_M_TO_REG(60, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 8 MHz { PLL_M_TO_REG(58, 608), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 8.192 MHz { PLL_M_TO_REG(48, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 10 MHz { PLL_M_TO_REG(40, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 12 MHz { PLL_M_TO_REG(39, 64), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 12.288 MHz { PLL_M_TO_REG(35, 408), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 13.56 MHz { PLL_M_TO_REG(33, 536), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 14.318180 MHz { PLL_M_TO_REG(30, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 16 MHz { PLL_M_TO_REG(29, 304), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 16.384 MHz { PLL_M_TO_REG(80, 0), PLL_N_TO_REG(3), PLL_Q_TO_REG(2) }, // 18 MHz { PLL_M_TO_REG(24, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 20 MHz { PLL_M_TO_REG(20, 0), PLL_N_TO_REG(1), PLL_Q_TO_REG(2) }, // 24 MHz { PLL_M_TO_REG(96, 0), PLL_N_TO_REG(5), PLL_Q_TO_REG(2) }, // 25 MHz }, }; //***************************************************************************** // // The mapping of system clock frequency to flash memory timing parameters. // //***************************************************************************** static const struct { uint32_t ui32Frequency; uint32_t ui32MemTiming; } g_sXTALtoMEMTIM[] = { { 16000000, (SYSCTL_MEMTIM0_FBCHT_0_5 | SYSCTL_MEMTIM0_FBCE | (0 << SYSCTL_MEMTIM0_FWS_S) | SYSCTL_MEMTIM0_EBCHT_0_5 | SYSCTL_MEMTIM0_EBCE | (0 << SYSCTL_MEMTIM0_EWS_S) | SYSCTL_MEMTIM0_MB1) }, { 40000000, (SYSCTL_MEMTIM0_FBCHT_1_5 | (1 << SYSCTL_MEMTIM0_FWS_S) | SYSCTL_MEMTIM0_EBCHT_1_5 | (1 << SYSCTL_MEMTIM0_EWS_S) | SYSCTL_MEMTIM0_MB1) }, { 60000000, (SYSCTL_MEMTIM0_FBCHT_2 | (2 << SYSCTL_MEMTIM0_FWS_S) | SYSCTL_MEMTIM0_EBCHT_2 | (2 << SYSCTL_MEMTIM0_EWS_S) | SYSCTL_MEMTIM0_MB1) }, { 80000000, (SYSCTL_MEMTIM0_FBCHT_2_5 | (3 << SYSCTL_MEMTIM0_FWS_S) | SYSCTL_MEMTIM0_EBCHT_2_5 | (3 << SYSCTL_MEMTIM0_EWS_S) | SYSCTL_MEMTIM0_MB1) }, { 100000000, (SYSCTL_MEMTIM0_FBCHT_3 | (4 << SYSCTL_MEMTIM0_FWS_S) | SYSCTL_MEMTIM0_EBCHT_3 | (4 << SYSCTL_MEMTIM0_EWS_S) | SYSCTL_MEMTIM0_MB1) }, { 120000000, (SYSCTL_MEMTIM0_FBCHT_3_5 | (5 << SYSCTL_MEMTIM0_FWS_S) | SYSCTL_MEMTIM0_EBCHT_3_5 | (5 << SYSCTL_MEMTIM0_EWS_S) | SYSCTL_MEMTIM0_MB1) }, }; //***************************************************************************** // // Get the correct memory timings for a given system clock value. // //***************************************************************************** static uint32_t _SysCtlMemTimingGet(uint32_t ui32SysClock) { uint_fast8_t ui8Idx; // // Loop through the flash memory timings. // for(ui8Idx = 0; ui8Idx < (sizeof(g_sXTALtoMEMTIM) / sizeof(g_sXTALtoMEMTIM[0])); ui8Idx++) { // // See if the system clock frequency is less than the maximum frequency // for this flash memory timing. // if(ui32SysClock <= g_sXTALtoMEMTIM[ui8Idx].ui32Frequency) { // // This flash memory timing is the best choice for the system clock // frequency, so return it now. // return(g_sXTALtoMEMTIM[ui8Idx].ui32MemTiming); } } // // An appropriate flash memory timing could not be found, so the device is // being clocked too fast. Return the default flash memory timing. // return(0); } //***************************************************************************** // // Calculate the system frequency from the register settings base on the // oscillator input. // //***************************************************************************** static uint32_t _SysCtlFrequencyGet(uint32_t ui32Xtal) { uint32_t ui32Result; uint_fast16_t ui16F1, ui16F2; uint_fast16_t ui16PInt, ui16PFract; uint_fast8_t ui8Q, ui8N; // // Extract all of the values from the hardware registers. // ui16PFract = ((HWREG(SYSCTL_PLLFREQ0) & SYSCTL_PLLFREQ0_MFRAC_M) >> SYSCTL_PLLFREQ0_MFRAC_S); ui16PInt = HWREG(SYSCTL_PLLFREQ0) & SYSCTL_PLLFREQ0_MINT_M; ui8Q = (((HWREG(SYSCTL_PLLFREQ1) & SYSCTL_PLLFREQ1_Q_M) >> SYSCTL_PLLFREQ1_Q_S) + 1); ui8N = (((HWREG(SYSCTL_PLLFREQ1) & SYSCTL_PLLFREQ1_N_M) >> SYSCTL_PLLFREQ1_N_S) + 1); // // Divide the crystal value by N. // ui32Xtal /= (uint32_t)ui8N; // // Calculate the multiplier for bits 9:5. // ui16F1 = ui16PFract / 32; // // Calculate the multiplier for bits 4:0. // ui16F2 = ui16PFract - (ui16F1 * 32); // // Get the integer portion. // ui32Result = ui32Xtal * (uint32_t)ui16PInt; // // Add first fractional bits portion(9:0). // ui32Result += (ui32Xtal * (uint32_t)ui16F1) / 32; // // Add the second fractional bits portion(4:0). // ui32Result += (ui32Xtal * (uint32_t)ui16F2) / 1024; // // Divide the result by Q. // ui32Result = ui32Result / (uint32_t)ui8Q; // // Return the resulting PLL frequency. // return(ui32Result); } //***************************************************************************** // // Look up of the possible VCO frequencies. // //***************************************************************************** static const uint32_t g_pui32VCOFrequencies[MAX_VCO_ENTRIES] = { 160000000, // VCO 320 240000000, // VCO 480 }; //***************************************************************************** // // The base addresses of the various peripheral control registers. // //***************************************************************************** #define SYSCTL_PPBASE 0x400fe300 #define SYSCTL_SRBASE 0x400fe500 #define SYSCTL_RCGCBASE 0x400fe600 #define SYSCTL_SCGCBASE 0x400fe700 #define SYSCTL_DCGCBASE 0x400fe800 #define SYSCTL_PCBASE 0x400fe900 #define SYSCTL_PRBASE 0x400fea00 //***************************************************************************** // //! \internal //! Checks a peripheral identifier. //! //! \param ui32Peripheral is the peripheral identifier. //! //! This function determines if a peripheral identifier is valid. //! //! \return Returns \b true if the peripheral identifier is valid and \b false //! otherwise. // //***************************************************************************** #ifdef DEBUG static bool _SysCtlPeripheralValid(uint32_t ui32Peripheral) { return((ui32Peripheral == SYSCTL_PERIPH_ADC0) || (ui32Peripheral == SYSCTL_PERIPH_ADC1) || (ui32Peripheral == SYSCTL_PERIPH_CAN0) || (ui32Peripheral == SYSCTL_PERIPH_CAN1) || (ui32Peripheral == SYSCTL_PERIPH_COMP0) || (ui32Peripheral == SYSCTL_PERIPH_CCM0) || (ui32Peripheral == SYSCTL_PERIPH_EEPROM0) || (ui32Peripheral == SYSCTL_PERIPH_EPHY0) || (ui32Peripheral == SYSCTL_PERIPH_EMAC0) || (ui32Peripheral == SYSCTL_PERIPH_EPI0) || (ui32Peripheral == SYSCTL_PERIPH_FAN0) || (ui32Peripheral == SYSCTL_PERIPH_GPIOA) || (ui32Peripheral == SYSCTL_PERIPH_GPIOB) || (ui32Peripheral == SYSCTL_PERIPH_GPIOC) || (ui32Peripheral == SYSCTL_PERIPH_GPIOD) || (ui32Peripheral == SYSCTL_PERIPH_GPIOE) || (ui32Peripheral == SYSCTL_PERIPH_GPIOF) || (ui32Peripheral == SYSCTL_PERIPH_GPIOG) || (ui32Peripheral == SYSCTL_PERIPH_GPIOH) || (ui32Peripheral == SYSCTL_PERIPH_GPIOJ) || (ui32Peripheral == SYSCTL_PERIPH_GPIOK) || (ui32Peripheral == SYSCTL_PERIPH_GPIOL) || (ui32Peripheral == SYSCTL_PERIPH_GPIOM) || (ui32Peripheral == SYSCTL_PERIPH_GPION) || (ui32Peripheral == SYSCTL_PERIPH_GPIOP) || (ui32Peripheral == SYSCTL_PERIPH_GPIOQ) || (ui32Peripheral == SYSCTL_PERIPH_GPIOR) || (ui32Peripheral == SYSCTL_PERIPH_GPIOS) || (ui32Peripheral == SYSCTL_PERIPH_GPIOT) || (ui32Peripheral == SYSCTL_PERIPH_HIBERNATE) || (ui32Peripheral == SYSCTL_PERIPH_I2C0) || (ui32Peripheral == SYSCTL_PERIPH_I2C1) || (ui32Peripheral == SYSCTL_PERIPH_I2C2) || (ui32Peripheral == SYSCTL_PERIPH_I2C3) || (ui32Peripheral == SYSCTL_PERIPH_I2C4) || (ui32Peripheral == SYSCTL_PERIPH_I2C5) || (ui32Peripheral == SYSCTL_PERIPH_I2C6) || (ui32Peripheral == SYSCTL_PERIPH_I2C7) || (ui32Peripheral == SYSCTL_PERIPH_I2C8) || (ui32Peripheral == SYSCTL_PERIPH_I2C9) || (ui32Peripheral == SYSCTL_PERIPH_LCD0) || (ui32Peripheral == SYSCTL_PERIPH_PWM0) || (ui32Peripheral == SYSCTL_PERIPH_PWM1) || (ui32Peripheral == SYSCTL_PERIPH_QEI0) || (ui32Peripheral == SYSCTL_PERIPH_QEI1) || (ui32Peripheral == SYSCTL_PERIPH_SSI0) || (ui32Peripheral == SYSCTL_PERIPH_SSI1) || (ui32Peripheral == SYSCTL_PERIPH_SSI2) || (ui32Peripheral == SYSCTL_PERIPH_SSI3) || (ui32Peripheral == SYSCTL_PERIPH_TIMER0) || (ui32Peripheral == SYSCTL_PERIPH_TIMER1) || (ui32Peripheral == SYSCTL_PERIPH_TIMER2) || (ui32Peripheral == SYSCTL_PERIPH_TIMER3) || (ui32Peripheral == SYSCTL_PERIPH_TIMER4) || (ui32Peripheral == SYSCTL_PERIPH_TIMER5) || (ui32Peripheral == SYSCTL_PERIPH_TIMER6) || (ui32Peripheral == SYSCTL_PERIPH_TIMER7) || (ui32Peripheral == SYSCTL_PERIPH_UART0) || (ui32Peripheral == SYSCTL_PERIPH_UART1) || (ui32Peripheral == SYSCTL_PERIPH_UART2) || (ui32Peripheral == SYSCTL_PERIPH_UART3) || (ui32Peripheral == SYSCTL_PERIPH_UART4) || (ui32Peripheral == SYSCTL_PERIPH_UART5) || (ui32Peripheral == SYSCTL_PERIPH_UART6) || (ui32Peripheral == SYSCTL_PERIPH_UART7) || (ui32Peripheral == SYSCTL_PERIPH_UDMA) || (ui32Peripheral == SYSCTL_PERIPH_USB0) || (ui32Peripheral == SYSCTL_PERIPH_WDOG0) || (ui32Peripheral == SYSCTL_PERIPH_WDOG1) || (ui32Peripheral == SYSCTL_PERIPH_WTIMER0) || (ui32Peripheral == SYSCTL_PERIPH_WTIMER1) || (ui32Peripheral == SYSCTL_PERIPH_WTIMER2) || (ui32Peripheral == SYSCTL_PERIPH_WTIMER3) || (ui32Peripheral == SYSCTL_PERIPH_WTIMER4) || (ui32Peripheral == SYSCTL_PERIPH_WTIMER5)); } #endif //***************************************************************************** // //! Gets the size of the SRAM. //! //! This function determines the size of the SRAM on the Tiva device. //! //! \return The total number of bytes of SRAM. // //***************************************************************************** uint32_t SysCtlSRAMSizeGet(void) { return((HWREG(FLASH_SSIZE) + 1) * 256); } //***************************************************************************** // //! Gets the size of the flash. //! //! This function determines the size of the flash on the Tiva device. //! //! \return The total number of bytes of flash. // //***************************************************************************** uint32_t SysCtlFlashSizeGet(void) { // // TM4C123 devices report the flash size in DC0. // if(CLASS_IS_TM4C123) { // // Compute the size of the flash. // return(((HWREG(SYSCTL_DC0) & SYSCTL_DC0_FLASHSZ_M) << 11) + 0x800); } else { // // Get the flash size from the FLASH_PP register. // return(2048 * ((HWREG(FLASH_PP) & FLASH_PP_SIZE_M) + 1)); } } //***************************************************************************** // //! Gets the size of a single eraseable sector of flash. //! //! This function determines the flash sector size on the Tiva device. //! This size determines the erase granularity of the device flash. //! //! \return The number of bytes in a single flash sector. // //***************************************************************************** uint32_t SysCtlFlashSectorSizeGet(void) { // // TM4C129 devices store the value in a different register. // if(CLASS_IS_TM4C129) { // // Get the flash sector size from the FLASH_PP register. // return(1 << (10 + ((HWREG(FLASH_PP) & FLASH_PP_MAINSS_M) >> FLASH_PP_MAINSS_S))); } else { // // The sector size is fixed at 1KB. // return(1024); } } //***************************************************************************** // //! Determines if a peripheral is present. //! //! \param ui32Peripheral is the peripheral in question. //! //! This function determines if a particular peripheral is present in the //! device. Each member of the Tiva family has a different peripheral //! set; this function determines which peripherals are present on this device. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0, //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0, //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY, //! \b SYSCTL_PERIPH_EPI0, //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ, //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM, //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ, //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT, //! \b SYSCTL_PERIPH_HIBERNATE, //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2, //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5, //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8, //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0, //! \b SYSCTL_PERIPH_ONEWIRE0, //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0, //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1, //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0, //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6, //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4, //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7, //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1, //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3, //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5 //! //! \return Returns \b true if the specified peripheral is present and \b false //! if it is not. // //***************************************************************************** bool SysCtlPeripheralPresent(uint32_t ui32Peripheral) { // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // See if this peripheral is present. // return(HWREGBITW(SYSCTL_PPBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff)); } //***************************************************************************** // //! Determines if a peripheral is ready. //! //! \param ui32Peripheral is the peripheral in question. //! //! This function determines if a particular peripheral is ready to be //! accessed. The peripheral may be in a non-ready state if it is not enabled, //! is being held in reset, or is in the process of becoming ready after being //! enabled or taken out of reset. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0, //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0, //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY, //! \b SYSCTL_PERIPH_EPI0, //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ, //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM, //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ, //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT, //! \b SYSCTL_PERIPH_HIBERNATE, //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2, //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5, //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8, //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0, //! \b SYSCTL_PERIPH_ONEWIRE0, //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0, //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1, //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0, //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6, //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4, //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7, //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1, //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3, //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5 //! //! \note The ability to check for a peripheral being ready varies based on the //! Tiva part in use. Please consult the data sheet for the part you are //! using to determine if this feature is available. //! //! \return Returns \b true if the specified peripheral is ready and \b false //! if it is not. // //***************************************************************************** bool SysCtlPeripheralReady(uint32_t ui32Peripheral) { // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // See if this peripheral is ready. // return(HWREGBITW(SYSCTL_PRBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff)); } //***************************************************************************** // //! Powers on a peripheral. //! //! \param ui32Peripheral is the peripheral to be powered on. //! //! This function turns on the power to a peripheral. The peripheral continues //! to receive power even when its clock is not enabled. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_CAN0,\b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_EMAC, //! \b SYSCTL_PERIPH_EPHY, \b SYSCTL_PERIPH_LCD0, \b SYSCTL_PERIPH_USB0 //! //! \note The ability to power off a peripheral varies based on the Tiva //! part in use. Please consult the data sheet for the part you are using to //! determine if this feature is available. //! //! \return None. // //***************************************************************************** void SysCtlPeripheralPowerOn(uint32_t ui32Peripheral) { // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // Power on this peripheral. // HWREGBITW(SYSCTL_PCBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff) = 1; } //***************************************************************************** // //! Powers off a peripheral. //! //! \param ui32Peripheral is the peripheral to be powered off. //! //! This function allows the power to a peripheral to be turned off. The //! peripheral continues to receive power when its clock is enabled, but //! the power is removed when its clock is disabled. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_CAN0,\b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_EMAC, //! \b SYSCTL_PERIPH_EPHY, \b SYSCTL_PERIPH_LCD0, \b SYSCTL_PERIPH_USB0 //! //! \note The ability to power off a peripheral varies based on the Tiva //! part in use. Please consult the data sheet for the part you are using to //! determine if this feature is available. //! //! \return None. // //***************************************************************************** void SysCtlPeripheralPowerOff(uint32_t ui32Peripheral) { // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // Power off this peripheral. // HWREGBITW(SYSCTL_PCBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff) = 0; } //***************************************************************************** // //! Performs a software reset of a peripheral. //! //! \param ui32Peripheral is the peripheral to reset. //! //! This function performs a software reset of the specified peripheral. An //! individual peripheral reset signal is asserted for a brief period and then //! de-asserted, returning the internal state of the peripheral to its reset //! condition. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0, //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0, //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY, //! \b SYSCTL_PERIPH_EPI0, //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ, //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM, //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ, //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT, //! \b SYSCTL_PERIPH_HIBERNATE, //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2, //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5, //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8, //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0, //! \b SYSCTL_PERIPH_ONEWIRE0, //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0, //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1, //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0, //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6, //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4, //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7, //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1, //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3, //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5 //! //! \return None. // //***************************************************************************** void SysCtlPeripheralReset(uint32_t ui32Peripheral) { volatile uint_fast8_t ui8Delay; // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // Put the peripheral into the reset state. // HWREGBITW(SYSCTL_SRBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff) = 1; // // Delay for a little bit. // for(ui8Delay = 0; ui8Delay < 16; ui8Delay++) { } // // Take the peripheral out of the reset state. // HWREGBITW(SYSCTL_SRBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff) = 0; } //***************************************************************************** // //! Enables a peripheral. //! //! \param ui32Peripheral is the peripheral to enable. //! //! This function enables a peripheral. At power-up, all peripherals are //! disabled; they must be enabled in order to operate or respond to register //! reads/writes. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0, //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0, //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY, //! \b SYSCTL_PERIPH_EPI0, //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ, //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM, //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ, //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT, //! \b SYSCTL_PERIPH_HIBERNATE, //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2, //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5, //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8, //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0, //! \b SYSCTL_PERIPH_ONEWIRE0, //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0, //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1, //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0, //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6, //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4, //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7, //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1, //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3, //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5 //! //! \note It takes five clock cycles after the write to enable a peripheral //! before the the peripheral is actually enabled. During this time, attempts //! to access the peripheral result in a bus fault. Care should be taken //! to ensure that the peripheral is not accessed during this brief time //! period. //! //! \return None. // //***************************************************************************** void SysCtlPeripheralEnable(uint32_t ui32Peripheral) { // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // Enable this peripheral. // HWREGBITW(SYSCTL_RCGCBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff) = 1; } //***************************************************************************** // //! Disables a peripheral. //! //! \param ui32Peripheral is the peripheral to disable. //! //! This function disables a peripheral. Once disabled, they do not operate or //! respond to register reads/writes. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0, //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0, //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY, //! \b SYSCTL_PERIPH_EPI0, //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ, //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM, //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ, //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT, //! \b SYSCTL_PERIPH_HIBERNATE, //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2, //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5, //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8, //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0, //! \b SYSCTL_PERIPH_ONEWIRE0, //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0, //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1, //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0, //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6, //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4, //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7, //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1, //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3, //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5 //! //! \return None. // //***************************************************************************** void SysCtlPeripheralDisable(uint32_t ui32Peripheral) { // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // Disable this peripheral. // HWREGBITW(SYSCTL_RCGCBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff) = 0; } //***************************************************************************** // //! Enables a peripheral in sleep mode. //! //! \param ui32Peripheral is the peripheral to enable in sleep mode. //! //! This function allows a peripheral to continue operating when the processor //! goes into sleep mode. Because the clocking configuration of the device //! does not change, any peripheral can safely continue operating while the //! processor is in sleep mode and can therefore wake the processor from sleep //! mode. //! //! Sleep mode clocking of peripherals must be enabled via //! SysCtlPeripheralClockGating(); if disabled, the peripheral sleep mode //! configuration is maintained but has no effect when sleep mode is entered. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0, //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0, //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY, //! \b SYSCTL_PERIPH_EPI0, //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ, //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM, //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ, //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT, //! \b SYSCTL_PERIPH_HIBERNATE, //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2, //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5, //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8, //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0, //! \b SYSCTL_PERIPH_ONEWIRE0, //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0, //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1, //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0, //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6, //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4, //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7, //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1, //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3, //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5 //! //! \return None. // //***************************************************************************** void SysCtlPeripheralSleepEnable(uint32_t ui32Peripheral) { // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // Enable this peripheral in sleep mode. // HWREGBITW(SYSCTL_SCGCBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff) = 1; } //***************************************************************************** // //! Disables a peripheral in sleep mode. //! //! \param ui32Peripheral is the peripheral to disable in sleep mode. //! //! This function causes a peripheral to stop operating when the processor goes //! into sleep mode. Disabling peripherals while in sleep mode helps to lower //! the current draw of the device. If enabled (via SysCtlPeripheralEnable()), //! the peripheral automatically resumes operation when the processor //! leaves sleep mode, maintaining its entire state from before sleep mode was //! entered. //! //! Sleep mode clocking of peripherals must be enabled via //! SysCtlPeripheralClockGating(); if disabled, the peripheral sleep mode //! configuration is maintained but has no effect when sleep mode is entered. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0, //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0, //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY, //! \b SYSCTL_PERIPH_EPI0, //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ, //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM, //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ, //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT, //! \b SYSCTL_PERIPH_HIBERNATE, //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2, //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5, //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8, //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0, //! \b SYSCTL_PERIPH_ONEWIRE0, //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0, //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1, //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0, //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6, //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4, //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7, //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1, //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3, //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5 //! //! \return None. // //***************************************************************************** void SysCtlPeripheralSleepDisable(uint32_t ui32Peripheral) { // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // Disable this peripheral in sleep mode. // HWREGBITW(SYSCTL_SCGCBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff) = 0; } //***************************************************************************** // //! Enables a peripheral in deep-sleep mode. //! //! \param ui32Peripheral is the peripheral to enable in deep-sleep mode. //! //! This function allows a peripheral to continue operating when the processor //! goes into deep-sleep mode. Because the clocking configuration of the //! device may change, not all peripherals can safely continue operating while //! the processor is in deep-sleep mode. Those that must run at a particular //! frequency (such as a UART) do not work as expected if the clock changes. //! It is the responsibility of the caller to make sensible choices. //! //! Deep-sleep mode clocking of peripherals must be enabled via //! SysCtlPeripheralClockGating(); if disabled, the peripheral deep-sleep mode //! configuration is maintained but has no effect when deep-sleep mode is //! entered. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0, //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0, //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY, //! \b SYSCTL_PERIPH_EPI0, //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ, //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM, //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ, //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT, //! \b SYSCTL_PERIPH_HIBERNATE, //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2, //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5, //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8, //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0, //! \b SYSCTL_PERIPH_ONEWIRE0, //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0, //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1, //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0, //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6, //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4, //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7, //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1, //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3, //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5 //! //! \return None. // //***************************************************************************** void SysCtlPeripheralDeepSleepEnable(uint32_t ui32Peripheral) { // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // Enable this peripheral in deep-sleep mode. // HWREGBITW(SYSCTL_DCGCBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff) = 1; } //***************************************************************************** // //! Disables a peripheral in deep-sleep mode. //! //! \param ui32Peripheral is the peripheral to disable in deep-sleep mode. //! //! This function causes a peripheral to stop operating when the processor goes //! into deep-sleep mode. Disabling peripherals while in deep-sleep mode helps //! to lower the current draw of the device, and can keep peripherals that //! require a particular clock frequency from operating when the clock changes //! as a result of entering deep-sleep mode. If enabled (via //! SysCtlPeripheralEnable()), the peripheral automatically resumes //! operation when the processor leaves deep-sleep mode, maintaining its entire //! state from before deep-sleep mode was entered. //! //! Deep-sleep mode clocking of peripherals must be enabled via //! SysCtlPeripheralClockGating(); if disabled, the peripheral deep-sleep mode //! configuration is maintained but has no effect when deep-sleep mode is //! entered. //! //! The \e ui32Peripheral parameter must be only one of the following values: //! \b SYSCTL_PERIPH_ADC0, \b SYSCTL_PERIPH_ADC1, \b SYSCTL_PERIPH_CAN0, //! \b SYSCTL_PERIPH_CAN1, \b SYSCTL_PERIPH_CCM0,\b SYSCTL_PERIPH_COMP0, //! \b SYSCTL_PERIPH_EEPROM0, \b SYSCTL_PERIPH_EMAC, \b SYSCTL_PERIPH_EPHY, //! \b SYSCTL_PERIPH_EPI0, //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, \b SYSCTL_PERIPH_GPIOJ, //! \b SYSCTL_PERIPH_GPIOK, \b SYSCTL_PERIPH_GPIOL, \b SYSCTL_PERIPH_GPIOM, //! \b SYSCTL_PERIPH_GPION, \b SYSCTL_PERIPH_GPIOP, \b SYSCTL_PERIPH_GPIOQ, //! \b SYSCTL_PERIPH_GPIOR, \b SYSCTL_PERIPH_GPIOS, \b SYSCTL_PERIPH_GPIOT, //! \b SYSCTL_PERIPH_HIBERNATE, //! \b SYSCTL_PERIPH_I2C0, \b SYSCTL_PERIPH_I2C1, \b SYSCTL_PERIPH_I2C2, //! \b SYSCTL_PERIPH_I2C3, \b SYSCTL_PERIPH_I2C4, \b SYSCTL_PERIPH_I2C5, //! \b SYSCTL_PERIPH_I2C6, \b SYSCTL_PERIPH_I2C7, \b SYSCTL_PERIPH_I2C8, //! \b SYSCTL_PERIPH_I2C9, \b SYSCTL_PERIPH_LCD0, //! \b SYSCTL_PERIPH_ONEWIRE0, //! \b SYSCTL_PERIPH_PWM0, \b SYSCTL_PERIPH_PWM1, \b SYSCTL_PERIPH_QEI0, //! \b SYSCTL_PERIPH_QEI1, \b SYSCTL_PERIPH_SSI0, \b SYSCTL_PERIPH_SSI1, //! \b SYSCTL_PERIPH_SSI2, \b SYSCTL_PERIPH_SSI3, \b SYSCTL_PERIPH_TIMER0, //! \b SYSCTL_PERIPH_TIMER1, \b SYSCTL_PERIPH_TIMER2, \b SYSCTL_PERIPH_TIMER3, //! \b SYSCTL_PERIPH_TIMER4, \b SYSCTL_PERIPH_TIMER5, \b SYSCTL_PERIPH_TIMER6, //! \b SYSCTL_PERIPH_TIMER7, \b SYSCTL_PERIPH_UART0, \b SYSCTL_PERIPH_UART1, //! \b SYSCTL_PERIPH_UART2, \b SYSCTL_PERIPH_UART3, \b SYSCTL_PERIPH_UART4, //! \b SYSCTL_PERIPH_UART5, \b SYSCTL_PERIPH_UART6, \b SYSCTL_PERIPH_UART7, //! \b SYSCTL_PERIPH_UDMA, \b SYSCTL_PERIPH_USB0, \b SYSCTL_PERIPH_WDOG0, //! \b SYSCTL_PERIPH_WDOG1, \b SYSCTL_PERIPH_WTIMER0, \b SYSCTL_PERIPH_WTIMER1, //! \b SYSCTL_PERIPH_WTIMER2, \b SYSCTL_PERIPH_WTIMER3, //! \b SYSCTL_PERIPH_WTIMER4, or \b SYSCTL_PERIPH_WTIMER5 //! //! \return None. // //***************************************************************************** void SysCtlPeripheralDeepSleepDisable(uint32_t ui32Peripheral) { // // Check the arguments. // ASSERT(_SysCtlPeripheralValid(ui32Peripheral)); // // Disable this peripheral in deep-sleep mode. // HWREGBITW(SYSCTL_DCGCBASE + ((ui32Peripheral & 0xff00) >> 8), ui32Peripheral & 0xff) = 0; } //***************************************************************************** // //! Controls peripheral clock gating in sleep and deep-sleep mode. //! //! \param bEnable is a boolean that is \b true if the sleep and deep-sleep //! peripheral configuration should be used and \b false if not. //! //! This function controls how peripherals are clocked when the processor goes //! into sleep or deep-sleep mode. By default, the peripherals are clocked the //! same as in run mode; if peripheral clock gating is enabled, they are //! clocked according to the configuration set by //! SysCtlPeripheralSleepEnable(), SysCtlPeripheralSleepDisable(), //! SysCtlPeripheralDeepSleepEnable(), and SysCtlPeripheralDeepSleepDisable(). //! //! \return None. // //***************************************************************************** void SysCtlPeripheralClockGating(bool bEnable) { if(CLASS_IS_TM4C123) { // // Enable peripheral clock gating as requested. // if(bEnable) { HWREG(SYSCTL_RCC) |= SYSCTL_RCC_ACG; } else { HWREG(SYSCTL_RCC) &= ~(SYSCTL_RCC_ACG); } } else { // // Enable peripheral clock gating as requested. // if(bEnable) { HWREG(SYSCTL_RSCLKCFG) |= SYSCTL_RSCLKCFG_ACG; } else { HWREG(SYSCTL_RSCLKCFG) &= ~SYSCTL_RSCLKCFG_ACG; } } } //***************************************************************************** // //! Registers an interrupt handler for the system control interrupt. //! //! \param pfnHandler is a pointer to the function to be called when the system //! control interrupt occurs. //! //! This function registers the handler to be called when a system control //! interrupt occurs. This function enables the global interrupt in the //! interrupt controller; specific system control interrupts must be enabled //! via SysCtlIntEnable(). It is the interrupt handler's responsibility to //! clear the interrupt source via SysCtlIntClear(). //! //! System control can generate interrupts when the PLL achieves lock, if the //! internal LDO current limit is exceeded, if the internal oscillator fails, //! if the main oscillator fails, if the internal LDO output voltage droops too //! much, if the external voltage droops too much, or if the PLL fails. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \note The events that cause system control interrupts vary based on the //! Tiva part in use. Please consult the data sheet for the part you are //! using to determine which interrupt sources are available. //! //! \return None. // //***************************************************************************** void SysCtlIntRegister(void (*pfnHandler)(void)) { // // Register the interrupt handler, returning an error if an error occurs. // IntRegister(INT_SYSCTL_TM4C123, pfnHandler); // // Enable the system control interrupt. // IntEnable(INT_SYSCTL_TM4C123); } //***************************************************************************** // //! Unregisters the interrupt handler for the system control interrupt. //! //! This function unregisters the handler to be called when a system control //! interrupt occurs. This function also masks off the interrupt in the //! interrupt controller so that the interrupt handler no longer is called. //! //! \sa IntRegister() for important information about registering interrupt //! handlers. //! //! \return None. // //***************************************************************************** void SysCtlIntUnregister(void) { // // Disable the interrupt. // IntDisable(INT_SYSCTL_TM4C123); // // Unregister the interrupt handler. // IntUnregister(INT_SYSCTL_TM4C123); } //***************************************************************************** // //! Enables individual system control interrupt sources. //! //! \param ui32Ints is a bit mask of the interrupt sources to be enabled. Must //! be a logical OR of \b SYSCTL_INT_BOR0, \b SYSCTL_INT_VDDA_OK, //! \b SYSCTL_INT_MOSC_PUP, \b SYSCTL_INT_USBPLL_LOCK, //! \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_BOR, and/or //! \b SYSCTL_INT_BOR1. //! //! This function enables the indicated system control interrupt sources. Only //! the sources that are enabled can be reflected to the processor interrupt; //! disabled sources have no effect on the processor. //! //! \note The interrupt sources vary based on the Tiva part in use. //! Please consult the data sheet for the part you are using to determine //! which interrupt sources are available. //! //! \return None. // //***************************************************************************** void SysCtlIntEnable(uint32_t ui32Ints) { // // Enable the specified interrupts. // HWREG(SYSCTL_IMC) |= ui32Ints; } //***************************************************************************** // //! Disables individual system control interrupt sources. //! //! \param ui32Ints is a bit mask of the interrupt sources to be disabled. //! Must be a logical OR of \b SYSCTL_INT_BOR0, \b SYSCTL_INT_VDDA_OK, //! \b SYSCTL_INT_MOSC_PUP, \b SYSCTL_INT_USBPLL_LOCK, //! \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_BOR, and/or //! \b SYSCTL_INT_BOR1. //! //! This function disables the indicated system control interrupt sources. //! Only the sources that are enabled can be reflected to the processor //! interrupt; disabled sources have no effect on the processor. //! //! \note The interrupt sources vary based on the Tiva part in use. //! Please consult the data sheet for the part you are using to determine //! which interrupt sources are available. //! //! \return None. // //***************************************************************************** void SysCtlIntDisable(uint32_t ui32Ints) { // // Disable the specified interrupts. // HWREG(SYSCTL_IMC) &= ~(ui32Ints); } //***************************************************************************** // //! Clears system control interrupt sources. //! //! \param ui32Ints is a bit mask of the interrupt sources to be cleared. Must //! be a logical OR of \b SYSCTL_INT_BOR0, \b SYSCTL_INT_VDDA_OK, //! \b SYSCTL_INT_MOSC_PUP, \b SYSCTL_INT_USBPLL_LOCK, //! \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_BOR, and/or //! \b SYSCTL_INT_BOR1. //! //! The specified system control interrupt sources are cleared, so that they no //! longer assert. This function must be called in the interrupt handler to //! keep it from being called again immediately on exit. //! //! \note Because there is a write buffer in the Cortex-M processor, it may //! take several clock cycles before the interrupt source is actually cleared. //! Therefore, it is recommended that the interrupt source be cleared early in //! the interrupt handler (as opposed to the very last action) to avoid //! returning from the interrupt handler before the interrupt source is //! actually cleared. Failure to do so may result in the interrupt handler //! being immediately reentered (because the interrupt controller still sees //! the interrupt source asserted). //! //! \note The interrupt sources vary based on the Tiva part in use. //! Please consult the data sheet for the part you are using to determine //! which interrupt sources are available. //! //! \return None. // //***************************************************************************** void SysCtlIntClear(uint32_t ui32Ints) { // // Clear the requested interrupt sources. // HWREG(SYSCTL_MISC) = ui32Ints; } //***************************************************************************** // //! Gets the current interrupt status. //! //! \param bMasked is false if the raw interrupt status is required and true if //! the masked interrupt status is required. //! //! This function returns the interrupt status for the system controller. //! Either the raw interrupt status or the status of interrupts that are //! allowed to reflect to the processor can be returned. //! //! \note The interrupt sources vary based on the Tiva part in use. //! Please consult the data sheet for the part you are using to determine //! which interrupt sources are available. //! //! \return The current interrupt status, enumerated as a bit field of //! \b SYSCTL_INT_BOR0, \b SYSCTL_INT_VDDA_OK, //! \b SYSCTL_INT_MOSC_PUP, \b SYSCTL_INT_USBPLL_LOCK, //! \b SYSCTL_INT_PLL_LOCK, \b SYSCTL_INT_MOSC_FAIL, \b SYSCTL_INT_BOR, and/or //! \b SYSCTL_INT_BOR1. // //***************************************************************************** uint32_t SysCtlIntStatus(bool bMasked) { // // Return either the interrupt status or