/* * File : module.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006 - 2010, RT-Thread Development Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2010-01-09 Bernard first version * 2010-04-09 yi.qiu implement based on first version * 2010-10-23 yi.qiu implement module memory allocator */ #include #include #include "string.h" #include "kservice.h" /* #define RT_MODULE_DEBUG */ #ifdef RT_USING_MODULE #include "module.h" #define elf_module ((Elf32_Ehdr *)module_ptr) #define shdr ((Elf32_Shdr *)((rt_uint8_t *)module_ptr + elf_module->e_shoff)) #define phdr ((Elf32_Phdr *)((rt_uint8_t *)module_ptr + elf_module->e_phoff)) #define IS_PROG(s) (s.sh_type == SHT_PROGBITS) #define IS_NOPROG(s) (s.sh_type == SHT_NOBITS) #define IS_REL(s) (s.sh_type == SHT_REL) #define IS_RELA(s) (s.sh_type == SHT_RELA) #define IS_ALLOC(s) (s.sh_flags == SHF_ALLOC) #define IS_AX(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_EXECINSTR)) #define IS_AW(s) ((s.sh_flags & SHF_ALLOC) && (s.sh_flags & SHF_WRITE)) /* module memory allocator */ struct rt_module_page { rt_uint8_t *ptr; /* address of memory block */ rt_size_t npage; /* number of pages */ rt_list_t list; }; /* module memory allocator */ struct rt_mem_head { rt_size_t size; /* size of memory block */ struct rt_mem_head *next; /* next valid memory block */ }; extern void *rt_malloc_page(rt_size_t npages); extern void rt_free_page(void *page_ptr, rt_size_t npages); static rt_module_t rt_current_module = RT_NULL; rt_list_t rt_module_symbol_list; struct rt_module_symtab *_rt_module_symtab_begin = RT_NULL, *_rt_module_symtab_end = RT_NULL; /** * @ingroup SystemInit * * This function will initialize system module * */ void rt_system_module_init(void) { #ifdef __GNUC__ extern int __rtmsymtab_start; extern int __rtmsymtab_end; _rt_module_symtab_begin = (struct rt_module_symtab *)&__rtmsymtab_start; _rt_module_symtab_end = (struct rt_module_symtab *)&__rtmsymtab_end; #elif defined (__CC_ARM) extern int RTMSymTab$$Base; extern int RTMSymTab$$Limit; _rt_module_symtab_begin = (struct rt_module_symtab *)&RTMSymTab$$Base; _rt_module_symtab_end = (struct rt_module_symtab *)&RTMSymTab$$Limit; #endif rt_list_init(&rt_module_symbol_list); /* init current module */ rt_current_module = RT_NULL; } static rt_uint32_t rt_module_symbol_find(const char* sym_str) { /* find in kernel symbol table */ struct rt_module_symtab* index; for (index = _rt_module_symtab_begin; index != _rt_module_symtab_end; index ++) { if (rt_strcmp(index->name, sym_str) == 0) return (rt_uint32_t)index->addr; } return 0; } /** * This function will return self module object * * @return the self module object * */ rt_module_t rt_module_self (void) { /* return current module */ return rt_current_module; } /** * This function will set current module object * * @return RT_EOK */ rt_err_t rt_module_set (rt_module_t module) { /* set current module */ rt_current_module = module; return RT_EOK; } static int rt_module_arm_relocate(struct rt_module* module, Elf32_Rel *rel, Elf32_Addr sym_val) { Elf32_Addr *where, tmp; Elf32_Sword addend; where = (Elf32_Addr *)((rt_uint8_t*)module->module_space + rel->r_offset); switch (ELF32_R_TYPE(rel->r_info)) { case R_ARM_NONE: break; case R_ARM_ABS32: *where += (Elf32_Addr)sym_val; #ifdef RT_MODULE_DEBUG rt_kprintf("R_ARM_ABS32: %x -> %x\n", where, *where); #endif break; case R_ARM_PC24: case R_ARM_PLT32: case R_ARM_CALL: case R_ARM_JUMP24: addend = *where & 0x00ffffff; if (addend & 0x00800000) addend |= 0xff000000; tmp = sym_val - (Elf32_Addr)where + (addend << 2); tmp >>= 2; *where = (*where & 0xff000000) | (tmp & 0x00ffffff); #ifdef RT_MODULE_DEBUG rt_kprintf("R_ARM_PC24: %x -> %x\n", where, *where); #endif break; case R_ARM_V4BX: *where &= 0xf000000f; *where |= 0x01a0f000; break; case R_ARM_GLOB_DAT: case R_ARM_JUMP_SLOT: *where = (Elf32_Addr)sym_val; #ifdef RT_MODULE_DEBUG rt_kprintf("R_ARM_JUMP_SLOT: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val); #endif break; case R_ARM_RELATIVE: *where += (Elf32_Addr)sym_val; #ifdef RT_MODULE_DEBUG rt_kprintf("R_ARM_RELATIVE: 0x%x -> 0x%x 0x%x\n", where, *where, sym_val); #endif break; default: return -1; } return 0; } static void rt_module_init_object_container(struct rt_module* module) { RT_ASSERT(module != RT_NULL); /* initialize object container - thread */ rt_list_init(&(module->module_object[RT_Object_Class_Thread].object_list)); module->module_object[RT_Object_Class_Thread].object_size = sizeof(struct rt_thread); module->module_object[RT_Object_Class_Thread].type = RT_Object_Class_Thread; #ifdef RT_USING_SEMAPHORE /* initialize object container - semaphore */ rt_list_init(&(module->module_object[RT_Object_Class_Semaphore].object_list)); module->module_object[RT_Object_Class_Semaphore].object_size = sizeof(struct rt_semaphore); module->module_object[RT_Object_Class_Semaphore].type = RT_Object_Class_Semaphore; #endif #ifdef RT_USING_MUTEX /* initialize object container - mutex */ rt_list_init(&(module->module_object[RT_Object_Class_Mutex].object_list)); module->module_object[RT_Object_Class_Mutex].object_size = sizeof(struct rt_mutex); module->module_object[RT_Object_Class_Mutex].type = RT_Object_Class_Mutex; #endif #ifdef RT_USING_EVENT /* initialize object container - event */ rt_list_init(&(module->module_object[RT_Object_Class_Event].object_list)); module->module_object[RT_Object_Class_Event].object_size = sizeof(struct rt_event); module->module_object[RT_Object_Class_Event].type = RT_Object_Class_Event; #endif #ifdef RT_USING_MAILBOX /* initialize object container - mailbox */ rt_list_init(&(module->module_object[RT_Object_Class_MailBox].object_list)); module->module_object[RT_Object_Class_MailBox].object_size = sizeof(struct rt_mailbox); module->module_object[RT_Object_Class_MailBox].type = RT_Object_Class_MailBox; #endif #ifdef RT_USING_MESSAGEQUEUE /* initialize object container - message queue */ rt_list_init(&(module->module_object[RT_Object_Class_MessageQueue].object_list)); module->module_object[RT_Object_Class_MessageQueue].object_size = sizeof(struct rt_messagequeue); module->module_object[RT_Object_Class_MessageQueue].type = RT_Object_Class_MessageQueue; #endif #ifdef RT_USING_MEMPOOL /* initialize object container - memory pool */ rt_list_init(&(module->module_object[RT_Object_Class_MemPool].object_list)); module->module_object[RT_Object_Class_MemPool].object_size = sizeof(struct rt_mempool); module->module_object[RT_Object_Class_MemPool].type = RT_Object_Class_MemPool; #endif #ifdef RT_USING_DEVICE /* initialize object container - device */ rt_list_init(&(module->module_object[RT_Object_Class_Device].object_list)); module->module_object[RT_Object_Class_Device].object_size = sizeof(struct rt_device); module->module_object[RT_Object_Class_Device].type = RT_Object_Class_Device; #endif /* initialize object container - timer */ rt_list_init(&(module->module_object[RT_Object_Class_Timer].object_list)); module->module_object[RT_Object_Class_Timer].object_size = sizeof(struct rt_timer); module->module_object[RT_Object_Class_Timer].type = RT_Object_Class_Timer; } /** * This function will load a module from memory and create a thread for it * * @param name the name of module, which shall be unique * @param module_ptr the memory address of module image * * @return the module object * */ rt_module_t rt_module_load(const char* name, void* module_ptr) { rt_uint8_t *ptr = RT_NULL; rt_module_t module = RT_NULL; rt_bool_t linked = RT_FALSE; rt_uint32_t index, module_size = 0; rt_kprintf("rt_module_load: %s ,", name); /* check ELF header */ if (rt_memcmp(elf_module->e_ident, RTMMAG, SELFMAG) == 0) { /* rtmlinke