/* * Copyright (c) 2023 HPMicro * SPDX-License-Identifier: BSD-3-Clause * * */ #include "board.h" #include "hpm_uart_drv.h" #include "hpm_gptmr_drv.h" #include "hpm_lcdc_drv.h" #include "hpm_i2c_drv.h" #include "hpm_gpio_drv.h" #include "pinmux.h" #include "hpm_pmp_drv.h" #include "hpm_clock_drv.h" #include "hpm_sysctl_drv.h" #include "hpm_pllctlv2_drv.h" #include "hpm_sdxc_drv.h" #include "hpm_ddrctl_regs.h" #include "hpm_ddrphy_regs.h" #include "hpm_pcfg_drv.h" #include "hpm_pixelmux_drv.h" #include "hpm_lvb_drv.h" #include "hpm_enet_drv.h" #include "hpm_usb_drv.h" #include "hpm_mipi_dsi_drv.h" #include "hpm_mipi_dsi_phy_drv.h" static board_timer_cb timer_cb; /** * @brief FLASH configuration option definitions: * option[0]: * [31:16] 0xfcf9 - FLASH configuration option tag * [15:4] 0 - Reserved * [3:0] option words (exclude option[0]) * option[1]: * [31:28] Flash probe type * 0 - SFDP SDR / 1 - SFDP DDR * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address) * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V * 6 - OctaBus DDR (SPI -> OPI DDR) * 8 - Xccela DDR (SPI -> OPI DDR) * 10 - EcoXiP DDR (SPI -> OPI DDR) * [27:24] Command Pads after Power-on Reset * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI * [23:20] Command Pads after Configuring FLASH * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only) * 0 - Not needed * 1 - QE bit is at bit 6 in Status Register 1 * 2 - QE bit is at bit1 in Status Register 2 * 3 - QE bit is at bit7 in Status Register 2 * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31 * [15:8] Dummy cycles * 0 - Auto-probed / detected / default value * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet * [7:4] Misc. * 0 - Not used * 1 - SPI mode * 2 - Internal loopback * 3 - External DQS * [3:0] Frequency option * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz * * option[2] (Effective only if the bit[3:0] in option[0] > 1) * [31:20] Reserved * [19:16] IO voltage * 0 - 3V / 1 - 1.8V * [15:12] Pin group * 0 - 1st group / 1 - 2nd group * [11:8] Connection selection * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively) * [7:0] Drive Strength * 0 - Default value * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports * JESD216) * [31:16] reserved * [15:12] Sector Erase Command Option, not required here * [11:8] Sector Size Option, not required here * [7:0] Flash Size Option * 0 - 4MB / 1 - 8MB / 2 - 16MB */ #if defined(FLASH_XIP) && FLASH_XIP __attribute__((section(".nor_cfg_option"))) const uint32_t option[4] = { 0xfcf90001, 0x00000007, 0x0, 0x0 }; #endif #if defined(FLASH_UF2) && FLASH_UF2 ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE; #endif void board_init_console(void) { #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART console_config_t cfg; /* uart needs to configure pin function before enabling clock, otherwise the level change of * uart rx pin when configuring pin function will cause a wrong data to be received. * And a uart rx dma request will be generated by default uart fifo dma trigger level. */ init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE); /* Configure the UART clock to 24MHz */ clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U); clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0); cfg.type = BOARD_CONSOLE_TYPE; cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE; cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME); cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE; if (status_success != console_init(&cfg)) { /* failed to initialize debug console */ while (1) { } } #else while (1) ; #endif #endif } void board_print_clock_freq(void) { printf("==============================\n"); printf(" %s clock summary\n", BOARD_NAME); printf("==============================\n"); printf("cpu0:\t\t %dHz\n", clock_get_frequency(clock_cpu0)); printf("gpu0:\t\t %dHz\n", clock_get_frequency(clock_gpu0)); printf("axis:\t\t %dHz\n", clock_get_frequency(clock_axis)); printf("axic:\t\t %dHz\n", clock_get_frequency(clock_axic)); printf("axif:\t\t %dHz\n", clock_get_frequency(clock_axif)); printf("axid:\t\t %dHz\n", clock_get_frequency(clock_axid)); printf("axiv:\t\t %dHz\n", clock_get_frequency(clock_axiv)); printf("axig:\t\t %dHz\n", clock_get_frequency(clock_axig)); printf("mchtmr0:\t %dHz\n", clock_get_frequency(clock_mchtmr0)); printf("xpi0:\t\t %dHz\n", clock_get_frequency(clock_xpi0)); printf("==============================\n"); } void board_init_uart(UART_Type *ptr) { /* configure uart's pin before opening uart's clock */ init_uart_pins(ptr); board_init_uart_clock(ptr); } void board_print_banner(void) { const uint8_t banner[] = { "\n\ ----------------------------------------------------------------------\n\ $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\ $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\ $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\ $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\ $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\ $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\ $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\ \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\ ----------------------------------------------------------------------\n" }; #ifdef SDK_VERSION_STRING printf("hpm_sdk: %s\n", SDK_VERSION_STRING); #endif printf("%s", banner); } uint8_t board_get_led_gpio_off_level(void) { return