/* * File : slab.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2008 - 2012, RT-Thread Development Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2008-07-12 Bernard the first version * 2010-07-13 Bernard fix RT_ALIGN issue found by kuronca * 2010-10-23 yi.qiu add module memory allocator * 2010-12-18 yi.qiu fix zone release bug */ /* * KERN_SLABALLOC.C - Kernel SLAB memory allocator * * Copyright (c) 2003,2004 The DragonFly Project. All rights reserved. * * This code is derived from software contributed to The DragonFly Project * by Matthew Dillon * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name of The DragonFly Project nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific, prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * */ #include #include #define RT_MEM_STATS #if defined (RT_USING_HEAP) && defined (RT_USING_SLAB) /* some statistical variable */ #ifdef RT_MEM_STATS static rt_size_t used_mem, max_mem; #endif #ifdef RT_USING_HOOK static void (*rt_malloc_hook)(void *ptr, rt_size_t size); static void (*rt_free_hook)(void *ptr); /** * @addtogroup Hook */ /*@{*/ /** * This function will set a hook function, which will be invoked when a memory * block is allocated from heap memory. * * @param hook the hook function */ void rt_malloc_sethook(void (*hook)(void *ptr, rt_size_t size)) { rt_malloc_hook = hook; } /** * This function will set a hook function, which will be invoked when a memory * block is released to heap memory. * * @param hook the hook function */ void rt_free_sethook(void (*hook)(void *ptr)) { rt_free_hook = hook; } /*@}*/ #endif /* * slab allocator implementation * * A slab allocator reserves a ZONE for each chunk size, then lays the * chunks out in an array within the zone. Allocation and deallocation * is nearly instantanious, and fragmentation/overhead losses are limited * to a fixed worst-case amount. * * The downside of this slab implementation is in the chunk size * multiplied by the number of zones. ~80 zones * 128K = 10MB of VM per cpu. * In a kernel implementation all this memory will be physical so * the zone size is adjusted downward on machines with less physical * memory. The upside is that overhead is bounded... this is the *worst* * case overhead. * * Slab management is done on a per-cpu basis and no locking or mutexes * are required, only a critical section. When one cpu frees memory * belonging to another cpu's slab manager an asynchronous IPI message * will be queued to execute the operation. In addition, both the * high level slab allocator and the low level zone allocator optimize * M_ZERO requests, and the slab allocator does not have to pre initialize * the linked list of chunks. * * XXX Balancing is needed between cpus. Balance will be handled through * asynchronous IPIs primarily by reassigning the z_Cpu ownership of chunks. * * XXX If we have to allocate a new zone and M_USE_RESERVE is set, use of * the new zone should be restricted to M_USE_RESERVE requests only. * * Alloc Size Chunking Number of zones * 0-127 8 16 * 128-255 16 8 * 256-511 32 8 * 512-1023 64 8 * 1024-2047 128 8 * 2048-4095 256 8 * 4096-8191 512 8 * 8192-16383 1024 8 * 16384-32767 2048 8 * (if RT_MM_PAGE_SIZE is 4K the maximum zone allocation is 16383) * * Allocations >= zone_limit go directly to kmem. * * API REQUIREMENTS AND SIDE EFFECTS * * To operate as a drop-in replacement to the FreeBSD-4.x