finished */ linked = RT_TRUE; } else if (rt_memcmp(elf_module->e_ident, ELFMAG, SELFMAG) != 0) { rt_kprintf(" module magic error\n"); return RT_NULL; } /* check ELF class */ if(elf_module->e_ident[EI_CLASS] != ELFCLASS32) { rt_kprintf(" module class error\n"); return RT_NULL; } /* get the ELF image size */ for (index = 0; index < elf_module->e_phnum; index++) { if(phdr[index].p_type == PT_LOAD) module_size += phdr[index].p_memsz; } if (module_size == 0) { rt_kprintf(" module size error\n"); return module; } /* allocate module */ module = (struct rt_module *)rt_object_allocate(RT_Object_Class_Module, (const char*)name); if (!module) return RT_NULL; /* allocate module space */ module->module_space = rt_malloc(module_size); if (module->module_space == RT_NULL) { rt_object_delete(&(module->parent)); return RT_NULL; } /* zero all space */ ptr = module->module_space; rt_memset(ptr, 0, module_size); rt_kprintf(" load address at 0x%x\n", ptr); for (index = 0; index < elf_module->e_phnum; index++) { if(phdr[index].p_type == PT_LOAD) { rt_memcpy(ptr, (rt_uint8_t*)elf_module + phdr[index].p_offset, phdr[index].p_filesz); ptr += phdr[index].p_memsz; } } /* set module entry */ module->module_entry = module->module_space + elf_module->e_entry; /* handle relocation section */ for (index = 0; index < elf_module->e_shnum; index ++) { if (IS_REL(shdr[index])) { rt_uint32_t i, nr_reloc; Elf32_Sym *symtab; Elf32_Rel *rel; rt_uint8_t *strtab; static rt_bool_t unsolved = RT_FALSE; /* get relocate item */ rel = (Elf32_Rel *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset); /* locate .rel.plt and .rel.dyn section */ symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[shdr[index].sh_link].sh_offset); strtab = (rt_uint8_t*) module_ptr + shdr[shdr[shdr[index].sh_link].sh_link].sh_offset; nr_reloc = (rt_uint32_t) (shdr[index].sh_size / sizeof(Elf32_Rel)); /* relocate every items */ for (i = 0; i < nr_reloc; i ++) { Elf32_Sym *sym = &symtab[ELF32_R_SYM(rel->r_info)]; #ifdef RT_MODULE_DEBUG rt_kprintf("relocate symbol %s shndx %d\n", strtab + sym->st_name, sym->st_shndx); #endif if((sym->st_shndx != SHT_NULL) || (ELF_ST_BIND(sym->st_info) == STB_LOCAL)) rt_module_arm_relocate(module, rel, (Elf32_Addr)(module->module_space + sym->st_value)); else if(!linked) { Elf32_Addr addr; #ifdef RT_MODULE_DEBUG rt_kprintf("unresolved relocate symbol: %s\n", strtab + sym->st_name); #endif /* need to resolve symbol in kernel symbol table */ addr = rt_module_symbol_find((const char*)(strtab + sym->st_name)); if (addr == 0) { rt_kprintf("can't find %s in kernel symbol table\n", strtab + sym->st_name); unsolved = RT_TRUE; } else rt_module_arm_relocate(module, rel, addr); } rel ++; } if(unsolved) { rt_object_delete(&(module->parent)); rt_free(module); return RT_NULL; } } } /* construct module symbol table */ for (index = 0; index < elf_module->e_shnum; index ++) { /* find .dynsym section */ rt_uint8_t* shstrab = (rt_uint8_t*) module_ptr + shdr[elf_module->e_shstrndx].sh_offset; if (rt_strcmp((const char *)(shstrab + shdr[index].sh_name), ELF_DYNSYM) == 0) break; } /* found .dynsym section */ if(index != elf_module->e_shnum) { int i, count = 0; Elf32_Sym *symtab = RT_NULL; rt_uint8_t *strtab = RT_NULL; symtab =(Elf32_Sym *) ((rt_uint8_t*)module_ptr + shdr[index].sh_offset); strtab = (rt_uint8_t*) module_ptr + shdr[shdr[index].sh_link].sh_offset; for(i=0; isymtab = (struct rt_module_symtab*)rt_malloc(count * sizeof(struct rt_module_symtab)); module->nsym = count; for(i=0, count=0; isymtab[count].addr = (void*)(module->module_space + symtab[i].st_value); module->symtab[count].name = rt_malloc(length); rt_memset((void*)module->symtab[count].name, 0, length); rt_memcpy((void*)module->symtab[count].name, strtab + symtab[i].st_name, length); count++; } } } /* init module object container */ rt_module_init_object_container(module); /* increase module reference count */ module->nref++; if(elf_module->e_entry != 0) { /* init module page list */ rt_list_init(&module->page_list); /* init module memory allocator */ module->mem_list = RT_NULL; /* create mpool for page node */ module->mpool = rt_mp_create(name, 256, sizeof(struct rt_module_page)); /* create module thread */ module->stack_size = 2048; module->thread_priority = 90; module->module_thread = rt_thread_create(name, module->module_entry, RT_NULL, module->stack_size, module->thread_priority, 10); module->module_thread->module_id = (void*)module; /* startup module thread */ rt_thread_startup(module->module_thread); } else { /* without entry point */ module->parent.flag |= RT_MODULE_FLAG_WITHOUTENTRY; } return module; } #ifdef RT_USING_DFS #include /** * This function will load a module from a file * * @param filename the file name of application module * * @return the module object * */ rt_module_t rt_module_open(const char* filename) { int fd, length; struct rt_module* module; struct stat s; char *buffer, *offset_ptr;; /* check parameters */ RT_ASSERT(filename != RT_NULL); if (stat(filename, &s) !=0) { rt_kprintf("access file failed\n"); return RT_NULL; } buffer = (char *)rt_malloc(s.st_size); if (buffer == RT_NULL) { rt_kprintf("out of memory\n"); return RT_NULL; } offset_ptr = buffer; fd = open(filename, O_RDONLY, 0); if (fd < 0) { rt_kprintf("open file failed\n"); rt_free(buffer); return RT_NULL; } do { length = read(fd, offset_ptr, 4096); if (length > 0) { offset_ptr += length; } }while (length > 0); /* close fd */ close(fd); if ((rt_uint32_t)offset_ptr - (rt_uint32_t)buffer != s.st_size) { rt_kprintf("check: read file failed\n"); rt_free(buffer); return RT_NULL; } module = rt_module_load(filename, (void *)buffer); rt_free(buffer); return module; } #if defined(RT_USING_FINSH) #include FINSH_FUNCTION_EXPORT_ALIAS(rt_module_open, exec, exec module from file); #endif #endif /** * This function will unload a module from memory and release resources * * @param module the module to be unloaded * * @return the operation status, RT_EOK on OK; -RT_ERROR on error * */ rt_err_t rt_module_unload(rt_module_t module) { int i; struct rt_object* object; struct rt_list_node *list; rt_kprintf("rt_module_unload: %s\n", module->parent.name); /* check parameter */ RT_ASSERT(module != RT_NULL); /* module has entry point */ if(!(module->parent.flag & RT_MODULE_FLAG_WITHOUTENTRY)) { /* suspend module main thread */ if(module->module_thread != RT_NULL) { if (module->module_thread->stat == RT_THREAD_READY) rt_thread_suspend(module->module_thread); } /* delete threads */ list = &module->module_object[RT_Object_Class_Thread].object_list; while(list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_EOK) { /* detach static object */ rt_thread_detach((rt_thread_t)object); } else { /* delete dynamic object */ rt_thread_delete((rt_thread_t)object); } } #ifdef RT_USING_SEMAPHORE /* delete semaphores */ list = &module->module_object[RT_Object_Class_Thread].object_list; while(list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_EOK) { /* detach static object */ rt_sem_detach((rt_sem_t)object); } else { /* delete dynamic object */ rt_sem_delete((rt_sem_t)object); } } #endif #ifdef RT_USING_MUTEX /* delete mutexs*/ list = &module->module_object[RT_Object_Class_Mutex].object_list; while(list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_EOK) { /* detach static object */ rt_mutex_detach((rt_mutex_t)object); } else { /* delete dynamic object */ rt_mutex_delete((rt_mutex_t)object); } } #endif #ifdef RT_USING_EVENT /* delete mailboxs */ list = &module->module_object[RT_Object_Class_Event].object_list; while(list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_EOK) { /* detach static object */ rt_event_detach((rt_event_t)object); } else { /* delete dynamic object */ rt_event_delete((rt_event_t)object); } } #endif #ifdef RT_USING_MAILBOX /* delete mailboxs */ list = &module->module_object[RT_Object_Class_MailBox].object_list; while(list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_EOK) { /* detach static object */ rt_mb_detach((rt_mailbox_t)object); } else { /* delete dynamic object */ rt_mb_delete((rt_mailbox_t)object); } } #endif #ifdef RT_USING_MESSAGEQUEUE /* delete msgqueues */ list = &module->module_object[RT_Object_Class_MessageQueue].object_list; while(list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_EOK) { /* detach static object */ rt_mq_detach((rt_mq_t)object); } else { /* delete dynamic object */ rt_mq_delete((rt_mq_t)object); } } #endif #ifdef RT_USING_MEMPOOL /* delete mempools */ list = &module->module_object[RT_Object_Class_MemPool].object_list; while(list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_EOK) { /* detach static object */ rt_mp_detach((rt_mp_t)object); } else { /* delete dynamic object */ rt_mp_delete((rt_mp_t)object); } } #endif #ifdef RT_USING_DEVICE /* delete devices */ list = &module->module_object[RT_Object_Class_Device].object_list; while(list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); rt_device_unregister((rt_device_t)object); } #endif /* delete timers */ list = &module->module_object[RT_Object_Class_Timer].object_list; while(list->next != list) { object = rt_list_entry(list->next, struct rt_object, list); if (rt_object_is_systemobject(object) == RT_EOK) { /* detach static object */ rt_timer_detach((rt_timer_t)object); } else { /* delete dynamic object */ rt_timer_delete((rt_timer_t)object); } } /* free module pages */ list = &module->page_list; while(list->next != list) { struct rt_module_page* page; /* free page */ page = rt_list_entry(list->next, struct rt_module_page, list); rt_free_page(page->ptr, page->npage); rt_list_remove(list->next); } /* delete mpool */ if(module->mpool) rt_mp_delete(module->mpool); } /* release module space memory */ rt_free(module->module_space); /* release module symbol table */ for(i=0; insym; i++) rt_free((void *)module->symtab[i].name); if(module->symtab != RT_NULL) rt_free(module->symtab); /* delete module object */ rt_object_delete((rt_object_t)module); return RT_EOK; } /** * This function will find the specified module. * * @param name the name of module finding * * @return the module */ rt_module_t rt_module_find(const char* name) { struct rt_object_information *information; struct rt_object* object; struct rt_list_node* node; extern struct rt_object_information rt_object_container[]; /* enter critical */ rt_enter_critical(); /* try to find device object */ information = &rt_object_container[RT_Object_Class_Module]; for (node = information->object_list.next; node != &(information->object_list); node = node->next) { object = rt_list_entry(node, struct rt_object, list); if (rt_strncmp(object->name, name, RT_NAME_MAX) == 0) { /* leave critical */ rt_exit_critical(); return (rt_module_t)object; } } /* leave critical */ rt_exit_critical(); /* not found */ return RT_NULL; } static struct rt_mem_head *morepage(rt_size_t nu) { rt_uint8_t *cp; rt_uint32_t npage; struct rt_mem_head *up; struct rt_module_page *node; RT_ASSERT (nu != 0); /* allocate pages from system heap */ npage = (nu * sizeof(struct rt_mem_head) + RT_MM_PAGE_SIZE - 1)/RT_MM_PAGE_SIZE; cp = rt_malloc_page(npage); if(!cp) return RT_NULL; /* allocate page list node from mpool */ node = rt_mp_alloc(rt_current_module->mpool, RT_WAITING_FOREVER); node->ptr = cp; node->npage = npage; /* insert page list node to moudle's page list */ rt_list_insert_after (&rt_current_module->page_list, &node->list); up = (struct rt_mem_head *) cp; up->size = npage * RT_MM_PAGE_SIZE / sizeof(struct