BOARD_LED_OFF_LEVEL; } void board_ungate_mchtmr_at_lp_mode(void) { /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */ sysctl_set_cpu0_lp_mode(HPM_SYSCTL, cpu_lp_mode_ungate_cpu_clock); } void board_init(void) { board_init_clock(); board_init_console(); board_init_pmp(); #if BOARD_SHOW_CLOCK board_print_clock_freq(); #endif #if BOARD_SHOW_BANNER board_print_banner(); #endif } void board_delay_us(uint32_t us) { clock_cpu_delay_us(us); } void board_delay_ms(uint32_t ms) { clock_cpu_delay_ms(ms); } void board_timer_isr(void) { if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) { gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH)); timer_cb(); } } SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr); void board_timer_create(uint32_t ms, board_timer_cb cb) { uint32_t gptmr_freq; gptmr_channel_config_t config; timer_cb = cb; gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config); clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0); gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME); config.reload = gptmr_freq / 1000 * ms; gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false); gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH)); intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1); gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH); } void board_i2c_bus_clear(I2C_Type *ptr) { if (i2c_get_line_scl_status(ptr) == false) { printf("CLK is low, please power cycle the board\n"); while (1) { } } if (i2c_get_line_sda_status(ptr) == false) { printf("SDA is low, try to issue I2C bus clear\n"); } else { printf("I2C bus is ready\n"); return; } i2s_gen_reset_signal(ptr, 9); board_delay_ms(100); printf("I2C bus is cleared\n"); } void board_init_i2c(I2C_Type *ptr) { hpm_stat_t stat; uint32_t freq; i2c_config_t config; init_i2c_pins(ptr); board_i2c_bus_clear(ptr); if (ptr == HPM_I2C0) { clock_add_to_group(clock_i2c0, 0); clock_set_source_divider(clock_i2c0, clk_src_osc24m, 1U); freq = clock_get_frequency(clock_i2c0); } else if (ptr == HPM_I2C1) { clock_add_to_group(clock_i2c1, 0); clock_set_source_divider(clock_i2c1, clk_src_osc24m, 1U); freq = clock_get_frequency(clock_i2c1); } else if (ptr == HPM_I2C2) { clock_add_to_group(clock_i2c2, 0); clock_set_source_divider(clock_i2c2, clk_src_osc24m, 1U); freq = clock_get_frequency(clock_i2c2); } else if (ptr == HPM_I2C3) { clock_add_to_group(clock_i2c3, 0); clock_set_source_divider(clock_i2c3, clk_src_osc24m, 1U); freq = clock_get_frequency(clock_i2c3); } else { printf("invild i2c base address 0x%x\n", (uint32_t) ptr); while (1) { } } config.i2c_mode = i2c_mode_normal; config.is_10bit_addressing = false; stat = i2c_init_master(ptr, freq, &config); if (stat != status_success) { printf("failed to initialize i2c 0x%x\n", (uint32_t) ptr); while (1) { } } } uint32_t board_init_spi_clock(SPI_Type *ptr) { if (ptr == HPM_SPI1) { /* SPI1 clock configure */ clock_add_to_group(clock_spi1, 0); return clock_get_frequency(clock_spi1); } else if (ptr == HPM_SPI2) { /* SPI2 clock configure */ clock_add_to_group(clock_spi2, 0); return clock_get_frequency(clock_spi2); } else if (ptr == HPM_SPI3) { /* SPI3 clock configure */ clock_add_to_group(clock_spi3, 0); return clock_get_frequency(clock_spi3); } return 0; } void board_init_gpio_pins(void) { init_gpio_pins(); } void board_init_spi_pins(SPI_Type *ptr) { init_spi_pins(ptr); } void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr) { init_spi_pins_with_gpio_as_cs(ptr); gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN), GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL); } void board_write_spi_cs(uint32_t pin, uint8_t state) { gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state); } void board_init_led_pins(void) { init_led_pins_as_gpio(); gpio_set_pin_output_with_initial(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, board_get_led_gpio_off_level()); gpio_set_pin_output_with_initial(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, board_get_led_gpio_off_level()); gpio_set_pin_output_with_initial(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, board_get_led_gpio_off_level()); } void board_led_toggle(void) { #ifdef BOARD_LED_TOGGLE_RGB static uint8_t i; switch (i) { case 1: gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL); gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_ON_LEVEL); gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL); break; case 2: gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_OFF_LEVEL); gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL); gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_ON_LEVEL); break; case 0: default: gpio_write_pin(BOARD_R_GPIO_CTRL, BOARD_R_GPIO_INDEX, BOARD_R_GPIO_PIN, BOARD_LED_ON_LEVEL); gpio_write_pin(BOARD_G_GPIO_CTRL, BOARD_G_GPIO_INDEX, BOARD_G_GPIO_PIN, BOARD_LED_OFF_LEVEL); gpio_write_pin(BOARD_B_GPIO_CTRL, BOARD_B_GPIO_INDEX, BOARD_B_GPIO_PIN, BOARD_LED_OFF_LEVEL); break; } i++; i = i % 3; #else gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN); #endif } void board_led_write(uint8_t state) { gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state); } void board_init_pmp(void) { extern uint32_t __noncacheable_start__[]; extern uint32_t __noncacheable_end__[]; uint32_t start_addr = (uint32_t) __noncacheable_start__; uint32_t end_addr = (uint32_t) __noncacheable_end__; uint32_t length = end_addr - start_addr; if (length == 0) { return; } /* Ensure the address and the length are power of 2 aligned */ assert((length & (length - 1U)) == 0U); assert((start_addr & (length - 1U)) == 0U); pmp_entry_t pmp_entry[3] = { 0 }; pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(0x0000000, 0x80000000); pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK); pmp_entry[1].pmp_addr = PMP_NAPOT_ADDR(0x80000000, 0x80000000); pmp_entry[1].