the raw interrupt status as // requested. // if(bMasked) { return(HWREG(SYSCTL_MISC)); } else { return(HWREG(SYSCTL_RIS)); } } //***************************************************************************** // //! Sets the output voltage of the LDO when the device enters sleep mode. //! //! \param ui32Voltage is the required output voltage from the LDO while in //! sleep mode. //! //! This function sets the output voltage of the LDO while in sleep mode. //! The \e ui32Voltage parameter must be one of the following values: //! \b SYSCTL_LDO_0_90V, \b SYSCTL_LDO_0_95V, \b SYSCTL_LDO_1_00V, //! \b SYSCTL_LDO_1_05V, \b SYSCTL_LDO_1_10V, \b SYSCTL_LDO_1_15V, or //! \b SYSCTL_LDO_1_20V. //! //! \note The availability of this feature, the default LDO voltage, and the //! adjustment range varies with the Tiva part in use. Please consult the //! data sheet for the part you are using to determine whether this support is //! available. //! //! \return None. // //***************************************************************************** void SysCtlLDOSleepSet(uint32_t ui32Voltage) { // // Check the arguments. // ASSERT((ui32Voltage == SYSCTL_LDO_0_90V) || (ui32Voltage == SYSCTL_LDO_0_95V) || (ui32Voltage == SYSCTL_LDO_1_00V) || (ui32Voltage == SYSCTL_LDO_1_05V) || (ui32Voltage == SYSCTL_LDO_1_10V) || (ui32Voltage == SYSCTL_LDO_1_15V) || (ui32Voltage == SYSCTL_LDO_1_20V)); // // Set the sleep-mode LDO voltage to the requested value. // HWREG(SYSCTL_LDOSPCTL) = ui32Voltage; } //***************************************************************************** // //! Returns the output voltage of the LDO when the device enters sleep mode. //! //! This function determines the output voltage of the LDO while in sleep mode, //! as specified by the control register. //! //! \note The availability of this feature, the default LDO voltage, and the //! adjustment range varies with the Tiva part in use. Please consult the //! data sheet for the part you are using to determine whether this support is //! available. //! //! \return Returns the sleep-mode voltage of the LDO and is one of //! \b SYSCTL_LDO_0_90V, \b SYSCTL_LDO_0_95V, \b SYSCTL_LDO_1_00V, //! \b SYSCTL_LDO_1_05V, \b SYSCTL_LDO_1_10V, \b SYSCTL_LDO_1_15V, or //! \b SYSCTL_LDO_1_20V. // //***************************************************************************** uint32_t SysCtlLDOSleepGet(void) { // // Return the sleep-mode LDO voltage setting. // return(HWREG(SYSCTL_LDOSPCTL)); } //***************************************************************************** // //! Sets the output voltage of the LDO when the device enters deep-sleep //! mode. //! //! \param ui32Voltage is the required output voltage from the LDO while in //! deep-sleep mode. //! //! This function sets the output voltage of the LDO while in deep-sleep mode. //! The \e ui32Voltage parameter specifies the output voltage of the LDO and //! must be one of the following values: \b SYSCTL_LDO_0_90V, //! \b SYSCTL_LDO_0_95V, \b SYSCTL_LDO_1_00V, \b SYSCTL_LDO_1_05V, //! \b SYSCTL_LDO_1_10V, \b SYSCTL_LDO_1_15V, or \b SYSCTL_LDO_1_20V. //! //! \note The availability of this feature, the default LDO voltage, and the //! adjustment range varies with the Tiva part in use. Please consult the //! data sheet for the part you are using to determine whether this support is //! available. //! //! \return None. // //***************************************************************************** void SysCtlLDODeepSleepSet(uint32_t ui32Voltage) { // // Check the arguments. // ASSERT((ui32Voltage == SYSCTL_LDO_0_90V) || (ui32Voltage == SYSCTL_LDO_0_95V) || (ui32Voltage == SYSCTL_LDO_1_00V) || (ui32Voltage == SYSCTL_LDO_1_05V) || (ui32Voltage == SYSCTL_LDO_1_10V) || (ui32Voltage == SYSCTL_LDO_1_15V) || (ui32Voltage == SYSCTL_LDO_1_20V)); // // Set the deep-sleep LDO voltage to the requested value. // HWREG(SYSCTL_LDODPCTL) = ui32Voltage; } //***************************************************************************** // //! Returns the output voltage of the LDO when the device enters deep-sleep //! mode. //! //! This function returns the output voltage of the LDO when the device is //! in deep-sleep mode, as specified by the control register. //! //! \note The availability of this feature, the default LDO voltage, and the //! adjustment range varies with the Tiva part in use. Please consult the //! data sheet for the part you are using to determine whether this support is //! available. //! //! \return Returns the deep-sleep-mode voltage of the LDO; is one of //! \b SYSCTL_LDO_0_90V, \b SYSCTL_LDO_0_95V, \b SYSCTL_LDO_1_00V, //! \b SYSCTL_LDO_1_05V, \b SYSCTL_LDO_1_10V, \b SYSCTL_LDO_1_15V, or //! \b SYSCTL_LDO_1_20V. // //***************************************************************************** uint32_t SysCtlLDODeepSleepGet(void) { // // Return the deep-sleep-mode LDO voltage setting. // return(HWREG(SYSCTL_LDODPCTL)); } //***************************************************************************** // //! Configures the power to the flash and SRAM while in sleep mode. //! //! \param ui32Config is the required flash and SRAM power configuration. //! //! This function allows the power configuration of the flash and SRAM while in //! sleep mode to be set. The \e ui32Config parameter is the logical OR of the //! flash power configuration and the SRAM power configuration. //! //! The flash power configuration is specified as either: //! //! - \b SYSCTL_FLASH_NORMAL - The flash is left in fully powered mode, //! providing fast wake-up time but higher power consumption. //! - \b SYSCTL_FLASH_LOW_POWER - The flash is in low power mode, providing //! reduced power consumption but longer wake-up time. //! //! The SRAM power configuration is specified as one of: //! //! - \b SYSCTL_SRAM_NORMAL - The SRAM is left in fully powered mode, providing //! fast wake-up time but higher power consumption. //! - \b SYSCTL_SRAM_STANDBY - The SRAM is placed into a lower power mode, //! providing reduced power consumption but longer wake-up time. //! - \b SYSCTL_SRAM_LOW_POWER - The SRAM is placed into lowest power mode, //! providing further reduced power consumption but longer wake-up time. //! //! \note The availability of this feature varies with the Tiva part in //! use. Please consult the data sheet for the part you are using to determine //! whether this support is available. //! //! \return None. // //***************************************************************************** void SysCtlSleepPowerSet(uint32_t ui32Config) { // // Set the sleep-mode flash and SRAM power configuration. // HWREG(SYSCTL_SLPPWRCFG) = ui32Config; } //***************************************************************************** // //! Configures the power to the flash and SRAM while in deep-sleep mode. //! //! \param ui32Config is the required flash and SRAM power configuration. //! //! This function allows the power configuration of the flash and SRAM while in //! deep-sleep mode to be set. The \e ui32Config parameter is the logical OR //! of the flash power configuration and the SRAM power configuration. //! //! The flash power configuration is specified as either: //! //! - \b SYSCTL_FLASH_NORMAL - The flash is left in fully powered mode, //! providing fast wake-up time but higher power consumption. //! - \b SYSCTL_FLASH_LOW_POWER - The flash is in low power mode, providing //! reduced power consumption but longer wake-up time. //! //! The SRAM power configuration is specified as one of: //! //! - \b SYSCTL_LDO_SLEEP - The LDO is in sleep mode. //! - \b SYSCTL_TEMP_LOW_POWER - The temperature sensor in low power mode. //! - \b SYSCTL_SRAM_NORMAL - The SRAM is left in fully powered mode, providing //! fast wake-up time but higher power consumption. //! - \b SYSCTL_SRAM_STANDBY - The SRAM is placed into a lower power mode, //! providing reduced power consumption but longer wake-up time. //! - \b SYSCTL_SRAM_LOW_POWER - The SRAM is placed into lowest power mode, //! providing further reduced power consumption but longer wake-up time. //! //! \note The availability of this feature varies with the Tiva part in //! use. Please consult the data sheet for the part you are using to determine //! whether this support is available. //! //! \return None. // //***************************************************************************** void SysCtlDeepSleepPowerSet(uint32_t ui32Config) { // // Set the deep-sleep-mode flash and SRAM power configuration. // HWREG(SYSCTL_DSLPPWRCFG) = ui32Config; } //***************************************************************************** // //! Resets the device. //! //! This function performs a software reset of the entire device. The //! processor and all peripherals are reset and all device registers are //! returned to their default values (with the exception of the reset cause //! register, which maintains its current value but has the software reset //! bit set as well). //! //! \return This function does not return. // //***************************************************************************** void SysCtlReset(void) { // // Perform a software reset request. This request causes the device to // reset, no further code is executed. // HWREG(NVIC_APINT) = NVIC_APINT_VECTKEY | NVIC_APINT_SYSRESETREQ; // // The device should have reset, so this should never be reached. Just in // case, loop forever. // while(1) { } } //***************************************************************************** // //! Puts the processor into sleep mode. //! //! This function places the processor into sleep mode; it does not return //! until the processor returns to run mode. The peripherals that are enabled //! via SysCtlPeripheralSleepEnable() continue to operate and can wake up the //! processor (if automatic clock gating is enabled with //! SysCtlPeripheralClockGating(), otherwise all peripherals continue to //! operate). //! //! \return None. // //***************************************************************************** void SysCtlSleep(void) { // // Wait for an interrupt. // CPUwfi(); } //***************************************************************************** // //! Puts the processor into deep-sleep mode. //! //! This function places the processor into deep-sleep mode; it does not return //! until the processor returns to run mode. The peripherals that are enabled //! via SysCtlPeripheralDeepSleepEnable() continue to operate and can wake up //! the processor (if automatic clock gating is enabled with //! SysCtlPeripheralClockGating(), otherwise all peripherals continue to //! operate). //! //! \return None. // //***************************************************************************** void SysCtlDeepSleep(void) { // // Enable deep-sleep. // HWREG(NVIC_SYS_CTRL) |= NVIC_SYS_CTRL_SLEEPDEEP; // // Wait for an interrupt. // CPUwfi(); // // Disable deep-sleep so that a future sleep works correctly. // HWREG(NVIC_SYS_CTRL) &= ~(NVIC_SYS_CTRL_SLEEPDEEP); } //***************************************************************************** // //! Gets the reason for a reset. //! //! This function returns the reason(s) for a reset. Because the reset //! reasons are sticky until either cleared by software or a power-on reset, //! multiple reset reasons may be returned if multiple resets have occurred. //! The reset reason is a logical OR of \b SYSCTL_CAUSE_HSRVREQ, //! \b SYSCTL_CAUSE_HIB, \b SYSCTL_CAUSE_WDOG1, \b SYSCTL_CAUSE_SW, //! \b SYSCTL_CAUSE_WDOG0, \b SYSCTL_CAUSE_BOR, \b SYSCTL_CAUSE_POR, //! and/or \b SYSCTL_CAUSE_EXT. //! //! \return Returns the reason(s) for a reset. // //***************************************************************************** uint32_t SysCtlResetCauseGet(void) { // // Return the reset reasons. // return(HWREG(SYSCTL_RESC)); } //***************************************************************************** // //! Clears reset reasons. //! //! \param ui32Causes are the reset causes to be cleared; must be a logical OR //! of \b SYSCTL_CAUSE_HSRVREQ, \b SYSCTL_CAUSE_HIB, \b SYSCTL_CAUSE_WDOG1, //! \b SYSCTL_CAUSE_SW, \b SYSCTL_CAUSE_WDOG0, \b SYSCTL_CAUSE_BOR, //! \b SYSCTL_CAUSE_POR, and/or \b SYSCTL_CAUSE_EXT. //! //! This function clears the specified sticky reset reasons. Once cleared, //! another reset for the same reason can be detected, and a reset for a //! different reason can be distinguished (instead of having two reset causes //! set). If the reset reason is used by an application, all reset causes //! should be cleared after they are retrieved with SysCtlResetCauseGet(). //! //! \return None. // //***************************************************************************** void SysCtlResetCauseClear(uint32_t ui32Causes) { // // Clear the given reset reasons. // HWREG(SYSCTL_RESC) &= ~(ui32Causes); } //***************************************************************************** // //! Provides a small delay. //! //! \param ui32Count is the number of delay loop iterations to perform. //! //! This function provides a means of generating a delay by executing a simple //! 