malloc() we * have remained compatible with the following API requirements: * * + small power-of-2 sized allocations are power-of-2 aligned (kern_tty) * + all power-of-2 sized allocations are power-of-2 aligned (twe) * + malloc(0) is allowed and returns non-RT_NULL (ahc driver) * + ability to allocate arbitrarily large chunks of memory */ /* * Chunk structure for free elements */ typedef struct slab_chunk { struct slab_chunk *c_next; } slab_chunk; /* * The IN-BAND zone header is placed at the beginning of each zone. */ typedef struct slab_zone { rt_int32_t z_magic; /* magic number for sanity check */ rt_int32_t z_nfree; /* total free chunks / ualloc space in zone */ rt_int32_t z_nmax; /* maximum free chunks */ struct slab_zone *z_next; /* zoneary[] link if z_nfree non-zero */ rt_uint8_t *z_baseptr; /* pointer to start of chunk array */ rt_int32_t z_uindex; /* current initial allocation index */ rt_int32_t z_chunksize; /* chunk size for validation */ rt_int32_t z_zoneindex; /* zone index */ slab_chunk *z_freechunk; /* free chunk list */ } slab_zone; #define ZALLOC_SLAB_MAGIC 0x51ab51ab #define ZALLOC_ZONE_LIMIT (16 * 1024) /* max slab-managed alloc */ #define ZALLOC_MIN_ZONE_SIZE (32 * 1024) /* minimum zone size */ #define ZALLOC_MAX_ZONE_SIZE (128 * 1024) /* maximum zone size */ #define NZONES 72 /* number of zones */ #define ZONE_RELEASE_THRESH 2 /* threshold number of zones */ static slab_zone *zone_array[NZONES]; /* linked list of zones NFree > 0 */ static slab_zone *zone_free; /* whole zones that have become free */ static int zone_free_cnt; static int zone_size; static int zone_limit; static int zone_page_cnt; /* * Misc constants. Note that allocations that are exact multiples of * RT_MM_PAGE_SIZE, or exceed the zone limit, fall through to the kmem module. */ #define MIN_CHUNK_SIZE 8 /* in bytes */ #define MIN_CHUNK_MASK (MIN_CHUNK_SIZE - 1) /* * Array of descriptors that describe the contents of each page */ #define PAGE_TYPE_FREE 0x00 #define PAGE_TYPE_SMALL 0x01 #define PAGE_TYPE_LARGE 0x02 struct memusage { rt_uint32_t type:2 ; /* page type */ rt_uint32_t size:30; /* pages allocated or offset from zone */ }; static struct memusage *memusage = RT_NULL; #define btokup(addr) (&memusage[((rt_uint32_t)(addr) - heap_start) >> RT_MM_PAGE_BITS]) static rt_uint32_t heap_start, heap_end; /* page allocator */ struct rt_page_head { struct rt_page_head *next; /* next valid page */ rt_size_t page; /* number of page */ /* dummy */ char dummy[RT_MM_PAGE_SIZE - (sizeof(struct rt_page_head*) + sizeof (rt_size_t))]; }; static struct rt_page_head *rt_page_list; static struct rt_semaphore heap_sem; void *rt_page_alloc(rt_size_t npages) { struct rt_page_head *b, *n; struct rt_page_head **prev; if(npages == 0) return RT_NULL; /* lock heap */ rt_sem_take(&heap_sem, RT_WAITING_FOREVER); for (prev = &rt_page_list; (b = *prev) != RT_NULL; prev = &(b->next)) { if (b->page > npages) { /* splite pages */ n = b + npages; n->next = b->next; n->page = b->page - npages; *prev = n; break; } if (b->page == npages) { /* this node fit, remove this node */ *prev = b->next; break; } } /* unlock heap */ rt_sem_release(&heap_sem); return b; } void rt_page_free(void *addr, rt_size_t npages) { struct rt_page_head *b, *n; struct rt_page_head **prev; RT_ASSERT(addr != RT_NULL); RT_ASSERT((rt_uint32_t)addr % RT_MM_PAGE_SIZE == 0); RT_ASSERT(npages != 0); n = (struct