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK); pmp_entry[2].pmp_addr = PMP_NAPOT_ADDR(start_addr, length); pmp_entry[2].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK); pmp_entry[2].pma_addr = PMA_NAPOT_ADDR(start_addr, length); pmp_entry[2].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN); pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry)); } void board_init_display_system_clock(void) { clock_add_to_group(clock_gpu0, 0); clock_add_to_group(clock_gwc0, 0); clock_add_to_group(clock_gwc1, 0); clock_add_to_group(clock_lvb, 0); clock_add_to_group(clock_lcb, 0); clock_add_to_group(clock_lcd0, 0); clock_add_to_group(clock_dsi0, 0); clock_add_to_group(clock_dsi1, 0); clock_add_to_group(clock_cam0, 0); clock_add_to_group(clock_cam1, 0); clock_add_to_group(clock_jpeg, 0); clock_add_to_group(clock_pdma, 0); } void board_init_clock(void) { uint32_t cpu0_freq = clock_get_frequency(clock_cpu0); if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) { /* Configure the External OSC ramp-up time: ~9ms */ pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U); /* Select clock setting preset1 */ sysctl_clock_set_preset(HPM_SYSCTL, 2); } /* Add most Clocks to group 0 */ /* not open uart clock in this API, uart should configure pin function before opening clock */ clock_add_to_group(clock_cpu0, 0); clock_add_to_group(clock_ahb, 0); clock_add_to_group(clock_axic, 0); clock_add_to_group(clock_axis, 0); clock_add_to_group(clock_axiv, 0); clock_add_to_group(clock_axid, 0); clock_add_to_group(clock_axig, 0); clock_add_to_group(clock_mchtmr0, 0); clock_add_to_group(clock_xpi0, 0); clock_add_to_group(clock_gptmr0, 0); clock_add_to_group(clock_gptmr1, 0); clock_add_to_group(clock_gptmr2, 0); clock_add_to_group(clock_gptmr3, 0); clock_add_to_group(clock_i2c0, 0); clock_add_to_group(clock_i2c1, 0); clock_add_to_group(clock_i2c2, 0); clock_add_to_group(clock_i2c3, 0); clock_add_to_group(clock_spi0, 0); clock_add_to_group(clock_spi1, 0); clock_add_to_group(clock_spi2, 0); clock_add_to_group(clock_spi3, 0); clock_add_to_group(clock_can0, 0); clock_add_to_group(clock_can1, 0); clock_add_to_group(clock_can2, 0); clock_add_to_group(clock_can3, 0); clock_add_to_group(clock_can4, 0); clock_add_to_group(clock_can5, 0); clock_add_to_group(clock_can6, 0); clock_add_to_group(clock_can7, 0); clock_add_to_group(clock_ptpc, 0); clock_add_to_group(clock_ref0, 0); clock_add_to_group(clock_ref1, 0); clock_add_to_group(clock_watchdog0, 0); clock_add_to_group(clock_sdp, 0); clock_add_to_group(clock_xdma, 0); clock_add_to_group(clock_xram, 0); clock_add_to_group(clock_usb0, 0); clock_add_to_group(clock_kman, 0); clock_add_to_group(clock_gpio, 0); clock_add_to_group(clock_mbx0, 0); clock_add_to_group(clock_hdma, 0); clock_add_to_group(clock_rng, 0); clock_add_to_group(clock_adc0, 0); clock_add_to_group(clock_adc1, 0); clock_add_to_group(clock_crc0, 0); clock_add_to_group(clock_dao, 0); clock_add_to_group(clock_pdm, 0); clock_add_to_group(clock_smix, 0); clock_add_to_group(clock_i2s0, 0); clock_add_to_group(clock_i2s1, 0); clock_add_to_group(clock_i2s2, 0); clock_add_to_group(clock_i2s3, 0); clock_add_to_group(clock_eth0, 0); clock_add_to_group(clock_ffa, 0); clock_add_to_group(clock_tsns, 0); board_init_display_system_clock(); /* Connect Group0 to CPU0 */ clock_connect_group_to_cpu(0, 0); /* Bump up DCDC voltage to 1150mv */ pcfg_dcdc_set_voltage(HPM_PCFG, 1150); /* Configure PLL1_CLK0 Post Divider to 1 */ pllctlv2_set_postdiv(HPM_PLLCTLV2, 0, 0, 0); pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 0, BOARD_CPU_FREQ); /* Configure axis to 200MHz */ clock_set_source_divider(clock_axis, clk_src_pll1_clk0, 4); /* Configure axig/clock_gpu0 to 400MHz */ clock_set_source_divider(clock_axig, clk_src_pll1_clk0, 2); /* Configure mchtmr to 24MHz */ clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1); clock_update_core_clock(); } void board_init_can(MCAN_Type *ptr) { init_can_pins(ptr); } uint32_t board_init_can_clock(MCAN_Type *ptr) { uint32_t freq = 0; if (ptr == HPM_MCAN0) { /* Set the CAN0 peripheral clock to 80MHz */ clock_set_source_divider(clock_can0, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_can0); } else if (ptr == HPM_MCAN1) { /* Set the CAN1 peripheral clock to 80MHz */ clock_set_source_divider(clock_can1, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_can1); } else if (ptr == HPM_MCAN2) { /* Set the CAN2 peripheral clock to 8MHz */ clock_set_source_divider(clock_can2, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_can2); } else if (ptr == HPM_MCAN3) { /* Set the CAN3 peripheral clock to 80MHz */ clock_set_source_divider(clock_can3, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_can3); } else if (ptr == HPM_MCAN4) { /* Set the CAN4 peripheral clock to 80MHz */ clock_set_source_divider(clock_can4, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_can4); } else if (ptr == HPM_MCAN5) { /* Set the CAN5 peripheral clock to 80MHz */ clock_set_source_divider(clock_can5, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_can5); } else if (ptr == HPM_MCAN6) { /* Set the CAN6 peripheral clock to 80MHz */ clock_set_source_divider(clock_can6, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_can6); } else if (ptr == HPM_MCAN7) { /* Set the CAN7 peripheral clock to 80MHz */ clock_set_source_divider(clock_can7, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_can7); } else { /* Invalid CAN instance */ } return freq; } uint32_t board_init_uart_clock(UART_Type *ptr) { uint32_t freq = 0U; if (ptr == HPM_UART0) { clock_set_source_divider(clock_uart0, clk_src_osc24m, 1); clock_add_to_group(clock_uart0, 0); freq = clock_get_frequency(clock_uart0); } else if (ptr == HPM_UART1) { clock_set_source_divider(clock_uart1, clk_src_osc24m, 1); clock_add_to_group(clock_uart1, 0); freq = clock_get_frequency(clock_uart1); } else if (ptr == HPM_UART2) { clock_set_source_divider(clock_uart2, clk_src_osc24m, 1); clock_add_to_group(clock_uart2, 0); freq = clock_get_frequency(clock_uart2); } else if (ptr == HPM_UART3) { clock_set_source_divider(clock_uart3, clk_src_osc24m, 1); clock_add_to_group(clock_uart3, 0); freq = clock_get_frequency(clock_uart3); } else { /* Not supported */ } return freq; } uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz); #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13 static void set_reset_pin_level_tm070rdh13(uint8_t level) { gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 14, level); } static void set_backlight_tm070rdh13(uint16_t percent) { gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 9, percent > 0 ? 1 : 0); } static void set_video_router_tm070rdh13(void) { pixelmux_rgb_data_source_enable(pixelmux_rgb_sel_lcdc0); } void board_init_lcd_rgb_tm070rdh13(void) { init_lcd_rgb_ctl_pins(); init_lcd_rgb_pins(); gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOY, 5); gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOY, 5, 1); gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 9); gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 14); hpm_panel_hw_interface_t hw_if = {0}; hpm_panel_t *panel = hpm_panel_find_device_default(); const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel); uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz); hw_if.set_reset_pin_level = set_reset_pin_level_tm070rdh13; hw_if.set_backlight = set_backlight_tm070rdh13; hw_if.set_video_router = set_video_router_tm070rdh13; hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz; hpm_panel_register_interface(panel, &hw_if); printf("name: %s, lcdc_clk: %ukhz\n", hpm_panel_get_name(panel), lcdc_pixel_clk_khz); hpm_panel_reset(panel); hpm_panel_init(panel); hpm_panel_power_on(panel); } #endif #if defined(CONFIG_PANEL_LVDS_CC10128007) && CONFIG_PANEL_LVDS_CC10128007 static void set_backlight_cc10128007(uint16_t percent) { gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 31, percent > 0 ? 1 : 0); gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 30, percent > 0 ? 1 : 0); } static void set_video_router_cc10128007(void) { pixelmux_config_tx_phy1_mode(pixelmux_tx_phy_mode_lvds); pixelmux_lvb_di0_data_source_enable(pixelmux_lvb_di0_sel_lcdc0); } void board_init_lcd_lvds_cc10128007(void) { init_lcd_lvds_single_ctl_pins(); gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 30); gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 31); init_mipi_lvds_tx_phy1_pin(); hpm_panel_hw_interface_t hw_if = {0}; hpm_panel_t *panel = hpm_panel_find_device_default(); const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel); uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz); hw_if.set_video_router = set_video_router_cc10128007; hw_if.set_backlight = set_backlight_cc10128007; hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz; hw_if.video.lvds.channel_di_index = 0; hw_if.video.lvds.channel_index = 1; /* ch1 -> phy1*/ hw_if.video.lvds.lvb_base = HPM_LVB; hpm_panel_register_interface(panel, &hw_if); printf("name: %s, lcdc_clk: %ukhz\n", hpm_panel_get_name(panel), lcdc_pixel_clk_khz); hpm_panel_reset(panel); hpm_panel_init(panel); hpm_panel_power_on(panel); } #endif #if defined(CONFIG_PANEL_MIPI_MC10128007_31B) && CONFIG_PANEL_MIPI_MC10128007_31B static void set_reset_pin_level_mc10128007_31b(uint8_t level) { gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOB, 1, level); } static void set_video_router_mc10128007_31b(void) { pixelmux_mipi_dsi0_data_source_enable(pixelmux_mipi_dsi0_sel_lcdc0); pixelmux_config_tx_phy0_mode(pixelmux_tx_phy_mode_mipi); } void board_init_lcd_mipi_mc10128007_31b(void) { /* RESET */ init_lcd_mipi_ctl_pins(); gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOB, 1); init_mipi_lvds_tx_phy0_pin(); hpm_panel_hw_interface_t hw_if = {0}; hpm_panel_t *panel = hpm_panel_find_device_default(); const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel); uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz); hw_if.set_reset_pin_level = set_reset_pin_level_mc10128007_31b; hw_if.set_video_router = set_video_router_mc10128007_31b; hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz; hw_if.video.mipi.format = HPM_PANEL_MIPI_FORMAT_RGB888; hw_if.video.mipi.mipi_host_base = HPM_MIPI_DSI0; hw_if.video.mipi.mipi_phy_base = HPM_MIPI_DSI_PHY0; hpm_panel_register_interface(panel, &hw_if); printf("name: %s, lcdc_clk: %ukhz\n", hpm_panel_get_name(panel), lcdc_pixel_clk_khz); hpm_panel_reset(panel); hpm_panel_init(panel); hpm_panel_power_on(panel); } #endif #if defined(CONFIG_PANEL_LVDS_TM103XDGP01) && CONFIG_PANEL_LVDS_TM103XDGP01 static void set_reset_pin_level_tm103xdgp01(uint8_t level) { gpio_write_pin(HPM_GPIO0, GPIO_DO_GPIOA, 31, level); } static void set_video_router_tm103xdgp01(void) { pixelmux_config_tx_phy0_mode(pixelmux_tx_phy_mode_lvds); pixelmux_config_tx_phy1_mode(pixelmux_tx_phy_mode_lvds); pixelmux_lvb_di1_data_source_enable(pixelmux_lvb_di1_sel_lcdc0); pixelmux_lvb_di0_data_source_enable(pixelmux_lvb_di0_sel_lcdc0); } void board_init_lcd_lvds_tm103xdgp01(void) { init_lcd_lvds_double_ctl_pins(); gpio_set_pin_output(HPM_GPIO0, GPIO_DO_GPIOA, 31); init_mipi_lvds_tx_phy0_pin(); init_mipi_lvds_tx_phy1_pin(); hpm_panel_hw_interface_t hw_if = {0}; hpm_panel_t *panel = hpm_panel_find_device_default(); const hpm_panel_timing_t *timing = hpm_panel_get_timing(panel); /* In split mode: lcdc_pixel_clk = 2 * panel_pixel_clk */ uint32_t lcdc_pixel_clk_khz = board_lcdc_clock_init(clock_lcd0, timing->pixel_clock_khz * 2); hw_if.set_reset_pin_level = set_reset_pin_level_tm103xdgp01; hw_if.set_video_router = set_video_router_tm103xdgp01; hw_if.lcdc_pixel_clk_khz = lcdc_pixel_clk_khz; hw_if.video.lvds.channel_di_index = 0; hw_if.video.lvds.lvb_base = HPM_LVB; hpm_panel_register_interface(panel, &hw_if); printf("name: %s, lcdc_clk: %ukhz\n", hpm_panel_get_name(panel), lcdc_pixel_clk_khz); hpm_panel_reset(panel); hpm_panel_init(panel); hpm_panel_power_on(panel); } #endif #ifdef CONFIG_HPM_PANEL void board_lcd_backlight(bool is_on) { hpm_panel_t *panel = hpm_panel_find_device_default(); hpm_panel_set_backlight(panel, is_on == true ? 100 : 0); } uint32_t board_lcdc_clock_init(clock_name_t clock_name, uint32_t pixel_clk_khz) { clock_add_to_group(clock_name, 0); uint32_t freq_khz = clock_get_frequency(clk_pll4clk0) / 1000; uint32_t div = (freq_khz + pixel_clk_khz / 2) / pixel_clk_khz; clock_set_source_divider(clock_name, clk_src_pll4_clk0, div); return clock_get_frequency(clock_name) / 1000; } void board_init_lcd(void) { #if defined(CONFIG_PANEL_RGB_TM070RDH13) && CONFIG_PANEL_RGB_TM070RDH13 board_init_lcd_rgb_tm070rdh13(); #endif #if defined(CONFIG_PANEL_LVDS_CC10128007) && CONFIG_PANEL_LVDS_CC10128007 board_init_lcd_lvds_cc10128007(); #endif #if defined(CONFIG_PANEL_MIPI_MC10128007_31B) && CONFIG_PANEL_MIPI_MC10128007_31B board_init_lcd_mipi_mc10128007_31b(); #endif #if defined(CONFIG_PANEL_LVDS_TM103XDGP01) && CONFIG_PANEL_LVDS_TM103XDGP01 board_init_lcd_lvds_tm103xdgp01(); #endif } void board_panel_para_to_lcdc(lcdc_config_t *config) { const hpm_panel_timing_t *timing; hpm_panel_t *panel = hpm_panel_find_device_default(); timing = hpm_panel_get_timing(panel); config->resolution_x = timing->hactive; config->resolution_y = timing->vactive; config->hsync.pulse_width = timing->hsync_len; config->hsync.back_porch_pulse = timing->hback_porch; config->hsync.front_porch_pulse = timing->hfront_porch; config->vsync.pulse_width = timing->vsync_len; config->vsync.back_porch_pulse = timing->vback_porch; config->vsync.front_porch_pulse = timing->vfront_porch; config->control.invert_hsync = timing->hsync_pol; config->control.invert_vsync = timing->vsync_pol; config->control.invert_href = timing->de_pol; config->control.invert_pixel_data = timing->pixel_data_pol; config->control.invert_pixel_clock = timing->pixel_clk_pol; } #endif void board_init_gwc(void) { clock_add_to_group(clock_gwc0, 0); clock_add_to_group(clock_gwc1, 0); clock_add_to_group(clock_lcd0, 0); } void board_init_cap_touch(void) { init_cap_pins(); gpio_set_pin_output_with_initial(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 0); gpio_set_pin_output_with_initial(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0); board_delay_ms(1); gpio_write_pin(BOARD_CAP_INTR_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0); board_delay_ms(1); gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_RST_GPIO_INDEX, BOARD_CAP_RST_GPIO_PIN, 1); board_delay_ms(6); gpio_write_pin(BOARD_CAP_RST_GPIO, BOARD_CAP_INTR_GPIO_INDEX, BOARD_CAP_INTR_GPIO_PIN, 0); board_init_i2c(BOARD_CAP_I2C_BASE); } void board_init_cam_pins(void) { init_cam_pins(); /* enable cam RST pin out with high level */ gpio_set_pin_output_with_initial(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, 1); /* PWDN pin set to low when power up */ gpio_set_pin_output_with_initial(BOARD_CAM_PWDN_GPIO_CTRL, BOARD_CAM_PWDN_GPIO_INDEX, BOARD_CAM_PWDN_GPIO_PIN, 0); pixelmux_cam0_data_source_enable(pixelmux_cam0_sel_dvp); } void board_write_cam_rst(uint8_t state) { gpio_write_pin(BOARD_CAM_RST_GPIO_CTRL, BOARD_CAM_RST_GPIO_INDEX, BOARD_CAM_RST_GPIO_PIN, state); } void board_write_cam_pwdn(uint8_t state) { gpio_write_pin(BOARD_CAM_PWDN_GPIO_CTRL, BOARD_CAM_PWDN_GPIO_INDEX, BOARD_CAM_PWDN_GPIO_PIN, state); } uint32_t board_init_cam_clock(CAM_Type *ptr) { uint32_t freq = 0; if (ptr == HPM_CAM0) { /* Configure camera clock to 24MHz */ clock_set_source_divider(clock_cam0, clk_src_osc24m, 1U); freq = clock_get_frequency(clock_cam0); } else if (ptr == HPM_CAM1) { /* Configure camera clock to 24MHz */ clock_set_source_divider(clock_cam1, clk_src_osc24m, 1U); freq = clock_get_frequency(clock_cam1); } else { /* Invalid camera instance */ } return freq; } void board_init_mipi_csi_cam_pins(void) { init_cam_mipi_csi_pins(); init_mipi_lvds_rx_phy1_pin(); /* enable cam RST