3 instruction cycle loop a given number of times. It is written in //! assembly to keep the loop instruction count consistent across tool chains. //! //! It is important to note that this function does NOT provide an accurate //! timing mechanism. Although the delay loop is 3 instruction cycles long, //! the execution time of the loop will vary dramatically depending upon the //! application's interrupt environment (the loop will be interrupted unless //! run with interrupts disabled and this is generally an unwise thing to do) //! and also the current system clock rate and flash timings (wait states and //! the operation of the prefetch buffer affect the timing). //! //! For better accuracy, the ROM version of this function may be used. This //! version will not suffer from flash- and prefect buffer-related timing //! variability but will still be delayed by interrupt service routines. //! //! For best accuracy, a system timer should be used with code either polling //! for a particular timer value being exceeded or processing the timer //! interrupt to determine when a particular time period has elapsed. //! //! \return None. // //***************************************************************************** #if defined(ewarm) || defined(DOXYGEN) void SysCtlDelay(uint32_t ui32Count) { __asm(" subs r0, #1\n" " bne.n SysCtlDelay\n" " bx lr"); } #endif #if defined(codered) || defined(gcc) || defined(sourcerygxx) void __attribute__((naked)) SysCtlDelay(uint32_t ui32Count) { __asm(" subs r0, #1\n" " bne SysCtlDelay\n" " bx lr"); } #endif #if defined(rvmdk) || defined(__ARMCC_VERSION) __asm void SysCtlDelay(uint32_t ui32Count) { subs r0, #1; bne SysCtlDelay; bx lr; } #endif // // For CCS implement this function in pure assembly. This prevents the TI // compiler from doing funny things with the optimizer. // #if defined(ccs) __asm(" .sect \".text:SysCtlDelay\"\n" " .clink\n" " .thumbfunc SysCtlDelay\n" " .thumb\n" " .global SysCtlDelay\n" "SysCtlDelay:\n" " subs r0, #1\n" " bne.n SysCtlDelay\n" " bx lr\n"); #endif //***************************************************************************** // //! Sets the configuration of the main oscillator (MOSC) control. //! //! \param ui32Config is the required configuration of the MOSC control. //! //! This function configures the control of the main oscillator. The //! \e ui32Config is specified as the logical OR of the following values: //! //! - \b SYSCTL_MOSC_VALIDATE enables the MOSC verification circuit that //! detects a failure of the main oscillator (such as a loss of the clock). //! - \b SYSCTL_MOSC_INTERRUPT indicates that a MOSC failure should generate an //! interrupt instead of resetting the processor. //! - \b SYSCTL_MOSC_NO_XTAL indicates that there is no crystal or oscillator //! connected to the OSC0/OSC1 pins, allowing power consumption to be //! reduced. //! - \b SYSCTL_MOSC_PWR_DIS disable power to the main oscillator. If this //! parameter is not specified, the MOSC input remains powered. //! - \b SYSCTL_MOSC_LOWFREQ MOSC is less than 10 MHz. //! - \b SYSCTL_MOSC_HIGHFREQ MOSC is greater than 10 MHz. //! - \b SYSCTL_MOSC_SESRC specifies that the MOSC is a single-ended //! oscillator connected to OSC0. If this parameter is not specified, the //! input is assumed to be a crystal. //! //! \note The availability of MOSC control varies based on the Tiva part //! in use. Please consult the data sheet for the part you are using to //! determine whether this support is available. In addition, the capability //! of MOSC control varies based on the Tiva part in use. //! //! \return None. // //***************************************************************************** void SysCtlMOSCConfigSet(uint32_t ui32Config) { // // Configure the MOSC control. // HWREG(SYSCTL_MOSCCTL) = ui32Config; } //***************************************************************************** // //! Calibrates the precision internal oscillator. //! //! \param ui32Type is the type of calibration to perform. //! //! This function performs a calibration of the PIOSC. There are three types //! of calibration available; the desired calibration type as specified in //! \e ui32Type is one of: //! //! - \b SYSCTL_PIOSC_CAL_AUTO to perform automatic calibration using the //! 32-kHz clock from the hibernate module as a reference. This type is //! only possible on parts that have a hibernate module, and then only if //! it is enabled, a 32.768-kHz clock source is attached to the XOSC0/1 //! pins and the hibernate module's RTC is also enabled. //! //! - \b SYSCTL_PIOSC_CAL_FACT to reset the PIOSC calibration to the factory //! provided calibration. //! //! - \b SYSCTL_PIOSC_CAL_USER to set the PIOSC calibration to a user-supplied //! value. The value to be used is ORed into the lower 7-bits of this value, //! with 0x40 being the ``nominal'' value (in other words, if everything were //! perfect, 0x40 provides exactly 16 MHz). Values larger than 0x40 //! slow down PIOSC, and values smaller than 0x40 speed up PIOSC. //! //! \return Returns 1 if the calibration was successful and 0 if it failed. // //***************************************************************************** uint32_t SysCtlPIOSCCalibrate(uint32_t ui32Type) { // // Perform the requested calibration. If performing user calibration, the // UTEN bit must be set with one write, then the UT field in a second // write, and the UPDATE bit in a final write. For other calibration // types, a single write to set UPDATE or CAL is all that is required. // if(ui32Type & (SYSCTL_PIOSCCAL_UTEN | SYSCTL_PIOSCCAL_UPDATE)) { HWREG(SYSCTL_PIOSCCAL) = ui32Type & SYSCTL_PIOSCCAL_UTEN; HWREG(SYSCTL_PIOSCCAL) = ui32Type & (SYSCTL_PIOSCCAL_UTEN | SYSCTL_PIOSCCAL_UT_M); } HWREG(SYSCTL_PIOSCCAL) = ui32Type; // // See if an automatic calibration was requested. // if(ui32Type & SYSCTL_PIOSCCAL_CAL) { // // Wait for the automatic calibration to complete. // while((HWREG(SYSCTL_PIOSCSTAT) & SYSCTL_PIOSCSTAT_CR_M) == 0) { } // // If the automatic calibration failed, return an error. // if((HWREG(SYSCTL_PIOSCSTAT) & SYSCTL_PIOSCSTAT_CR_M) != SYSCTL_PIOSCSTAT_CRPASS) { return(0); } } // // The calibration was successful. // return(1); } //***************************************************************************** // //! Sets the type of reset issued due to certain reset events. //! //! \param ui32Behavior specifies the types of resets for each of the //! configurable reset events. //! //! This function sets the types of reset issued when a configurable reset //! event occurs. The reset events that are configurable are: Watchdog 0 or 1, //! a brown out and the external RSTn pin. The valid actions are either a //! system reset or a full POR sequence. See the data sheet for more //! information on the differences between a full POR and a system reset. All //! reset behaviors can be configured with a single call using the logical OR //! of the values defined below. Any reset option that is not specifically set //! remains configured for its default behavior. Either POR or system reset //! can be selected for each reset cause. //! //! Valid values are logical combinations of the following: //! //! - \b SYSCTL_ONRST_WDOG0_POR configures a Watchdog 0 reset to perform a full //! POR. //! - \b SYSCTL_ONRST_WDOG0_SYS configures a Watchdog 0 reset to perform a //! system reset. //! - \b SYSCTL_ONRST_WDOG1_POR configures a Watchdog 1 reset to perform a full //! POR. //! - \b SYSCTL_ONRST_WDOG1_SYS configures a Watchdog 1 reset to perform a //! system reset. //! - \b SYSCTL_ONRST_BOR_POR configures a brown-out reset to perform a full //! POR. //! - \b SYSCTL_ONRST_BOR_SYS configures a brown-out reset to perform a system //! reset. //! - \b SYSCTL_ONRST_EXT_POR configures an external pin reset to perform a //! full POR. //! - \b SYSCTL_ONRST_EXT_SYS configures an external pin reset to perform a //! system reset. //! //! \b Example: Set Watchdog 0 reset to trigger a POR and a brown-out reset //! to trigger a system reset while leaving the remaining resets with their //! default behaviors. //! //! \verbatim //! SysCtlResetBehaviorSet(SYSCTL_ONRST_WDOG0_POR | SYSCTL_ONRST_BOR_SYS); //! \endverbatim //! //! \note This function cannot be used with TM4C123 devices. //! //! \return None. // //***************************************************************************** void SysCtlResetBehaviorSet(uint32_t ui32Behavior) { HWREG(SYSCTL_RESBEHAVCTL) = ui32Behavior; } //***************************************************************************** // //! Returns the current types of reset issued due to reset events. //! //! This function returns the types of resets issued when a configurable reset //! occurs. The value returned is a logical OR combination of the valid values //! that are described in the documentation for the \e ui32Behavior parameter //! of the SysCtlResetBehaviorSet() function. //! //! \note This function should only be used with Flurry-class devices. //! //! \return The reset behaviors for all configurable resets. // //***************************************************************************** uint32_t SysCtlResetBehaviorGet(void) { return(HWREG(SYSCTL_RESBEHAVCTL)); } //***************************************************************************** // //! Configures the system clock. //! //! \param ui32Config is the required configuration of the device clocking. //! \param ui32SysClock is the requested processor frequency. //! //! This function configures the main system clocking for the device. The //! input frequency, oscillator source, whether or not to enable the PLL, and //! the system clock divider are all configured with this function. This //! function configures the system frequency to the closest available divisor //! of one of the fixed PLL VCO settings provided in the \e ui32Config //! parameter. The caller sets the \e ui32SysClock parameter to request the //! system clock frequency, and this function then attempts to match this using //! the values provided in the \e ui32Config parameter. If this function //! cannot exactly match the requested frequency, it picks the closest //! frequency that is lower than the requested frequency. The \e ui32Config //! parameter provides the remaining configuration options using a set of //! defines that are a logical OR of several different values, many of which //! are grouped into sets where only one of the set can be chosen. This //! function returns the current system frequency which may not match the //! requested frequency. //! //! If the application is using an external crystal then the frequency is //! set by using one of the following values: //! \b SYSCTL_XTAL_5MHZ, \b SYSCTL_XTAL_6MHZ, \b SYSCTL_XTAL_8MHZ, //! \b SYSCTL_XTAL_10MHZ, \b SYSCTL_XTAL_12MHZ, \b SYSCTL_XTAL_16MHZ, //! \b SYSCTL_XTAL_18MHZ, \b SYSCTL_XTAL_20MHZ, \b SYSCTL_XTAL_24MHZ, or //! \b SYSCTL_XTAL_25MHz. //! //! The oscillator source is chosen with one of the following values: //! //! - \b SYSCTL_OSC_MAIN to use an external crystal or oscillator. //! - \b SYSCTL_OSC_INT to use the 16-MHz precision internal oscillator. //! - \b SYSCTL_OSC_INT30 to use the internal low frequency oscillator. //! - \b SYSCTL_OSC_EXT32 to use the hibernate modules 32.786-kHz oscillator. //! This option is only available on devices that include the hibernation //! module. //! //! The system clock source is chosen with one of the following values: //! //! - \b SYSCTL_USE_PLL is used to select the PLL output as the system clock. //! - \b SYSCTL_USE_OSC is used to choose one of the oscillators as the //! system clock. //! //! The PLL VCO frequency is chosen with one of the the following values: //! //! - \b SYSCTL_CFG_VCO_480 to set the PLL VCO output to 480-MHz //! - \b SYSCTL_CFG_VCO_320 to set the PLL VCO output to 320-MHz //! //! Example: Configure the system clocking to be 40 MHz with a 320-MHz PLL //! setting using the 16-MHz internal oscillator. //! //! \verbatim //! SysCtlClockFreqSet(SYSCTL_OSC_INT | SYSCTL_USE_PLL | SYSCTL_CFG_VCO_320, //! 40000000); //! \endverbatim //! //! \note This function cannot be used with TM4C123 devices. For TM4C123 //! devices use the SysCtlClockSet() function. //! //! \return The actual configured system clock frequency in Hz or zero if the //! value could not be changed due to a parameter error or PLL lock failure. // //***************************************************************************** uint32_t SysCtlClockFreqSet(uint32_t ui32Config, uint32_t ui32SysClock) { int32_t i32Timeout, i32VCOIdx, i32XtalIdx; uint32_t ui32MOSCCTL; uint32_t ui32Delay; uint32_t ui32SysDiv, ui32Osc, ui32OscSelect, ui32RSClkConfig; // // TM4C123 devices should not use this function. // if(CLASS_IS_TM4C123) { return(0); } // // Get the index of the crystal from the ui32Config parameter. // i32XtalIdx = SysCtlXtalCfgToIndex(ui32Config); // // Determine which non-PLL source was selected. // if((ui32Config & 0x38) == SYSCTL_OSC_INT) { // // Use the nominal frequency for the PIOSC oscillator and set the // crystal select. // ui32Osc = 16000000; ui32OscSelect = SYSCTL_RSCLKCFG_OSCSRC_PIOSC; ui32OscSelect |= SYSCTL_RSCLKCFG_PLLSRC_PIOSC; // // Force the crystal index to the value for 16-MHz. // i32XtalIdx = SysCtlXtalCfgToIndex(SYSCTL_XTAL_16MHZ); } else if((ui32Config & 0x38) == SYSCTL_OSC_INT30) { // // Use the nominal frequency for the low frequency oscillator. // ui32Osc = 30000; ui32OscSelect = SYSCTL_RSCLKCFG_OSCSRC_LFIOSC; } else if((ui32Config & 0x38) == (SYSCTL_OSC_EXT32 & 0x38)) { // // Use the RTC frequency. // ui32Osc = 32768; ui32OscSelect = SYSCTL_RSCLKCFG_OSCSRC_RTC; } else if((ui32Config & 0x38) == SYSCTL_OSC_MAIN) { // // Bounds check the source frequency for the main oscillator. The is // because the PLL tables in the g_pppui32XTALtoVCO structure range // from 5MHz to 25MHz. // if((i32XtalIdx > (SysCtlXtalCfgToIndex(SYSCTL_XTAL_25MHZ))) || (i32XtalIdx < (SysCtlXtalCfgToIndex(SYSCTL_XTAL_5MHZ)))) { return(0); } ui32Osc = g_pui32Xtals[i32XtalIdx]; // // Set the PLL source select to MOSC. // ui32OscSelect = SYSCTL_RSCLKCFG_OSCSRC_MOSC; ui32OscSelect |= SYSCTL_RSCLKCFG_PLLSRC_MOSC; // // Clear MOSC power down, high oscillator range setting, and no crystal // present setting. // ui32MOSCCTL = HWREG(SYSCTL_MOSCCTL) & ~(SYSCTL_MOSCCTL_OSCRNG | SYSCTL_MOSCCTL_PWRDN | SYSCTL_MOSCCTL_NOXTAL); // // Increase the drive strength for MOSC of 10 MHz and above. // if(i32XtalIdx >= (SysCtlXtalCfgToIndex(SYSCTL_XTAL_10MHZ) - (SysCtlXtalCfgToIndex(SYSCTL_XTAL_5MHZ)))) { ui32MOSCCTL |= SYSCTL_MOSCCTL_OSCRNG; } HWREG(SYSCTL_MOSCCTL) = ui32MOSCCTL; // // Timeout using the legacy delay value. // ui32Delay = 524288; while((HWREG(SYSCTL_RIS) & SYSCTL_RIS_MOSCPUPRIS) == 0) { ui32Delay--; if(ui32Delay == 0) { break; } } // // If the main oscillator failed to start up then do not switch to // it and return. // if(ui32Delay == 0) { return(0); } } else { // // This was an invalid request because no oscillator source was // indicated. // ui32Osc = 0; ui32OscSelect = SYSCTL_RSCLKCFG_OSCSRC_PIOSC; } // // Check if the running with the PLL enabled was requested. // if((ui32Config & SYSCTL_USE_OSC) == SYSCTL_USE_PLL) { // // ui32Config must be SYSCTL_OSC_MAIN or SYSCTL_OSC_INT. // if(((ui32Config & 0x38) != SYSCTL_OSC_MAIN) && ((ui32Config & 0x38) != SYSCTL_OSC_INT)) { return(0); } // // Get the VCO index out of the ui32Config parameter. // i32VCOIdx = (ui32Config >> 24) & 7; // // Check that the VCO index is not out of bounds. // ASSERT(i32VCOIdx < MAX_VCO_ENTRIES); // // Set the memory timings for the maximum external frequency since // this could be a switch to PIOSC or possibly