rt_page_head *)addr; /* lock heap */ rt_sem_take(&heap_sem, RT_WAITING_FOREVER); for (prev = &rt_page_list; (b = *prev) != RT_NULL; prev = &(b->next)) { RT_ASSERT(b->page > 0); RT_ASSERT(b > n || b + b->page <= n); if (b + b->page == n) { if (b + (b->page += npages) == b->next) { b->page += b->next->page; b->next = b->next->next; } goto _return; } if (b == n + npages) { n->page = b->page + npages; n->next = b->next; *prev = n; goto _return; } if (b > n + npages) break; } n->page = npages; n->next = b; *prev = n; _return: /* unlock heap */ rt_sem_release(&heap_sem); } /* * Initialize the page allocator */ static void rt_page_init(void *addr, rt_size_t npages) { RT_ASSERT(addr != RT_NULL); RT_ASSERT(npages != 0); rt_page_list = RT_NULL; rt_page_free(addr, npages); } /** * @ingroup SystemInit * * This function will init system heap * * @param begin_addr the beginning address of system page * @param end_addr the end address of system page */ void rt_system_heap_init(void *begin_addr, void *end_addr) { rt_uint32_t limsize, npages; RT_DEBUG_NOT_IN_INTERRUPT; /* align begin and end addr to page */ heap_start = RT_ALIGN((rt_uint32_t)begin_addr, RT_MM_PAGE_SIZE); heap_end = RT_ALIGN_DOWN((rt_uint32_t)end_addr, RT_MM_PAGE_SIZE); if (heap_start >= heap_end) { rt_kprintf("rt_system_heap_init, wrong address[0x%x - 0x%x]\n", (rt_uint32_t)begin_addr, (rt_uint32_t)end_addr); return; } limsize = heap_end - heap_start; npages = limsize / RT_MM_PAGE_SIZE; /* initialize heap semaphore */ rt_sem_init(&heap_sem, "heap", 1, RT_IPC_FLAG_FIFO); RT_DEBUG_LOG(RT_DEBUG_SLAB, ("heap[0x%x - 0x%x], size 0x%x, 0x%x pages\n", heap_start, heap_end, limsize, npages)); /* init pages */ rt_page_init((void *)heap_start, npages); /* calculate zone size */ zone_size = ZALLOC_MIN_ZONE_SIZE; while (zone_size < ZALLOC_MAX_ZONE_SIZE && (zone_size << 1) < (limsize/1024)) zone_size <<= 1; zone_limit = zone_size / 4; if (zone_limit > ZALLOC_ZONE_LIMIT) zone_limit = ZALLOC_ZONE_LIMIT; zone_page_cnt = zone_size / RT_MM_PAGE_SIZE; RT_DEBUG_LOG(RT_DEBUG_SLAB, ("zone size 0x%x, zone page count 0x%x\n", zone_size, zone_page_cnt)); /* allocate memusage array */ limsize = npages * sizeof(struct memusage); limsize = RT_ALIGN(limsize, RT_MM_PAGE_SIZE); memusage = rt_page_alloc(limsize/RT_MM_PAGE_SIZE); RT_DEBUG_LOG(RT_DEBUG_SLAB, ("memusage 0x%x, size 0x%x\n", (rt_uint32_t)memusage, limsize)); } /* * Calculate the zone index for the allocation request size and set the * allocation request size to that particular zone's chunk size. */ rt_inline int zoneindex(rt_uint32_t *bytes) { rt_uint32_t n = (rt_uint32_t)*bytes; /* unsigned for shift opt */ if (n < 128) { *bytes = n = (n + 7) & ~7; return(n / 8 - 1); /* 8 byte chunks, 16 zones */ } if (n < 256) { *bytes = n = (n + 15) & ~15; return(n / 16 + 7); } if (n < 8192) { if (n < 512) { *bytes = n = (n + 31) & ~31; return(n / 32 + 15); } if (n < 1024) { *bytes = n = (n + 63) & ~63; return(n / 64 + 23); } if (n < 2048) { *bytes = n = (n + 127) & ~127; return(n / 128 + 31); } if (n < 4096) { *bytes = n = (n + 255) & ~255; return(n / 256 + 39); } *bytes = n = (n + 511) & ~511; return(n / 512 + 47); } if (n < 16384) { *bytes = n = (n + 1023) & ~1023; return(n / 1024 + 55); } rt_kprintf("Unexpected byte count %d", n); return 0; } /** * @addtogroup MM */ /*@{*/ /** * This function will allocate a block from system heap memory. * - If the nbytes