pin out with high level */ gpio_set_pin_output_with_initial(HPM_GPIO0, GPIO_DI_GPIOB, 0, 1); } void board_write_mipi_csi_cam_rst(uint8_t state) { gpio_write_pin(HPM_GPIO0, GPIO_DI_GPIOB, 0, state); } static void _cpu_wait_ms(uint32_t cpu_freq, uint32_t ms) { uint32_t ticks_per_us = (cpu_freq + 1000000UL - 1UL) / 1000000UL; uint64_t expected_ticks = hpm_csr_get_core_mcycle() + (uint64_t)ticks_per_us * 1000UL * ms; while (hpm_csr_get_core_mcycle() < expected_ticks) { } } void init_ddr2_800(void) { /* Enable On-chip DCDC 1.8V output */ HPM_PCFG->DCDCM_MODE = PCFG_DCDCM_MODE_VOLT_SET(1800) | PCFG_DCDCM_MODE_MODE_SET(1); /* Change DDR clock to 200MHz, namely: DDR2-800 */ clock_set_source_divider(clock_axif, clk_src_pll1_clk0, 4); /* Enable DDR clock first */ clock_add_to_group(clock_ddr0, 0); /* Wait until the clock is stable */ uint32_t core_clock_freq = clock_get_frequency(clock_cpu0); _cpu_wait_ms(core_clock_freq, 5); /* Clear DFI_INIT_COMPLETE_EN bit */ HPM_DDRCTL->DFIMISC &= ~DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK; /* Release DDR core reset */ *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 26); /* Enable PORT */ HPM_DDRCTL->PCFG[0].CTRL = 1; /* Configure W972GG6KB parameters, configure DDRCTL first */ HPM_DDRCTL->MSTR = DDRCTL_MSTR_ACTIVE_RANKS_SET(1) /* RANK=1 */ | DDRCTL_MSTR_BURST_RDWR_SET(4) /* Burst Length = 8 */ | DDRCTL_MSTR_DATA_BUS_WIDTH_SET(0) /* Full DQ bus width */ | DDRCTL_MSTR_DDR3_SET(0); /* DDR2 Device */ /* Skip SDRAM Initialization in controller, the initialization sequence will be performed by PHY */ HPM_DDRCTL->INIT0 = DDRCTL_INIT0_SKIP_DRAM_INIT_SET(1) | DDRCTL_INIT0_POST_CKE_X1024_SET(2) /* Default setting */ | DDRCTL_INIT0_PRE_CKE_X1024_SET(0x4e); /* Default setting */ /* Configure DFI timing */ HPM_DDRCTL->DFITMG0 = 0x03010101UL; HPM_DDRCTL->DFITMG1 = 0x00020101UL; HPM_DDRCTL->DFIUPD0 = 0x40005UL; HPM_DDRCTL->DFIUPD1 = 0x00020008UL; HPM_DDRCTL->ODTCFG = 0x06000600UL; /* BL=8 */ /* Configure ADDRMAP */ HPM_DDRCTL->ADDRMAP0 = 0x001F1F1FUL; /* RANK0 not used */ HPM_DDRCTL->ADDRMAP1 = 0x00121212UL; /* HIF bit[24:22] as BANK[2:0] */ HPM_DDRCTL->ADDRMAP2 = 0; /* HIF bit[6:3] as COL_B[6:3] */ HPM_DDRCTL->ADDRMAP3 = 0; /* HIF bit [10:7] as COL_B[11,9:6:7] */ HPM_DDRCTL->ADDRMAP4 = 0xF0FUL; /* not used */ HPM_DDRCTL->ADDRMAP5 = 0x06030303UL; /* HIF bit[21:11] as ROW[10:0], HIF bit[25] as ROW[11] */ HPM_DDRCTL->ADDRMAP6 = 0x0F0F0606UL; /* HIF bit[27:26] as ROW[13:12] */ /* Release DDR AXI reset */ *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 27); /* Release DDR PHY */ *(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 4); HPM_DDRPHY->DCR = DDRPHY_DCR_DDRMD_SET(2) /* Set to DDR2 mode */ | DDRPHY_DCR_DDR8BNK_MASK /* BANK = 8 */ | DDRPHY_DCR_BYTEMASK_MASK; /* BYTEMASK = 1 */ HPM_DDRPHY->DSGCR |= DDRPHY_DSGCR_RRMODE_MASK; /* Enable RRMode */ /* Configure DDR2 registers */ HPM_DDRPHY->MR = (3UL << 0) /* BL = 3 */ | (0UL << 3) /* BT = 0 */ | (6UL << 4) /* CL = 6 */ | (0UL << 7) /* Operating mode */ | (0UL << 8) /* DLL Reset = 0 */ | (6UL << 9); /* WR = 6 */ HPM_DDRPHY->EMR = (1UL << 0) /* DLL Enable */ | (0UL << 1) /* Output Driver Impedance Control */ | (0UL << 6) | (1UL << 2) /* On Die Termination */ | (0UL << 3) /* AL(Posted CAS Additive Latency) = 0 */ | (0UL << 7) /* OCD = 0*/ | (0UL << 10) /* DQS */ | (0UL << 11) /* RDQS */ | (0UL << 12); /* QOFF */ HPM_DDRPHY->EMR2 = 0; HPM_DDRPHY->EMR3 = 0; HPM_DDRPHY->DTPR0 = (4UL << 0) | (5UL << 4) | (14UL << 8) | (15UL << 12) | (50UL << 16) | (10UL << 22) | (60UL << 26); HPM_DDRPHY->DTPR1 = (2UL << 0) | (31UL << 5) | (80UL << 11) | (40UL << 20) | (0x8 << 26); HPM_DDRPHY->DTPR2 = (256UL << 0) | (6UL << 10) | (4UL << 15) | (512UL << 19); /* tREFPRD */ HPM_DDRPHY->PGCR2 = 0xF06D50; /* Set DFI_INIT_COMPLETE_EN bit */ HPM_DDRCTL->DFIMISC |= DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK; /* Start PHY Init First */ HPM_DDRPHY->PIR |= DDRPHY_PIR_INIT_MASK; while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) { } /** Data training * RANKEN = 1, Others: default value */ HPM_DDRPHY->DTCR = 0x91003587UL; /* Trigger PHY to do the PHY initialization and DRAM initialization */ HPM_DDRPHY->PIR = 0xF501UL; /* Wait until the initialization sequence started */ while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) != 0) { } /* Wait until the initialization sequence completed */ while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) { } /* Wait for normal mode */ while ((HPM_DDRCTL->STAT & DDRCTL_STAT_OPERATING_MODE_MASK) != 0x1) { } } void init_ddr3l_1333(void) { /* Enable On-chip DCDC 1.4V output */ HPM_PCFG->DCDCM_MODE = PCFG_DCDCM_MODE_VOLT_SET(1400) | PCFG_DCDCM_MODE_MODE_SET(5); /* Change DDR clock to 333.33MHz, namely: DDR3-1333 */ clock_set_source_divider(clock_axif, clk_src_pll1_clk1, 2); /* Enable DDR clock first */ clock_add_to_group(clock_ddr0, 0); /* Wait until the clock is stable */ uint32_t core_clock_freq = clock_get_frequency(clock_cpu0); _cpu_wait_ms(core_clock_freq, 5); /* Release DDR PHY */ *(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 4); /* Clear DFI_INIT_COMPLETE_EN bit */ HPM_DDRCTL->DFIMISC &= ~DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK; HPM_DDRPHY->DSGCR = 0xf004641f; *(volatile uint32_t *) (HPM_DDRPHY_BASE + 0x3000UL) |= (1UL << 0); /* Release DDR core reset */ *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 26); /* Configure DDRCTL