to MOSC which can be // up to 25MHz. // HWREG(SYSCTL_MEMTIM0) = _SysCtlMemTimingGet(25000000); // // Clear the old PLL divider and source in case it was set. // ui32RSClkConfig = HWREG(SYSCTL_RSCLKCFG) & ~(SYSCTL_RSCLKCFG_PSYSDIV_M | SYSCTL_RSCLKCFG_OSCSRC_M | SYSCTL_RSCLKCFG_PLLSRC_M | SYSCTL_RSCLKCFG_USEPLL); // // Update the memory timings to match running from PIOSC. // ui32RSClkConfig |= SYSCTL_RSCLKCFG_MEMTIMU; // // Update clock configuration to switch back to PIOSC. // HWREG(SYSCTL_RSCLKCFG) = ui32RSClkConfig; // // The table starts at 5 MHz so modify the index to match this. // i32XtalIdx -= SysCtlXtalCfgToIndex(SYSCTL_XTAL_5MHZ); // // Calculate the System divider such that we get a frequency that is // the closest to the requested frequency without going over. // ui32SysDiv = (g_pui32VCOFrequencies[i32VCOIdx] + ui32SysClock - 1) / ui32SysClock; // // Set the oscillator source. // HWREG(SYSCTL_RSCLKCFG) |= ui32OscSelect; // // Set the M, N and Q values provided from the table and preserve // the power state of the main PLL. // HWREG(SYSCTL_PLLFREQ1) = g_pppui32XTALtoVCO[i32VCOIdx][i32XtalIdx][1]; HWREG(SYSCTL_PLLFREQ1) |= PLL_Q_TO_REG(ui32SysDiv); HWREG(SYSCTL_PLLFREQ0) = (g_pppui32XTALtoVCO[i32VCOIdx][i32XtalIdx][0] | (HWREG(SYSCTL_PLLFREQ0) & SYSCTL_PLLFREQ0_PLLPWR)); // // Calculate the actual system clock as PSYSDIV is always div-by 2. // ui32SysClock = _SysCtlFrequencyGet(ui32Osc) / 2; // // Set the Flash and EEPROM timing values. // HWREG(SYSCTL_MEMTIM0) = _SysCtlMemTimingGet(ui32SysClock); // // Check if the PLL is already powered up. // if(HWREG(SYSCTL_PLLFREQ0) & SYSCTL_PLLFREQ0_PLLPWR) { // // Trigger the PLL to lock to the new frequency. // HWREG(SYSCTL_RSCLKCFG) |= SYSCTL_RSCLKCFG_NEWFREQ; } else { // // Power up the PLL. // HWREG(SYSCTL_PLLFREQ0) |= SYSCTL_PLLFREQ0_PLLPWR; } // // Wait until the PLL has locked. // for(i32Timeout = 32768; i32Timeout > 0; i32Timeout--) { if((HWREG(SYSCTL_PLLSTAT) & SYSCTL_PLLSTAT_LOCK)) { break; } } // // If the loop above did not timeout then switch over to the PLL // if(i32Timeout) { ui32RSClkConfig = HWREG(SYSCTL_RSCLKCFG); ui32RSClkConfig |= (1 << SYSCTL_RSCLKCFG_PSYSDIV_S) | ui32OscSelect | SYSCTL_RSCLKCFG_USEPLL; ui32RSClkConfig |= SYSCTL_RSCLKCFG_MEMTIMU; // // Set the new clock configuration. // HWREG(SYSCTL_RSCLKCFG) = ui32RSClkConfig; } else { ui32SysClock = 0; } } else { // // Set the Flash and EEPROM timing values for PIOSC. // HWREG(SYSCTL_MEMTIM0) = _SysCtlMemTimingGet(16000000); // // Make sure that the PLL is powered down since it is not being used. // HWREG(SYSCTL_PLLFREQ0) &= ~SYSCTL_PLLFREQ0_PLLPWR; // // Clear the old PLL divider and source in case it was set. // ui32RSClkConfig = HWREG(SYSCTL_RSCLKCFG); ui32RSClkConfig &= ~(SYSCTL_RSCLKCFG_OSYSDIV_M | SYSCTL_RSCLKCFG_OSCSRC_M | SYSCTL_RSCLKCFG_USEPLL); // // Update the memory timings. // ui32RSClkConfig |= SYSCTL_RSCLKCFG_MEMTIMU; // // Set the new clock configuration. // HWREG(SYSCTL_RSCLKCFG) = ui32RSClkConfig; // // If zero given as the system clock then default to divide by 1. // if(ui32SysClock == 0) { ui32SysDiv = 0; } else { // // Calculate the System divider based on the requested // frequency. // ui32SysDiv = ui32Osc / ui32SysClock; // // If the system divisor is not already zero, subtract one to // set the value in the register which requires the value to // be n-1. // if(ui32SysDiv != 0) { ui32SysDiv -= 1; } // // Calculate the system clock. // ui32SysClock = ui32Osc / (ui32SysDiv + 1); } // // Set the memory timing values for the new system clock. // HWREG(SYSCTL_MEMTIM0) = _SysCtlMemTimingGet(ui32SysClock); // // Set the new system clock values. // ui32RSClkConfig = HWREG(SYSCTL_RSCLKCFG); ui32RSClkConfig |= (ui32SysDiv << SYSCTL_RSCLKCFG_OSYSDIV_S) | ui32OscSelect; // // Update the memory timings. // ui32RSClkConfig |= SYSCTL_RSCLKCFG_MEMTIMU; // // Set the new clock configuration. // HWREG(SYSCTL_RSCLKCFG) = ui32RSClkConfig; } // // Finally change the OSCSRC back to PIOSC // HWREG(SYSCTL_RSCLKCFG) &= ~(SYSCTL_RSCLKCFG_OSCSRC_M); return(ui32SysClock); } //***************************************************************************** // //! Sets the clocking of the device. //! //! \param ui32Config is the required configuration of the device clocking. //! //! This function configures the clocking of the device. The input crystal //! frequency, oscillator to be used, use of the PLL, and the system clock //! divider are all configured with this function. //! //! The \e ui32Config parameter is the logical OR of several different values, //! many of which are grouped into sets where only one can be chosen. //! //! The system clock divider is chosen with one of the following values: //! \b SYSCTL_SYSDIV_1, \b SYSCTL_SYSDIV_2, \b SYSCTL_SYSDIV_2_5, //! \b SYSCTL_SYSDIV_3, ... \b SYSCTL_SYSDIV_63_5, \b SYSCTL_SYSDIV_64. //! //! The use of the PLL is chosen with either \b SYSCTL_USE_PLL or //! \b SYSCTL_USE_OSC. //! //! The external crystal frequency is chosen with one of the following values: //! \b SYSCTL_XTAL_4MHZ, \b SYSCTL_XTAL_4_09MHZ, \b SYSCTL_XTAL_4_91MHZ, //! \b SYSCTL_XTAL_5MHZ, \b SYSCTL_XTAL_5_12MHZ, \b SYSCTL_XTAL_6MHZ, //! \b SYSCTL_XTAL_6_14MHZ, \b SYSCTL_XTAL_7_37MHZ, \b SYSCTL_XTAL_8MHZ, //! \b SYSCTL_XTAL_8_19MHZ, \b SYSCTL_XTAL_10MHZ, \b SYSCTL_XTAL_12MHZ, //! \b SYSCTL_XTAL_12_2MHZ, \b SYSCTL_XTAL_13_5MHZ, \b SYSCTL_XTAL_14_3MHZ, //! \b SYSCTL_XTAL_16MHZ, \b SYSCTL_XTAL_16_3MHZ, \b SYSCTL_XTAL_18MHZ, //! \b SYSCTL_XTAL_20MHZ, \b SYSCTL_XTAL_24MHZ, or \b SYSCTL_XTAL_25MHz. //! Values below \b SYSCTL_XTAL_5MHZ are not valid when the PLL is in //! operation. //! //! The oscillator source is chosen with one of the following values: //! \b SYSCTL_OSC_MAIN, \b SYSCTL_OSC_INT, \b SYSCTL_OSC_INT4, //! \b SYSCTL_OSC_INT30, or \b SYSCTL_OSC_EXT32. \b SYSCTL_OSC_EXT32 is only //! available on devices with the hibernate module, and then only when the //! hibernate module has been enabled. //! //! The internal and main oscillators are disabled with the //! \b SYSCTL_INT_OSC_DIS and \b SYSCTL_MAIN_OSC_DIS flags, respectively. //! The external oscillator must be enabled in order to use an external clock //! source. Note that attempts to disable the oscillator used to clock the //! device is prevented by the hardware. //! //! To clock the system from an external source (such as an external crystal //! oscillator), use \b SYSCTL_USE_OSC \b | \b SYSCTL_OSC_MAIN. To clock the //! system from the main oscillator, use \b SYSCTL_USE_OSC \b | //! \b SYSCTL_OSC_MAIN. To clock the system from the PLL, use //! \b SYSCTL_USE_PLL \b | \b SYSCTL_OSC_MAIN, and select the appropriate //! crystal with one of the \b SYSCTL_XTAL_xxx values. //! //! \note This function should only be called on TM4C123 devices. For //! all other devices use the SysCtlClockFreqSet() function. //! //! \note If selecting the PLL as the system clock source (that is, via //! \b SYSCTL_USE_PLL), this function polls the PLL lock interrupt to //! determine when the PLL has locked. If an interrupt handler for the //! system control interrupt is in place, and it responds to and clears the //! PLL lock interrupt, this function delays until its timeout has occurred //! instead of completing as soon as PLL lock is achieved. //! //! \return None. // //***************************************************************************** void SysCtlClockSet(uint32_t ui32Config) { uint32_t ui32Delay, ui32RCC, ui32RCC2; // // Get the current value of the RCC and RCC2 registers. // ui32RCC = HWREG(SYSCTL_RCC); ui32RCC2 = HWREG(SYSCTL_RCC2); // // Bypass the PLL and system clock dividers for now. // ui32RCC |= SYSCTL_RCC_BYPASS; ui32RCC &= ~(SYSCTL_RCC_USESYSDIV); ui32RCC2 |= SYSCTL_RCC2_BYPASS2; // // Write the new RCC value. // HWREG(SYSCTL_RCC) = ui32RCC; HWREG(SYSCTL_RCC2) = ui32RCC2; // // See if the oscillator needs to be enabled. // if((ui32RCC & SYSCTL_RCC_MOSCDIS) && !(ui32Config & SYSCTL_MAIN_OSC_DIS)) { // // Make sure that the required oscillators are enabled. For now, the // previously enabled oscillators must be enabled along with the newly // requested oscillators. // ui32RCC &= (~SYSCTL_RCC_MOSCDIS | (ui32Config & SYSCTL_MAIN_OSC_DIS)); // // Clear the MOSC power up raw interrupt status to be sure it is not // set when waiting below. // HWREG(SYSCTL_MISC) = SYSCTL_MISC_MOSCPUPMIS; // // Write the new RCC value. // HWREG(SYSCTL_RCC) = ui32RCC; // // Timeout using the legacy delay value. // ui32Delay = 524288; while((HWREG(SYSCTL_RIS) & SYSCTL_RIS_MOSCPUPRIS) == 0) { ui32Delay--; if(ui32Delay == 0) { break; } } // // If the main oscillator failed to start up then do not switch to // it and return. // if(ui32Delay == 0) { return; } } // // Set the new crystal value and oscillator source. Because the OSCSRC2 // field in RCC2 overlaps the XTAL field in RCC, the OSCSRC field has a // special encoding within ui32Config to avoid the overlap. // ui32RCC &= ~(SYSCTL_RCC_XTAL_M | SYSCTL_RCC_OSCSRC_M); ui32RCC |= ui32Config & (SYSCTL_RCC_XTAL_M | SYSCTL_RCC_OSCSRC_M); ui32RCC2 &= ~(SYSCTL_RCC2_USERCC2 | SYSCTL_RCC2_OSCSRC2_M); ui32RCC2 |= ui32Config & (SYSCTL_RCC2_USERCC2 | SYSCTL_RCC_OSCSRC_M); ui32RCC2 |= (ui32Config & 0x00000008) << 3; // // Write the new RCC value. // HWREG(SYSCTL_RCC) = ui32RCC; HWREG(SYSCTL_RCC2) = ui32RCC2; // // Set the PLL configuration. // ui32RCC &= ~SYSCTL_RCC_PWRDN; ui32RCC |= ui32Config & SYSCTL_RCC_PWRDN; ui32RCC2 &= ~SYSCTL_RCC2_PWRDN2; ui32RCC2 |= ui32Config & SYSCTL_RCC2_PWRDN2; // // Clear the PLL lock interrupt. // HWREG(SYSCTL_MISC) = SYSCTL_MISC_PLLLMIS; // // Write the new RCC value. // if(ui32RCC2 & SYSCTL_RCC2_USERCC2) { HWREG(SYSCTL_RCC2) = ui32RCC2; HWREG(SYSCTL_RCC) = ui32RCC; } else { HWREG(SYSCTL_RCC) = ui32RCC; HWREG(SYSCTL_RCC2) = ui32RCC2; } // // Set the requested system divider and disable the appropriate // oscillators. This value is not written immediately. // ui32RCC &= ~(SYSCTL_RCC_SYSDIV_M | SYSCTL_RCC_USESYSDIV | SYSCTL_RCC_MOSCDIS); ui32RCC |= ui32Config & (SYSCTL_RCC_SYSDIV_M | SYSCTL_RCC_USESYSDIV | SYSCTL_RCC_MOSCDIS); ui32RCC2 &= ~(SYSCTL_RCC2_SYSDIV2_M); ui32RCC2 |= ui32Config & SYSCTL_RCC2_SYSDIV2_M; if(ui32Config & SYSCTL_RCC2_DIV400) { ui32RCC |= SYSCTL_RCC_USESYSDIV; ui32RCC2 &= ~(SYSCTL_RCC_USESYSDIV); ui32RCC2 |= ui32Config & (SYSCTL_RCC2_DIV400 | SYSCTL_RCC2_SYSDIV2LSB); } else { ui32RCC2 &= ~(SYSCTL_RCC2_DIV400); } // // See if the PLL output is being used to clock the system. // if(!(ui32Config & SYSCTL_RCC_BYPASS)) { // // Wait until the PLL has locked. // for(ui32Delay = 32768; ui32Delay > 0; ui32Delay--) { if((HWREG(SYSCTL_PLLSTAT) & SYSCTL_PLLSTAT_LOCK)) { break; } } // // Enable use of the PLL. // ui32RCC &= ~(SYSCTL_RCC_BYPASS); ui32RCC2 &= ~(SYSCTL_RCC2_BYPASS2); } // // Write the final RCC value. // HWREG(SYSCTL_RCC) = ui32RCC; HWREG(SYSCTL_RCC2) = ui32RCC2; // // Delay for a little bit so that the system divider takes effect. // SysCtlDelay(16); } //***************************************************************************** // //! Gets the processor clock rate. //! //! This function determines the clock rate of the processor clock, which is //! also the clock rate of the peripheral modules (with the exception of //! PWM, which has its own clock divider; other peripherals may have different //! clocking, see the device data sheet for details). //! //! \note This cannot return accurate results if SysCtlClockSet() has not //! been called to configure the clocking of the device, or if the device is //! directly clocked from a crystal (or a clock source) that is not one of the //! supported crystal frequencies. In the latter case, this function should be //! modified to directly return the correct system clock rate. //! //! \note This function can only be called on TM4C123 devices. For TM4C129 //! devices, the return value from SysCtlClockFreqSet() indicates the system //! clock frequency. //! //! \return The processor clock rate for TM4C123 devices only. // //***************************************************************************** uint32_t SysCtlClockGet(void) { uint32_t ui32RCC, ui32RCC2, ui32PLL, ui32Clk, ui32Max; uint32_t ui32PLL1; // // This function is only valid on TM4C123 devices. // ASSERT(CLASS_IS_TM4C123); // // Read RCC and RCC2. // ui32RCC = HWREG(SYSCTL_RCC); ui32RCC2 = HWREG(SYSCTL_RCC2); // // Get the base clock rate. // switch((ui32RCC2 & SYSCTL_RCC2_USERCC2) ? (ui32RCC2 & SYSCTL_RCC2_OSCSRC2_M) : (ui32RCC & SYSCTL_RCC_OSCSRC_M)) { // // The main oscillator is the clock source. Determine its rate from // the crystal setting field. // case SYSCTL_RCC_OSCSRC_MAIN: { ui32Clk = g_pui32Xtals[(ui32RCC & SYSCTL_RCC_XTAL_M) >> SYSCTL_RCC_XTAL_S]; break; } // // The internal oscillator is the source clock. // case SYSCTL_RCC_OSCSRC_INT: { // // The internal oscillator on all devices is 16 MHz. // ui32Clk = 16000000; break; } // // The internal oscillator divided by four is the source clock. // case SYSCTL_RCC_OSCSRC_INT4: { // // The internal oscillator on all devices is 16 MHz. // ui32Clk = 16000000 / 4; break; } // // The internal 30-KHz oscillator is the source clock. // case SYSCTL_RCC_OSCSRC_30: { // // The internal 30-KHz oscillator has an accuracy of +/- 30%. // ui32Clk = 30000; break; } // // The 32.768-KHz clock from the hibernate module is the source clock. // case SYSCTL_RCC2_OSCSRC2_32: { ui32Clk = 32768; break; } // // An unknown setting, so return a zero clock (that is, an unknown // clock rate). // default: { return(0); } } // // Default the maximum frequency to the maximum 32-bit unsigned value. // ui32Max = 0xffffffff; // // See if the PLL is being used. // if(((ui32RCC2 & SYSCTL_RCC2_USERCC2) && !(ui32RCC2 & SYSCTL_RCC2_BYPASS2)) || (!(ui32RCC2 & SYSCTL_RCC2_USERCC2) && !