is less than zero, * or * - If there is no nbytes sized memory valid in system, * the RT_NULL is returned. * * @param size the size of memory to be allocated * * @return the allocated memory */ void *rt_malloc(rt_size_t size) { slab_zone *z; rt_int32_t zi; slab_chunk *chunk; struct memusage *kup; /* zero size, return RT_NULL */ if (size == 0) return RT_NULL; #ifdef RT_USING_MODULE if (rt_module_self() != RT_NULL) return rt_module_malloc(size); #endif /* * Handle large allocations directly. There should not be very many of * these so performance is not a big issue. */ if (size >= zone_limit) { size = RT_ALIGN(size, RT_MM_PAGE_SIZE); chunk = rt_page_alloc(size >> RT_MM_PAGE_BITS); if (chunk == RT_NULL) return RT_NULL; /* set kup */ kup = btokup(chunk); kup->type = PAGE_TYPE_LARGE; kup->size = size >> RT_MM_PAGE_BITS; RT_DEBUG_LOG(RT_DEBUG_SLAB, ("malloc a large memory 0x%x, page cnt %d, kup %d\n", size, size >> RT_MM_PAGE_BITS, ((rt_uint32_t)chunk - heap_start) >> RT_MM_PAGE_BITS)); /* lock heap */ rt_sem_take(&heap_sem, RT_WAITING_FOREVER); #ifdef RT_MEM_STATS used_mem += size; if (used_mem > max_mem) max_mem = used_mem; #endif goto done; } /* lock heap */ rt_sem_take(&heap_sem, RT_WAITING_FOREVER); /* * Attempt to allocate out of an existing zone. First try the free list, * then allocate out of unallocated space. If we find a good zone move * it to the head of the list so later allocations find it quickly * (we might have thousands of zones in the list). * * Note: zoneindex() will panic of size is too large. */ zi = zoneindex(&size); RT_ASSERT(zi < NZONES); RT_DEBUG_LOG(RT_DEBUG_SLAB, ("try to malloc 0x%x on zone: %d\n", size, zi)); if ((z = zone_array[zi]) != RT_NULL) { RT_ASSERT(z->z_nfree > 0); /* Remove us from the zone_array[] when we become empty */ if (--z->z_nfree == 0) { zone_array[zi] = z->z_next; z->z_next = RT_NULL; } /* * No chunks are available but nfree said we had some memory, so * it must be available in the never-before-used-memory area * governed by uindex. The consequences are very serious if our zone * got corrupted so we use an explicit rt_kprintf rather then a KASSERT. */ if (z->z_uindex + 1 != z->z_nmax) { z->z_uindex = z->z_uindex + 1; chunk = (slab_chunk *)(z->z_baseptr + z->z_uindex * size); } else { /* find on free chunk list */ chunk = z->z_freechunk; /* remove this chunk from list */ z->z_freechunk = z->z_freechunk->c_next; } #ifdef RT_MEM_STATS used_mem += z->z_chunksize; if (used_mem > max_mem) max_mem = used_mem; #endif goto done; } /* * If all zones are exhausted we need to allocate a new zone for this * index. * * At least one subsystem, the tty code (see CROUND) expects power-of-2 * allocations to be power-of-2 aligned. We maintain compatibility by * adjusting the base offset below. */ { rt_int32_t off; if ((z = zone_free) != RT_NULL) { /* remove zone from free zone list */ zone_free = z->z_next; -- zone_free_cnt; } else { /* unlock heap, since page allocator will think about lock */ rt_sem_release(&heap_sem); /* allocate a zone from page */ z = rt_page_alloc(zone_size / RT_MM_PAGE_SIZE); if (z == RT_NULL) goto fail; /* lock heap */ rt_sem_take(&heap_sem, RT_WAITING_FOREVER); RT_DEBUG_LOG(RT_DEBUG_SLAB, ("alloc a new zone: 0x%x\n", (rt_uint32_t)z)); /* set message usage */ for (off = 0, kup = btokup(z); off < zone_page_cnt; off ++) { kup->type = PAGE_TYPE_SMALL; kup->size = off; kup ++; } } /* clear