first */ HPM_DDRCTL->MSTR = DDRCTL_MSTR_ACTIVE_RANKS_SET(1) /* RANK=1 */ | DDRCTL_MSTR_BURST_RDWR_SET(4) /* Burst Length = 8 */ | DDRCTL_MSTR_DATA_BUS_WIDTH_SET(0) /* Full DQ bus width */ | DDRCTL_MSTR_DDR3_SET(1); /* DDR3 Device */ /* Enable PORT */ HPM_DDRCTL->PCFG[0].CTRL = 1; /* Skip SDRAM Initialization in controller, the initialization sequence will be performed by PHY */ HPM_DDRCTL->INIT0 = DDRCTL_INIT0_SKIP_DRAM_INIT_SET(1) | DDRCTL_INIT0_POST_CKE_X1024_SET(2) /* Default setting */ | DDRCTL_INIT0_PRE_CKE_X1024_SET(0x4e); /* Default setting */ HPM_DDRCTL->DRAMTMG4 = 0x05010407; /* Configure DFI timing */ HPM_DDRCTL->DFITMG0 = 0x07040102; HPM_DDRCTL->DFITMG1 = 0x20404; HPM_DDRCTL->DFIUPD1 = 0x20008; HPM_DDRCTL->ODTCFG = 0x06000600UL; /* BL=8 */ HPM_DDRCTL->ODTMAP = 0x11; /* Configure ADDRMAP */ HPM_DDRCTL->ADDRMAP0 = 0x001F1F1FUL; /* RANK0 not used */ HPM_DDRCTL->ADDRMAP1 = 0x00121212UL; /* HIF bit[24:22] as BANK[2:0] */ HPM_DDRCTL->ADDRMAP2 = 0; /* HIF bit[6:3] as COL_B[6:3] */ HPM_DDRCTL->ADDRMAP3 = 0; /* HIF bit [10:7] as COL_B[11,9:6:7] */ HPM_DDRCTL->ADDRMAP4 = 0xF0FUL; /* not used */ HPM_DDRCTL->ADDRMAP5 = 0x06030303UL; /* HIF bit[21:11] as ROW[10:0], HIF bit[25] as ROW[11] */ HPM_DDRCTL->ADDRMAP6 = 0x0F060606UL; /* HIF bit[27:26] as ROW[13:12] */ /* Release DDR AXI reset */ *(volatile uint32_t *) (HPM_DDRCTL_BASE + 0x3000UL) |= (1UL << 27); /* Configure DDR3 registers */ HPM_DDRPHY->MR0 = 0xC70; HPM_DDRPHY->MR1 = 0x6; HPM_DDRPHY->MR2 = 0x18; HPM_DDRPHY->MR3 = 0; HPM_DDRPHY->ODTCR = 0x84210000; HPM_DDRPHY->DTPR0 = 0x919c8866; HPM_DDRPHY->DTPR1 = 0x1a838360; HPM_DDRPHY->DTPR2 = 0x3002d200; /* tREFPRD */ HPM_DDRPHY->PGCR2 = 0xf06d28; /* Set DFI_INIT_COMPLETE_EN bit */ HPM_DDRCTL->DFIMISC |= DDRCTL_DFIMISC_DFI_INIT_COMPLETE_EN_MASK; /* Start PHY Init First */ HPM_DDRPHY->PIR |= DDRPHY_PIR_INIT_MASK; while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) { } /** Data training * RANKEN = 1, Others: default value */ HPM_DDRPHY->DTCR = 0x930035D7; /* Trigger PHY to do the PHY initialization and DRAM initialization */ HPM_DDRPHY->PIR = 0xFF81UL; /* Wait until the initialization sequence started */ while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) != 0) { } /* Wait until the initialization sequence completed */ while ((HPM_DDRPHY->PGSR0 & DDRPHY_PGSR0_IDONE_MASK) == 0) { } /* Wait for normal mode */ while ((HPM_DDRCTL->STAT & DDRCTL_STAT_OPERATING_MODE_MASK) != 0x1) { } } void _init_ext_ram(void) { #if (BOARD_DDR_TYPE == DDR_TYPE_DDR2) init_ddr2_800(); #endif #if (BOARD_DDR_TYPE == DDR_TYPE_DDR3L) init_ddr3l_1333(); #endif } void board_init_usb_pins(void) { init_usb_pins(); usb_hcd_set_power_ctrl_polarity(BOARD_USB, true); /* Wait USB_PWR pin control vbus power stable. Time depend on decoupling capacitor, you can decrease or increase this time */ board_delay_ms(100); } void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level) { (void) usb_index; (void) level; } void board_sd_power_switch(SDXC_Type *ptr, bool power_on) { if (ptr == HPM_SDXC1) { init_sdxc_pwr_pin(ptr, true); uint32_t gpio_index = BOARD_APP_SDCARD_POWER_SWITCH_PIN / 32; uint32_t pin_index = BOARD_APP_SDCARD_POWER_SWITCH_PIN % 32; if (power_on) { HPM_GPIO0->DO[gpio_index].SET = 1UL << pin_index; } else { HPM_GPIO0->DO[gpio_index].CLEAR = 1UL << pin_index; } } } void board_init_sd_pins(SDXC_Type *ptr) { if (ptr == HPM_SDXC0) { init_sdxc_cmd_pin(ptr, false, true); init_sdxc_clk_data_pins(ptr, 8, true); } else { init_sdxc_cmd_pin(ptr, false, false); init_sdxc_clk_data_pins(ptr, 4, false); } } uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse) { uint32_t actual_freq = 0; do { if ((ptr != HPM_SDXC0) && (ptr != HPM_SDXC1)) { break; } clock_name_t sdxc_clk = (ptr == HPM_SDXC0) ? clock_sdxc0 : clock_sdxc1; clock_add_to_group(sdxc_clk, 0); sdxc_enable_inverse_clock(ptr, false); sdxc_enable_sd_clock(ptr, false); clock_set_source_divider(sdxc_clk, clk_src_pll1_clk0, 4U); /* Configure the clock below 400KHz for the identification state */ if (freq <= 400000UL) { /* Set clock to 375KHz */ sdxc_set_clock_divider(ptr, 534U); } /* configure the clock to 24MHz for the SDR12/Default speed */ else if (freq <= 26000000UL) { /* Set clock to 25MHz */ sdxc_set_clock_divider(ptr, 8U); } /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */ else if (freq <= 52000000UL) { /* Set clock to 50MHz */ sdxc_set_clock_divider(ptr, 4U); } /* Configure the clock to 100MHz for the SDR50 */ else if (freq <= 100000000UL) { /* Set clock to 100MHz */ sdxc_set_clock_divider(ptr, 2U); } /* Configure the clock to 133MHz for SDR104/HS200/HS400 */ else if (freq <= 208000000UL) { /* 166MHz */ clock_set_source_divider(sdxc_clk, clk_src_pll1_clk1, 5U); sdxc_set_clock_divider(ptr, 1U); } /* For other unsupported clock ranges, configure the clock to 24MHz */ else { /* Set clock to 25MHz */ sdxc_set_clock_divider(ptr, 5U); } if (need_inverse) { sdxc_enable_inverse_clock(ptr, true); } sdxc_enable_sd_clock(ptr, true); actual_freq = clock_get_frequency(sdxc_clk) / sdxc_get_clock_divider(ptr); } while (false); return actual_freq; } uint32_t board_init_dao_clock(void) { return clock_get_frequency(clock_dao); } uint32_t board_init_pdm_clock(void) { return clock_get_frequency(clock_pdm); } uint32_t board_init_i2s_clock(I2S_Type *ptr) { if (ptr == HPM_I2S0) { return clock_get_frequency(clock_i2s0); } else if (ptr == HPM_I2S1) { return