(ui32RCC & SYSCTL_RCC_BYPASS))) { // // Read the two PLL frequency registers. The formula for a // TM4C123 device is "(xtal * m) / ((q + 1) * (n + 1))". // ui32PLL = HWREG(SYSCTL_PLLFREQ0); ui32PLL1 = HWREG(SYSCTL_PLLFREQ1); // // Divide the input clock by the dividers. // ui32Clk /= ((((ui32PLL1 & SYSCTL_PLLFREQ1_Q_M) >> SYSCTL_PLLFREQ1_Q_S) + 1) * (((ui32PLL1 & SYSCTL_PLLFREQ1_N_M) >> SYSCTL_PLLFREQ1_N_S) + 1) * 2); // // Multiply the clock by the multiplier, which is split into an // integer part and a fractional part. // ui32Clk = ((ui32Clk * ((ui32PLL & SYSCTL_PLLFREQ0_MINT_M) >> SYSCTL_PLLFREQ0_MINT_S)) + ((ui32Clk * ((ui32PLL & SYSCTL_PLLFREQ0_MFRAC_M) >> SYSCTL_PLLFREQ0_MFRAC_S)) >> 10)); // // Force the system divider to be enabled. It is always used when // using the PLL, but in some cases it does not read as being enabled. // ui32RCC |= SYSCTL_RCC_USESYSDIV; // // Calculate the maximum system frequency. // switch(HWREG(SYSCTL_DC1) & SYSCTL_DC1_MINSYSDIV_M) { case SYSCTL_DC1_MINSYSDIV_80: { ui32Max = 80000000; break; } case SYSCTL_DC1_MINSYSDIV_50: { ui32Max = 50000000; break; } case SYSCTL_DC1_MINSYSDIV_40: { ui32Max = 40000000; break; } case SYSCTL_DC1_MINSYSDIV_25: { ui32Max = 25000000; break; } case SYSCTL_DC1_MINSYSDIV_20: { ui32Max = 20000000; break; } default: { break; } } } // // See if the system divider is being used. // if(ui32RCC & SYSCTL_RCC_USESYSDIV) { // // Adjust the clock rate by the system clock divider. // if(ui32RCC2 & SYSCTL_RCC2_USERCC2) { if((ui32RCC2 & SYSCTL_RCC2_DIV400) && (((ui32RCC2 & SYSCTL_RCC2_USERCC2) && !(ui32RCC2 & SYSCTL_RCC2_BYPASS2)) || (!(ui32RCC2 & SYSCTL_RCC2_USERCC2) && !(ui32RCC & SYSCTL_RCC_BYPASS)))) { ui32Clk = ((ui32Clk * 2) / (((ui32RCC2 & (SYSCTL_RCC2_SYSDIV2_M | SYSCTL_RCC2_SYSDIV2LSB)) >> (SYSCTL_RCC2_SYSDIV2_S - 1)) + 1)); } else { ui32Clk /= (((ui32RCC2 & SYSCTL_RCC2_SYSDIV2_M) >> SYSCTL_RCC2_SYSDIV2_S) + 1); } } else { ui32Clk /= (((ui32RCC & SYSCTL_RCC_SYSDIV_M) >> SYSCTL_RCC_SYSDIV_S) + 1); } } // // Limit the maximum clock to the maximum clock frequency. // if(ui32Max < ui32Clk) { ui32Clk = ui32Max; } // // Return the computed clock rate. // return(ui32Clk); } //***************************************************************************** // //! Sets the clocking of the device while in deep-sleep mode. //! //! \param ui32Config is the required configuration of the device clocking //! while in deep-sleep mode. //! //! This function configures the clocking of the device while in deep-sleep //! mode. The oscillator to be used and the system clock divider are //! configured with this function. //! //! The \e ui32Config parameter is the logical OR of the following values: //! //! The system clock divider is chosen from one of the following values: //! \b SYSCTL_DSLP_DIV_1, \b SYSCTL_DSLP_DIV_2, \b SYSCTL_DSLP_DIV_3, ... //! \b SYSCTL_DSLP_DIV_64. //! //! The oscillator source is chosen from one of the following values: //! \b SYSCTL_DSLP_OSC_MAIN, \b SYSCTL_DSLP_OSC_INT, \b SYSCTL_DSLP_OSC_INT30, //! or \b SYSCTL_DSLP_OSC_EXT32. \b SYSCTL_OSC_EXT32 is only available on //! devices with the hibernation module, and then only when the hibernation //! module has been enabled. //! //! The precision internal oscillator can be powered down in deep-sleep mode by //! specifying \b SYSCTL_DSLP_PIOSC_PD. The precision internal oscillator is //! not powered down if it is required for operation while in deep-sleep //! (based on other configuration settings.) //! //! \note This function should only be called on TM4C123 devices. For //! other devices use the SysCtlDeepSleepClockConfigSet() function. //! //! \note The availability of deep-sleep clocking configuration varies with the //! Tiva part in use. Please consult the data sheet for the part you are //! using to determine whether this support is available. //! //! \return None. // //***************************************************************************** void SysCtlDeepSleepClockSet(uint32_t ui32Config) { // // Set the deep-sleep clock configuration. // HWREG(SYSCTL_DSLPCLKCFG) = ui32Config; } //***************************************************************************** // //! Sets the clock configuration of the device while in deep-sleep mode. //! //! \param ui32Div is the clock divider when in deep-sleep mode. //! \param ui32Config is the configuration of the device clocking while //! in deep-sleep mode. //! //! This function configures the clocking of the device while in deep-sleep //! mode. The \e ui32Config parameter selects the oscillator and the //! \e ui32Div parameter sets the clock divider used in deep-sleep mode. The //! valid values for the \e ui32Div parameter range from 1 to 1024, however not //! all Tiva microcontrollers support this full range. This function //! replaces the SysCtlDeepSleepClockSet() function and can be used on //! Tiva devices that support deep-sleep mode. //! //! The oscillator source is chosen from one of the following values: //! \b SYSCTL_DSLP_OSC_MAIN, \b SYSCTL_DSLP_OSC_INT, \b SYSCTL_DSLP_OSC_INT30, //! or \b SYSCTL_DSLP_OSC_EXT32. The \b SYSCTL_DSLP_OSC_EXT32 option is only //! available on devices with the hibernation module, and then only when the //! hibernation module is enabled. //! //! The precision internal oscillator can be powered down in deep-sleep mode by //! specifying \b SYSCTL_DSLP_PIOSC_PD. The precision internal oscillator is //! not powered down if it is required for operation while in deep-sleep //! (based on other configuration settings). //! //! The main oscillator can be powered down in deep-sleep mode by //! specifying \b SYSCTL_DSLP_MOSC_PD. The main oscillator is //! not powered down if it is required for operation while in deep-sleep //! (based on other configuration settings). //! //! \note The availability of deep-sleep clocking configuration and the //! configuration values vary with the Tiva device in use. Please consult //! the data sheet for the device you are using to determine whether the //! desired configuration options are available and to determine the valid //! range for the clock divider. //! //! \return None. // //***************************************************************************** void SysCtlDeepSleepClockConfigSet(uint32_t ui32Div, uint32_t ui32Config) { uint32_t ui32Value; ASSERT(ui32Div != 0); if(CLASS_IS_TM4C123) { // // Set the deep-sleep clock configuration. // HWREG(SYSCTL_DSLPCLKCFG) = (ui32Config & ~SYSCTL_DSLPCLKCFG_D_M) | ((ui32Div - 1) << SYSCTL_DSLPCLKCFG_D_S); } else { // // Initialize the value with the divider. // ui32Value = ui32Div - 1; // // Set the clock source selection based on the defines used for // SysCtlDeepSleepClockSet() function so that there is some backwards // compatibility. // switch(ui32Config & SYSCTL_DSLPCLKCFG_O_M) { // // Choose the main external oscillator. // case SYSCTL_DSLP_OSC_MAIN: { ui32Value |= SYSCTL_DSCLKCFG_DSOSCSRC_MOSC; break; } // // Choose the low frequency oscillator. // case SYSCTL_DSLP_OSC_INT30: { ui32Value |= SYSCTL_DSCLKCFG_DSOSCSRC_LFIOSC; break; } // // Choose the low frequency oscillator. // case SYSCTL_DSLP_OSC_EXT32: { ui32Value |= SYSCTL_DSCLKCFG_DSOSCSRC_RTC; break; } // // The zero value uses the PIOSC as the clock source. // case SYSCTL_DSLP_OSC_INT: default: { break; } } // // Set the PIOSC power down bit. // if(ui32Config & SYSCTL_DSLP_PIOSC_PD) { ui32Value |= SYSCTL_DSCLKCFG_PIOSCPD; } // // Set the PIOSC power down bit. // if(ui32Config & SYSCTL_DSLP_MOSC_PD) { ui32Value |= SYSCTL_DSCLKCFG_MOSCDPD; } // // Update the deep-sleep clock configuration. // HWREG(SYSCTL_DSCLKCFG) = ui32Value; } } //***************************************************************************** // //! Sets the PWM clock configuration. //! //! \param ui32Config is the configuration for the PWM clock; it must be one of //! \b SYSCTL_PWMDIV_1, \b SYSCTL_PWMDIV_2, \b SYSCTL_PWMDIV_4, //! \b SYSCTL_PWMDIV_8, \b SYSCTL_PWMDIV_16, \b SYSCTL_PWMDIV_32, or //! \b SYSCTL_PWMDIV_64. //! //! This function configures the rate of the clock provided to the PWM module //! as a ratio of the processor clock. This clock is used by the PWM module to //! generate PWM signals; its rate forms the basis for all PWM signals. //! //! \note This function should only be used with TM4C123 devices. For //! other TM4C devices, the PWMClockSet() function should be used. //! //! \note The clocking of the PWM is dependent on the system clock rate as //! configured by SysCtlClockSet(). //! //! \return None. // //***************************************************************************** void SysCtlPWMClockSet(uint32_t ui32Config) { // // Check the arguments. // ASSERT((ui32Config == SYSCTL_PWMDIV_1) || (ui32Config == SYSCTL_PWMDIV_2) || (ui32Config == SYSCTL_PWMDIV_4) || (ui32Config == SYSCTL_PWMDIV_8) || (ui32Config == SYSCTL_PWMDIV_16) || (ui32Config == SYSCTL_PWMDIV_32) || (ui32Config == SYSCTL_PWMDIV_64)); // // Check that there is a PWM block on this part. // ASSERT(HWREG(SYSCTL_DC1) & (SYSCTL_DC1_PWM0 | SYSCTL_DC1_PWM1)); // // Set the PWM clock configuration into the run-mode clock configuration // register. // HWREG(SYSCTL_RCC) = ((HWREG(SYSCTL_RCC) & ~(SYSCTL_RCC_USEPWMDIV | SYSCTL_RCC_PWMDIV_M)) | ui32Config); } //***************************************************************************** // //! Gets the current PWM clock configuration. //! //! This function returns the current PWM clock configuration. //! //! \return Returns the current PWM clock configuration; is one of //! \b SYSCTL_PWMDIV_1, \b SYSCTL_PWMDIV_2, \b SYSCTL_PWMDIV_4, //! \b SYSCTL_PWMDIV_8, \b SYSCTL_PWMDIV_16, \b SYSCTL_PWMDIV_32, or //! \b SYSCTL_PWMDIV_64. //! //! \note This function should only be used with TM4C123 devices. For //! other TM4C devices, the PWMClockGet() function should be used. // //***************************************************************************** uint32_t SysCtlPWMClockGet(void) { // // Check that there is a PWM block on this part. // ASSERT(HWREG(SYSCTL_DC1) & (SYSCTL_DC1_PWM0 | SYSCTL_DC1_PWM1)); // // Return the current PWM clock configuration. Make sure that // SYSCTL_PWMDIV_1 is returned in all cases where the divider is disabled. // if(!(HWREG(SYSCTL_RCC) & SYSCTL_RCC_USEPWMDIV)) { // // The divider is not active so reflect this in the value we return. // return(SYSCTL_PWMDIV_1); } else { // // The divider is active so directly return the masked register value. // return(HWREG(SYSCTL_RCC) & (SYSCTL_RCC_USEPWMDIV | SYSCTL_RCC_PWMDIV_M)); } } //***************************************************************************** // //! Enables access to a GPIO peripheral via the AHB. //! //! \param ui32GPIOPeripheral is the GPIO peripheral to enable. //! //! This function is used to enable the specified GPIO peripheral to be //! accessed from the Advanced Host Bus (AHB) instead of the legacy Advanced //! Peripheral Bus (APB). When a GPIO peripheral is enabled for AHB access, //! the \b _AHB_BASE form of the base address should be used for GPIO //! functions. For example, instead of using \b GPIO_PORTA_BASE as the base //! address for GPIO functions, use \b GPIO_PORTA_AHB_BASE instead. //! //! The \e ui32GPIOPeripheral argument must be only one of the following //! values: //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, or \b SYSCTL_PERIPH_GPIOJ. //! //! \note On some devices, all GPIO ports are only available on AHB. //! //! \return None. // //***************************************************************************** void SysCtlGPIOAHBEnable(uint32_t ui32GPIOPeripheral) { // // Check the arguments. // ASSERT((ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOA) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOB) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOC) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOD) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOE) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOF) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOG) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOH) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOJ)); // // Enable this GPIO for AHB access. // HWREG(SYSCTL_GPIOHBCTL) |= (1 << (ui32GPIOPeripheral & 0xF)); } //***************************************************************************** // //! Disables access to a GPIO peripheral via the AHB. //! //! \param ui32GPIOPeripheral is the GPIO peripheral to disable. //! //! This function disables the specified GPIO peripheral for access from the //! Advanced Host Bus (AHB). Once disabled, the GPIO peripheral is accessed //! from the legacy Advanced Peripheral Bus (APB). //! //! The \b ui32GPIOPeripheral argument must be only one of the following //! values: //! \b SYSCTL_PERIPH_GPIOA, \b SYSCTL_PERIPH_GPIOB, \b SYSCTL_PERIPH_GPIOC, //! \b SYSCTL_PERIPH_GPIOD, \b SYSCTL_PERIPH_GPIOE, \b SYSCTL_PERIPH_GPIOF, //! \b SYSCTL_PERIPH_GPIOG, \b SYSCTL_PERIPH_GPIOH, or \b SYSCTL_PERIPH_GPIOJ. //! //! \note Some devices allow disabling AHB access to GPIO ports that are only //! present on the AHB. Disabling AHB access to these ports will disable //! access to these GPIO ports. On some devices, all GPIO ports are only //! available on AHB. //! //! \return None. // //***************************************************************************** void SysCtlGPIOAHBDisable(uint32_t ui32GPIOPeripheral) { // // Check the arguments. // ASSERT((ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOA) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOB) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOC) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOD) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOE) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOF) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOG) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOH) || (ui32GPIOPeripheral == SYSCTL_PERIPH_GPIOJ)); // // Disable this GPIO for AHB access. // HWREG(SYSCTL_GPIOHBCTL) &= ~(1 << (ui32GPIOPeripheral & 0xF)); } //***************************************************************************** // //! Powers up the USB PLL. //! //! This function enables the USB controller's PLL, which is used by its //! physical layer. This call is necessary before connecting to any external //! devices. //! //! \note This function should only be called on TM4C123 devices. //! //! \return None. // //***************************************************************************** void SysCtlUSBPLLEnable(void) { // // Turn on the USB PLL. // HWREG(SYSCTL_RCC2) &= ~SYSCTL_RCC2_USBPWRDN; } //***************************************************************************** // //! Powers down the USB PLL. //! //! This function disables the USB controller's PLL, which is used by its //! physical layer. The USB registers are still accessible, but the physical //! layer no longer functions. //! //! \note This function should only be called on TM4C123 devices. //! //! \return