rt_mem_head); rt_module_free(rt_current_module, (void *)(up+1)); return up; } /* rt_module_malloc - allocate memory block in free list */ void *rt_module_malloc(rt_size_t size) { struct rt_mem_head *b, *n; struct rt_mem_head **prev; rt_size_t nunits; nunits = (size + sizeof(struct rt_mem_head) -1)/sizeof(struct rt_mem_head) + 1; RT_ASSERT(size != 0); RT_ASSERT(nunits != 0); prev = (struct rt_mem_head **)&rt_current_module->mem_list; /* if size can be divided by page, allocate page directly */ if(size % RT_MM_PAGE_SIZE == 0) { rt_uint8_t *cp; struct rt_module_page *node; rt_uint32_t npage = size / RT_MM_PAGE_SIZE; /* allocate pages from system heap */ cp = rt_malloc_page(npage); if(!cp) return RT_NULL; /* allocate page list node from mpool */ node = rt_mp_alloc(rt_current_module->mpool, RT_WAITING_FOREVER); node->ptr = cp; node->npage = npage; /* insert page list node to moudle's page list */ rt_list_insert_after (&rt_current_module->page_list, &node->list); } while(RT_TRUE) { b = *prev; if(!b) { if ((b = morepage(nunits)) == RT_NULL) return RT_NULL; else return rt_module_malloc(size); /* To be improved */ } if (b->size > nunits) { /* split memory */ n = b + nunits; n->next = b->next; n->size = b->size - nunits; b->size = nunits; *prev = n; break; } if (b->size == nunits) { /* this node fit, remove this node */ *prev = b->next; break; } prev = &(b->next); } return (void *)(b + 1); } /* rt_module_free - insert memory block in free list */ void rt_module_free(rt_module_t module, void *addr) { struct rt_mem_head *b, *n; struct rt_mem_head **prev; RT_ASSERT(addr); RT_ASSERT((((rt_uint32_t)addr) & (sizeof(struct rt_mem_head) -1)) == 0); n = (struct rt_mem_head *)addr - 1; prev = (struct rt_mem_head **)&module->mem_list; while ((b = *prev) != RT_NULL) { RT_ASSERT(b->size > 0); RT_ASSERT(b > n || b + b->size <= n); if (b + b->size == n) { if (b + (b->size += n->size) == b->next) { b->size += b->next->size; b->next = b->next->next; } return; } if (b == n + n->size) { n->size = b->size + n->size; n->next = b->next; *prev = n; return; } if (b > n + n->size) break; prev = &(b->next); } n->next = b; *prev = n; /* free page, TODO */ } /* rt_module_realloc - realloc memory block in free list */ void *rt_module_realloc(void *ptr, rt_size_t size) { struct rt_mem_head *b, *p, *prev, *tmpp; rt_size_t nunits; if (!ptr) return rt_module_malloc(size); if (size == 0) { rt_module_free(rt_current_module, ptr); return RT_NULL; } nunits = (size + sizeof(struct rt_mem_head) - 1) / sizeof(struct rt_mem_head) + 1; b = (struct rt_mem_head *)ptr - 1; if (nunits <= b->size) { /* new size is smaller or equal then before */ if (nunits == b->size) return ptr; else { p = b + nunits; p->size = b->size - nunits; b->size = nunits; rt_module_free(rt_current_module, (void *)(p + 1)); return (void *)(b + 1); } } else { /* more space then required */ prev = (struct rt_mem_head *)rt_current_module->mem_list; for (p = prev->next; p != (b->size + b) && p != RT_NULL; prev = p, p = p->next) break; /* available block after ap in freelist */ if (p != RT_NULL && (p->size >= (nunits - (b->size))) && p == (b + b->size)) { /* perfect match */ if (p->size == (nunits - (b->size))) { b->size = nunits; prev->next = p->next; } else /* more space then required, split block*/ { /* pointer to old header */ tmpp = p; p = b + nunits; /* restoring old pointer */ p->next = tmpp->next; /* new size for p */ p->size = tmpp->size + b->size - nunits; b->size = nunits; prev->next = p; } rt_current_module->mem_list = (void *)prev; return (void *) (b + 1); } else /* allocate new memory and copy old data */ { if ((p = rt_module_malloc(size)) == RT_NULL) return RT_NULL; rt_memmove(p, (b+1), ((b->size) * sizeof(struct rt_mem_head))); rt_module_free(rt_current_module, (void *)(b + 1)); return (void *) (p); } } } #endif