clock_get_frequency(clock_i2s1); } else if (ptr == HPM_I2S2) { return clock_get_frequency(clock_i2s2); } else if (ptr == HPM_I2S3) { return clock_get_frequency(clock_i2s3); } else { return 0; } } /* adjust I2S source clock base on sample rate */ uint32_t board_config_i2s_clock(I2S_Type *ptr, uint32_t sample_rate) { if (ptr == HPM_I2S0) { if ((sample_rate % 22050) == 0) { clock_set_source_divider(clock_aud0, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */ clock_add_to_group(clock_i2s0, 0); clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0); } else { clock_set_source_divider(clock_aud0, clk_src_pll3_clk0, 21); /* default 24576000Hz */ clock_add_to_group(clock_i2s0, 0); clock_set_i2s_source(clock_i2s0, clk_i2s_src_aud0); } return clock_get_frequency(clock_i2s0); } else if (ptr == HPM_I2S1) { if ((sample_rate % 22050) == 0) { clock_set_source_divider(clock_aud1, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */ clock_add_to_group(clock_i2s1, 0); clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1); } else { clock_set_source_divider(clock_aud1, clk_src_pll3_clk0, 21); /* default 24576000Hz */ clock_add_to_group(clock_i2s1, 0); clock_set_i2s_source(clock_i2s1, clk_i2s_src_aud1); } return clock_get_frequency(clock_i2s1); } else if (ptr == HPM_I2S3) { if ((sample_rate % 22050) == 0) { clock_set_source_divider(clock_aud3, clk_src_pll1_clk0, 71); /* config clock_aud1 for 22050*n sample rate */ clock_add_to_group(clock_i2s3, 0); clock_set_i2s_source(clock_i2s3, clk_i2s_src_aud3); } else { clock_set_source_divider(clock_aud3, clk_src_pll3_clk0, 21); /* default 24576000Hz */ clock_add_to_group(clock_i2s3, 0); clock_set_i2s_source(clock_i2s3, clk_i2s_src_aud3); } return clock_get_frequency(clock_i2s3); } return 0; } hpm_stat_t board_init_enet_pins(ENET_Type *ptr) { init_enet_pins(ptr); if (ptr == HPM_ENET0) { gpio_set_pin_output_with_initial(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0); } else { return status_invalid_argument; } return status_success; } hpm_stat_t board_reset_enet_phy(ENET_Type *ptr) { if (ptr == HPM_ENET0) { gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 0); board_delay_ms(1); gpio_write_pin(BOARD_ENET_RGMII_RST_GPIO, BOARD_ENET_RGMII_RST_GPIO_INDEX, BOARD_ENET_RGMII_RST_GPIO_PIN, 1); } else { return status_invalid_argument; } return status_success; } uint8_t board_get_enet_dma_pbl(ENET_Type *ptr) { (void) ptr; return enet_pbl_32; } hpm_stat_t board_enable_enet_irq(ENET_Type *ptr) { if (ptr == HPM_ENET0) { intc_m_enable_irq(IRQn_ENET0); } else { return status_invalid_argument; } return status_success; } hpm_stat_t board_disable_enet_irq(ENET_Type *ptr) { if (ptr == HPM_ENET0) { intc_m_disable_irq(IRQn_ENET0); } else { return status_invalid_argument; } return status_success; } void board_init_enet_pps_pins(ENET_Type *ptr) { (void) ptr; init_enet_pps_pins(); } hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr) { /* set clock source */ if (ptr == HPM_ENET0) { /* make sure pll0_clk0 output clock at 800MHz to get a clock at 100MHz for the enet0 ptp function */ clock_set_source_divider(clock_ptp0, clk_src_pll1_clk0, 8); /* 100MHz */ } else { return status_invalid_argument; } return status_success; } hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal) { (void) ptr; (void) internal; return status_success; } hpm_stat_t board_init_enet_rgmii_clock_delay(ENET_Type *ptr) { if (ptr == HPM_ENET0) { return enet_rgmii_set_clock_delay(ptr, BOARD_ENET_RGMII_TX_DLY, BOARD_ENET_RGMII_RX_DLY); } return status_invalid_argument; } void board_init_adc16_pins(void) { init_adc_pins(); } uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb) { uint32_t freq = 0; if (ptr == HPM_ADC0) { if (clk_src_ahb) { /* Configure the ADC clock from AXI (@200MHz by default)*/ clock_set_adc_source(clock_adc0, clk_adc_src_ahb0); } else { /* Configure the ADC clock from pll0_clk1 divided by 4 (@200MHz by default) */ clock_set_adc_source(clock_adc0, clk_adc_src_ana0); clock_set_source_divider(clock_ana0, clk_src_pll1_clk0, 4U); } freq = clock_get_frequency(clock_adc0); } return freq; } uint32_t board_init_gptmr_clock(GPTMR_Type *ptr) { uint32_t freq = 0; if (ptr == HPM_GPTMR0) { clock_add_to_group(clock_gptmr0, 0); clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_gptmr0); } else if (ptr == HPM_GPTMR1) { clock_add_to_group(clock_gptmr1, 0); clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_gptmr1); } else if (ptr == HPM_GPTMR2) { clock_add_to_group(clock_gptmr2, 0); clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_gptmr2); } else if (ptr == HPM_GPTMR3) { clock_add_to_group(clock_gptmr3, 0); clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_gptmr3); } else if (ptr == HPM_GPTMR4) { clock_add_to_group(clock_gptmr4, 0); clock_set_source_divider(clock_gptmr4, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_gptmr4); } else if (ptr == HPM_GPTMR5) { clock_add_to_group(clock_gptmr5, 0); clock_set_source_divider(clock_gptmr5, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_gptmr5); } else if (ptr == HPM_GPTMR6) { clock_add_to_group(clock_gptmr6, 0); clock_set_source_divider(clock_gptmr6, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_gptmr6); } else if (ptr == HPM_GPTMR7) { clock_add_to_group(clock_gptmr7, 0); clock_set_source_divider(clock_gptmr7, clk_src_pll1_clk0, 10); freq = clock_get_frequency(clock_gptmr7); } else { /* Invalid instance */ } }