None. // //***************************************************************************** void SysCtlUSBPLLDisable(void) { // // Turn off the USB PLL. // HWREG(SYSCTL_RCC2) |= SYSCTL_RCC2_USBPWRDN; } //***************************************************************************** // //! Configures the response to system voltage events. //! //! \param ui32Config holds the configuration options for the voltage events. //! //! This function configures the response to voltage-related events. //! These events are triggered when the voltage rails drop below certain //! levels. The \e ui32Config parameter provides the configuration for the //! voltage events and is a combination of the \b SYSCTL_VEVENT_* values. //! //! The response to a brown out on the VDDA rail is set by using one of the //! following values: //! - \b SYSCTL_VEVENT_VDDABO_NONE - There is no action taken on a VDDA //! brown out. //! - \b SYSCTL_VEVENT_VDDABO_INT - A system interrupt is generated when a //! VDDA brown out occurs. //! - \b SYSCTL_VEVENT_VDDABO_NMI - An NMI is generated when a VDDA brown out //! occurs. //! - \b SYSCTL_VEVENT_VDDABO_RST - A reset is generated when a VDDA brown out //! occurs. The type of reset that is generated is controller by the //! \b SYSCTL_ONRST_BOR_* setting passed into the SysCtlResetBehaviorSet() //! function. //! //! The response to a brown out on the VDD rail is set by using one of the //! following values: //! - \b SYSCTL_VEVENT_VDDBO_NONE - There is no action taken on a VDD //! brown out. //! - \b SYSCTL_VEVENT_VDDBO_INT - A system interrupt is generated when a //! VDD brown out occurs. //! - \b SYSCTL_VEVENT_VDDBO_NMI - An NMI is generated when a VDD brown out //! occurs. //! - \b SYSCTL_VEVENT_VDDBO_RST - A reset is generated when a VDD brown out //! occurs. The type of reset that is generated is controller by the //! \b SYSCTL_ONRST_BOR_* setting passed into the SysCtlResetBehaviorSet() //! function. //! //! \b Example: Configure the voltage events to trigger an interrupt on a VDDA //! brown out, an NMI on a VDDC brown out and a reset on a VDD brown out. //! //! \verbatim //! //! // //! // Configure the BOR rest to trigger a full POR. This is needed because //! // the SysCtlVoltageEventConfig() call is triggering a reset so the type //! // of reset is specified by this call. //! // //! SysCtlResetBehaviorSet(SYSCTL_ONRST_BOR_POR); //! //! // //! // Trigger an interrupt on a VDDA brown out and a reset on a VDD brown out. //! // //! SysCtlVoltageEventConfig(SYSCTL_VEVENT_VDDABO_INT | //! SYSCTL_VEVENT_VDDBO_RST); //! \endverbatim //! //! \return None. // //***************************************************************************** void SysCtlVoltageEventConfig(uint32_t ui32Config) { // // Set the requested events. // HWREG(SYSCTL_PTBOCTL) = ui32Config; } //***************************************************************************** // //! Returns the voltage event status. //! //! This function returns the voltage event status for the system controller. //! The value returned is a logical OR of the following values: //! - \b SYSCTL_VESTAT_VDDBOR a brown-out event occurred on the VDD rail. //! - \b SYSCTL_VESTAT_VDDABOR a brown-out event occurred on the VDDA rail. //! //! The values returned from this function can be passed to the //! SysCtlVoltageEventClear() to clear the current voltage event status. //! Because voltage events are not cleared due to a reset, the voltage event //! status must be cleared by calling SysCtlVoltageEventClear(). //! //! \b Example: Clear the current voltage event status. //! //! \verbatim //! uint32_t ui32VoltageEvents; //! //! // //! // Read the current voltage event status. //! // //! ui32VoltageEvents = SysCtlVoltageEventStatus(); //! //! // //! // Clear all the current voltage events. //! // //! SysCtlVoltageEventClear(ui32VoltageEvents); //! \endverbatim //! //! \return The current voltage event status. //! //! \note The availability of voltage events varies with the Tiva part //! in use. Please consult the data sheet for the part you are using to //! determine which interrupt sources are available. // //***************************************************************************** uint32_t SysCtlVoltageEventStatus(void) { // // Return the current voltage event status. // return(HWREG(SYSCTL_PWRTC)); } //***************************************************************************** // //! Clears the voltage event status. //! //! \param ui32Status is a bit mask of the voltage events to clear. //! //! This function clears the current voltage events status for the values //! specified in the \e ui32Status parameter. The \e ui32Status value must be //! a logical OR of the following values: //! - \b SYSCTL_VESTAT_VDDBOR a brown-out event occurred on the VDD rail. //! - \b SYSCTL_VESTAT_VDDABOR a brown-out event occurred on the VDDA rail. //! //! \b Example: Clear the current voltage event status. //! //! \verbatim //! // //! // Clear all the current voltage events. //! // //! SysCtlVoltageEventClear(SysCtlVoltageEventStatus()); //! \endverbatim //! //! \note The availability of voltage event status varies with the //! Tiva part in use. Please consult the data sheet for the part you are //! using to determine which interrupt sources are available. //! //! \return None. // //***************************************************************************** void SysCtlVoltageEventClear(uint32_t ui32Status) { // // Clear the requested voltage events. // HWREG(SYSCTL_PWRTC) |= ui32Status; } //***************************************************************************** // //! Gets the effective VCO frequency. //! //! \param ui32Crystal holds the crystal value definition from \b sysctl.h //! such as \b SYSCTL_XTAL_25MHZ. //! \param pui32VCOFrequency is a pointer to the storage location which holds //! value of the VCO computed. //! //! This function calculates the VCO of the PLL before the system divider is //! applied //! //! \return \b true if the PLL is configured correctly and a VCO is valid or //! \b false if the device is not TM4C129x or the PLL is not used // //***************************************************************************** bool SysCtlVCOGet(uint32_t ui32Crystal, uint32_t *pui32VCOFrequency) { int32_t i32XtalIdx; uint32_t ui32RSClkConfig, ui32PLLFreq0, ui32PLLFreq1, ui32Osc; uint32_t ui32MInt, ui32MFrac, ui32NDiv, ui32QDiv, ui32TempVCO; // // Check if TM4C123 device is being used. should not use this function. // if(CLASS_IS_TM4C123) { // // Return error if TM4C123. // *pui32VCOFrequency = 0; return(false); } // // Read the RSCLKCFG register to determine if PLL is being used. // ui32RSClkConfig = HWREG(SYSCTL_RSCLKCFG); // // Check if PLL is used. // if((ui32RSClkConfig & SYSCTL_RSCLKCFG_USEPLL) != SYSCTL_RSCLKCFG_USEPLL) { // // Return error if PLL is not used. // *pui32VCOFrequency = 0; return(false); } // // Get the index of the crystal from the ui32Config parameter. // i32XtalIdx = SysCtlXtalCfgToIndex(ui32Crystal); // // Get the value of the crystal frequency based on the index // ui32Osc = g_pui32Xtals[i32XtalIdx]; // // Read the PLLFREQ0 and PLLFREQ1 registers to get information on the // MINT, MFRAC, N and Q values of the PLL // ui32PLLFreq0 = HWREG(SYSCTL_PLLFREQ0); ui32PLLFreq1 = HWREG(SYSCTL_PLLFREQ1); ui32MInt = (ui32PLLFreq0 & SYSCTL_PLLFREQ0_MINT_M) >> SYSCTL_PLLFREQ0_MINT_S; ui32MFrac = (ui32PLLFreq0 & SYSCTL_PLLFREQ0_MFRAC_M) >> SYSCTL_PLLFREQ0_MFRAC_S; ui32NDiv = (ui32PLLFreq1 & SYSCTL_PLLFREQ1_N_M) >> SYSCTL_PLLFREQ1_N_S; ui32QDiv = (ui32PLLFreq1 & SYSCTL_PLLFREQ1_Q_M) >> SYSCTL_PLLFREQ1_Q_S; // // Calculate the VCO at the output of the PLL // ui32TempVCO = (ui32Osc * ui32MInt) + ((ui32Osc * ui32MFrac) / 1024); ui32TempVCO /= ((ui32NDiv + 1) * (ui32QDiv + 1)); *pui32VCOFrequency = ui32TempVCO; return(true); } //***************************************************************************** // //! Returns the current NMI status. //! //! This function returns the NMI status for the system controller. The valid //! values for the \e ui32Ints parameter are a logical OR of the following //! values: //! - \b SYSCTL_NMI_MOSCFAIL the main oscillator is not present or did not //! start. //! - \b SYSCTL_NMI_TAMPER a tamper event has been detected. //! - \b SYSCTL_NMI_WDT0 watchdog 0 generated a timeout. //! - \b SYSCTL_NMI_WDT1 watchdog 1 generated a timeout. //! - \b SYSCTL_NMI_POWER a power event occurred. //! - \b SYSCTL_NMI_EXTERNAL an external NMI pin asserted. //! //! \b Example: Clear all current NMI status flags. //! //! \verbatim //! //! // //! // Clear all the current NMI sources. //! // //! SysCtlNMIClear(SysCtlNMIStatus()); //! \endverbatim //! //! \note The availability of the NMI status varies with the Tiva part in //! use. Please consult the data sheet for the part you are using to determine //! which interrupt sources are available. //! //! \return The current NMI status. // //***************************************************************************** uint32_t SysCtlNMIStatus(void) { return(HWREG(SYSCTL_NMIC)); } //***************************************************************************** // //! Clears NMI sources. //! //! \param ui32Ints is a bit mask of the non-maskable interrupt sources. //! //! This function clears the current NMI status specified in the \e ui32Ints //! parameter. The valid values for the \e ui32Ints parameter are a logical OR //! of the following values: //! - \b SYSCTL_NMI_MOSCFAIL the main oscillator is not present or did not //! start. //! - \b SYSCTL_NMI_TAMPER a tamper event has been detected. //! - \b SYSCTL_NMI_WDT0 watchdog 0 generated a timeout. //! - \b SYSCTL_NMI_WDT1 watchdog 1 generated a timeout. //! - \b SYSCTL_NMI_POWER a power event occurred. //! - \b SYSCTL_NMI_EXTERNAL an external NMI pin asserted. //! //! \b Example: Clear all current NMI status flags. //! //! \verbatim //! //! // //! // Clear all the current NMI sources. //! // //! SysCtlNMIClear(SysCtlNMIStatus()); //! \endverbatim //! //! \note The availability of the NMI status varies with the Tiva part in //! use. Please consult the data sheet for the part you are using to determine //! which interrupt sources are available. //! //! \return None. // //***************************************************************************** void SysCtlNMIClear(uint32_t ui32Ints) { // // Clear the requested interrupt sources. // HWREG(SYSCTL_NMIC) &= ~ui32Ints; } //***************************************************************************** // //! Configures and enables or disables the clock output on the DIVSCLK pin. //! //! \param ui32Config holds the configuration options including enabling or //! disabling the clock output on the DIVSCLK pin. //! \param ui32Div is the divisor for the clock selected in the \e ui32Config //! parameter. //! //! This function selects the source for the DIVSCLK, enables or disables //! the clock output and provides an output divider value. The \e ui32Div //! parameter specifies the divider for the selected clock source and has a //! valid range of 1-256. The \e ui32Config parameter configures //! the DIVSCLK output based on the following settings: //! //! The first setting allows the output to be enabled or disabled. //! - \b SYSCTL_CLKOUT_EN - enable the DIVSCLK output. //! - \b SYSCTL_CLKOUT_DIS - disable the DIVSCLK output (default). //! //! The next group of settings selects the source for the DIVSCLK. //! - \b SYSCTL_CLKOUT_SYSCLK - use the current system clock as the //! source (default). //! - \b SYSCTL_CLKOUT_PIOSC - use the PIOSC as the source. //! - \b SYSCTL_CLKOUT_MOSC - use the MOSC as the source. //! //! \b Example: Enable the PIOSC divided by 4 as the DIVSCLK output. //! //! \verbatim //! //! // //! // Enable the PIOSC divided by 4 as the DIVSCLK output. //! // //! SysCtlClockOutConfig(SYSCTL_DIVSCLK_EN | SYSCTL_DIVSCLK_SRC_PIOSC, 4); //! \endverbatim //! //! \note The availability of the DIVSCLK output varies with the Tiva part //! in use. Please consult the data sheet for the part you are using to //! determine which interrupt sources are available. //! //! \return None. // //***************************************************************************** void SysCtlClockOutConfig(uint32_t ui32Config, uint32_t ui32Div) { ASSERT(ui32Div != 0); ASSERT((ui32Config & ~(SYSCTL_CLKOUT_EN | SYSCTL_CLKOUT_DIS | SYSCTL_CLKOUT_SYSCLK | SYSCTL_CLKOUT_PIOSC | SYSCTL_CLKOUT_MOSC)) == 0); // // Set the requested configuration and divisor. // HWREG(SYSCTL_DIVSCLK) = ui32Config | ((ui32Div - 1) & SYSCTL_DIVSCLK_DIV_M); } //***************************************************************************** // //! Configures the alternate peripheral clock source. //! //! \param ui32Config holds the configuration options for the alternate //! peripheral clock. //! //! This function configures the alternate peripheral clock. The alternate //! peripheral clock is used to provide a known clock in all operating modes //! to peripherals that support using the alternate peripheral clock as an //! input clock. The \e ui32Config parameter value provides the clock input //! source using one of the following values: //! - \b SYSCTL_ALTCLK_PIOSC - use the PIOSC as the alternate clock //! source (default). //! - \b SYSCTL_ALTCLK_RTCOSC - use the Hibernate module RTC clock as the //! alternate clock source. //! - \b SYSCTL_ALTCLK_LFIOSC - use the low-frequency internal oscillator as //! the alternate clock source. //! //! \b Example: Select the Hibernate module RTC clock as the alternate clock //! source. //! //! \verbatim //! //! // //! // Select the Hibernate module RTC clock as the alternate clock source. //! // //! SysCtlAltClkConfig(SYSCTL_ALTCLK_RTCOSC); //! \endverbatim //! //! \note The availability of the alternate peripheral clock varies with the //! Tiva part in use. Please consult the data sheet for the part you are //! using to determine which interrupt sources are available. //! //! \return None. // //***************************************************************************** void SysCtlAltClkConfig(uint32_t ui32Config) { // // Set the requested configuration and divisor. // HWREG(SYSCTL_ALTCLKCFG) = ui32Config; } //***************************************************************************** // // Close the Doxygen group. //! @} // //*****************************************************************************