to zero */ rt_memset(z, 0, sizeof(slab_zone)); /* offset of slab zone struct in zone */ off = sizeof(slab_zone); /* * Guarentee power-of-2 alignment for power-of-2-sized chunks. * Otherwise just 8-byte align the data. */ if ((size | (size - 1)) + 1 == (size << 1)) off = (off + size - 1) & ~(size - 1); else off = (off + MIN_CHUNK_MASK) & ~MIN_CHUNK_MASK; z->z_magic = ZALLOC_SLAB_MAGIC; z->z_zoneindex = zi; z->z_nmax = (zone_size - off) / size; z->z_nfree = z->z_nmax - 1; z->z_baseptr = (rt_uint8_t *)z + off; z->z_uindex = 0; z->z_chunksize = size; chunk = (slab_chunk *)(z->z_baseptr + z->z_uindex * size); /* link to zone array */ z->z_next = zone_array[zi]; zone_array[zi] = z; #ifdef RT_MEM_STATS used_mem += z->z_chunksize; if (used_mem > max_mem) max_mem = used_mem; #endif } done: rt_sem_release(&heap_sem); RT_OBJECT_HOOK_CALL(rt_malloc_hook, ((char *)chunk, size)); return chunk; fail: rt_sem_release(&heap_sem); return RT_NULL; } /** * This function will change the size of previously allocated memory block. * * @param ptr the previously allocated memory block * @param size the new size of memory block * * @return the allocated memory */ void *rt_realloc(void *ptr, rt_size_t size) { void *nptr; slab_zone *z; struct memusage *kup; if (ptr == RT_NULL) return rt_malloc(size); if (size == 0) { rt_free(ptr); return RT_NULL; } #ifdef RT_USING_MODULE if (rt_module_self() != RT_NULL) return rt_module_realloc(ptr, size); #endif /* * Get the original allocation's zone. If the new request winds up * using the same chunk size we do not have to do anything. */ kup = btokup((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK); if (kup->type == PAGE_TYPE_LARGE) { rt_size_t osize; osize = kup->size << RT_MM_PAGE_BITS; if ((nptr = rt_malloc(size)) == RT_NULL) return RT_NULL; rt_memcpy(nptr, ptr, size > osize ? osize : size); rt_free(ptr); return nptr; } else if (kup->type == PAGE_TYPE_SMALL) { z = (slab_zone *)(((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK) - kup->size * RT_MM_PAGE_SIZE); RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC); zoneindex(&size); if (z->z_chunksize == size) return(ptr); /* same chunk */ /* * Allocate memory for the new request size. Note that zoneindex has * already adjusted the request size to the appropriate chunk size, which * should optimize our bcopy(). Then copy and return the new pointer. */ if ((nptr = rt_malloc(size)) == RT_NULL) return RT_NULL; rt_memcpy(nptr, ptr, size > z->z_chunksize ? z->z_chunksize : size); rt_free(ptr); return nptr; } return RT_NULL; } /** * This function will contiguously allocate enough space for count objects * that are size bytes of memory each and returns a pointer to the allocated * memory. * * The allocated memory is filled with bytes of value zero. * * @param count number of objects to allocate * @param size size of the objects to allocate * * @return pointer to allocated memory / NULL pointer if there is an error */ void *rt_calloc(rt_size_t count, rt_size_t size) { void *p; /* allocate 'count' objects of size 'size' */ p = rt_malloc(count * size); /* zero the memory */ if (p) rt_memset(p, 0, count * size); return p; } /** * This function will release the previously allocated memory block by rt_malloc. * The released memory block is taken back to system heap. * * @param ptr the address of memory which will be released */ void rt_free(void *ptr) { slab_zone *z; slab_chunk *chunk; struct memusage *kup; /* free a RT_NULL pointer */ if (ptr == RT_NULL) return ; RT_OBJECT_HOOK_CALL(rt_free_hook, (ptr)); #ifdef RT_USING_MODULE if(rt_module_self() != RT_NULL) { rt_module_free(rt_module_self(), ptr); return; } #endif /* get memory usage */ #if RT_DEBUG_SLAB { rt_uint32_t addr = ((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK); RT_DEBUG_LOG(RT_DEBUG_SLAB, ("free a memory 0x%x and align to 0x%x, kup index %d\n", (rt_uint32_t)ptr, (rt_uint32_t)addr, ((rt_uint32_t)(addr) - heap_start) >> RT_MM_PAGE_BITS)); } #endif kup = btokup((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK); /* release large allocation */ if (kup->type == PAGE_TYPE_LARGE) { rt_uint32_t size; /* lock heap */ rt_sem_take(&heap_sem, RT_WAITING_FOREVER); /* clear page counter */ size = kup->size; kup->size = 0; #ifdef RT_MEM_STATS used_mem -= size * RT_MM_PAGE_SIZE; #endif rt_sem_release(&heap_sem); RT_DEBUG_LOG(RT_DEBUG_SLAB, ("free large memory block 0x%x, page count %d\n", (rt_uint32_t)ptr, size)); /* free this page */ rt_page_free(ptr, size); return; } /* lock heap */ rt_sem_take(&heap_sem, RT_WAITING_FOREVER); /* zone case. get out zone. */ z = (slab_zone *)(((rt_uint32_t)ptr & ~RT_MM_PAGE_MASK) - kup->size * RT_MM_PAGE_SIZE); RT_ASSERT(z->z_magic == ZALLOC_SLAB_MAGIC); chunk = (slab_chunk *)ptr; chunk->c_next = z->z_freechunk; z->z_freechunk = chunk; #ifdef RT_MEM_STATS used_mem -= z->z_chunksize; #endif /* * Bump the number of free chunks. If it becomes non-zero the zone * must be added back onto the appropriate list. */ if (z->z_nfree++ == 0) { z->z_next = zone_array[z->z_zoneindex]; zone_array[z->z_zoneindex] = z; } /* * If the zone becomes totally free, and there are other zones we * can allocate from, move this zone to the FreeZones list. Since * this code can be called from an IPI callback, do *NOT* try to mess * with kernel_map here. Hysteresis will be performed at malloc() time. */ if (z->z_nfree == z->z_nmax && (z->z_next || zone_array[z->z_zoneindex] != z)) { slab_zone **pz; RT_DEBUG_LOG(RT_DEBUG_SLAB, ("free zone 0x%x\n", (rt_uint32_t)z, z->z_zoneindex)); /* remove zone from zone array list */ for (pz = &zone_array[z->z_zoneindex]; z != *pz; pz = &(*pz)->z_next) ; *pz = z->z_next; /* reset zone */ z->z_magic = -1; /* insert to free zone list */ z->z_next = zone_free; zone_free = z; ++ zone_free_cnt; /* release zone to page allocator */ if (zone_free_cnt > ZONE_RELEASE_THRESH) { register rt_base_t i; z = zone_free; zone_free = z->z_next; -- zone_free_cnt; /* set message usage */ for (i = 0, kup = btokup(z); i < zone_page_cnt; i ++) { kup->type = PAGE_TYPE_FREE; kup->size = 0; kup ++; } /* unlock heap */ rt_sem_release(&heap_sem); /* release pages */ rt_page_free(z, zone_size / RT_MM_PAGE_SIZE); return; } } /* unlock heap */ rt_sem_release(&heap_sem); } #ifdef RT_MEM_STATS void rt_memory_info(rt_uint32_t *total, rt_uint32_t *used, rt_uint32_t *max_used) { if (total != RT_NULL) *total = heap_end - heap_start; if (used != RT_NULL) *used = used_mem; if (max_used != RT_NULL) *max_used = max_mem; } #ifdef RT_USING_FINSH #include void list_mem(void) { rt_kprintf("total memory: %d\n", heap_end - heap_start); rt_kprintf("used memory : %d\n", used_mem); rt_kprintf("maximum allocated memory: %d\n", max_mem); } FINSH_FUNCTION_EXPORT(list_mem, list memory usage information) #endif #endif /*@}*/ #endif